100mA，Low Noise， Low Dropout Mic ropower Regulator

March 1999

FEATURES

－Quiescent Current：20 $\mu \mathrm{A}$（Typ）
－Dropout Voltage： 300 mV （Typ）
－Output Current：100mA
－Low Noise： $20 \mu \mathrm{~V}_{\text {RMS }}$（ 10 Hz to 100kHz）（Typ）
－No Protection Diodes Needed
－Adjustable Output from 1.22 V to 20 V
－Stable with 1μ FOutput Capacitor
－Stable with Aluminum，Tantalum or Ceramic Capacitors
－Reverse Battery Protection
－No Reverse Current
－Thermal Limiting

APPLICATIO NS

－Low Current Regulator
－Regulator for Battery－Powered Systems
－Low Noise Regulator

DESCRIPTIO

The $L T^{\circledR} 1761$ is a micropower，low noise，low dropout regulator．The device is capable of supplying 100 mA of output current with adropout voltage of 300 mV ．Designed for use in battery－powered systems，the low 20μ A operat－ ing quiescent current makes it an ideal choice．Quiescent current is well controlled；it does not rise in dropout as it does with many other regulators．
Other features of the LT1761 include low output noise． With the addition of an external 0.01μ Fbypass capacitor， output noise is dropped to $20 \mu \mathrm{~V}_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth．The LT1761 regulator is capable of operating with small capacitors and is stable with output capacitors as low as $1 \mu \mathrm{~F}$ ．Small ceramic capacitors can be used without the necessary addition of ESRas is common with other regulators．Internal protection circuitry includes reversebattery protection，current limiting，ther－ mal limiting and reversecurrent protection．The device is available as an adjustable device with a 1.22 V reference voltage．The LT1761 regulator is available in the 5－lead SOT－23 package．

[^0]
TYPICAL APPLICATIO \cap

1．5V Low Noise Supply

ABSO LUTE MAXIMUM RATING S
(Note 1)
IN Pin Voltage $\pm 20 \mathrm{~V}$
OUT Pin Voltage $\pm 20 \mathrm{~V}$
OUT Pin Reverse Ourrent 5 mA
Input to Output Differential Voltage $\pm 20 \mathrm{~V}$
ADJ Pin Voltage $\pm 7 \mathrm{~V}$
ADJ Pin Current 5 mA
BYP Pin Voltage $\pm 0.6 \mathrm{~V}$
BYP Pin Current 5 mA
Output Short-Oircut Duration

\qquad
Indefinite Operating Junction Temperature Range.. $.0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
PACKAG E/ORDER INFO RMATIO

TOP VIEN	ORDER PART NUMBER
GND	LT1761S5-BYP
S5 PACKAGE 5-LEAD PLASTICSOT-23	
$\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{J A}=250^{\circ} \mathrm{C} \mathrm{W}$	
SETHEAPPLICATIONS INFORMATION SECTIOV.	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ADJ Pin Voltage (Note 3, 4)	LT1761 $V_{I N}=2 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ $2 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, 1 \mathrm{~mA}<\operatorname{l}_{\text {LOAD }}<50 \mathrm{~mA}$ $2 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<100 \mathrm{~mA}$	\bullet	$\begin{aligned} & 1.205 \\ & 1.190 \\ & 1.170 \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.220 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 1.235 \\ & 1.250 \\ & 1.260 \end{aligned}$	V V V
Line Regulation	LT1761(Note3) $\Delta \mathrm{V}_{\text {IN }}=2 \mathrm{~V}$ to 20V, $\mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}$	\bullet		1	10	mV
Load Regulation	LT1761(Note 3) $\begin{aligned} & V_{I N}=2 \mathrm{~V}, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & V_{I N}=2 \mathrm{~V}, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA} \\ & V_{I N}=2 V, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 100 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & V_{I N}=2 \mathrm{~V}, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 100 \mathrm{~mA} \end{aligned}$	\bullet		1 1	$\begin{gathered} \hline 6 \\ 12 \\ 12 \\ 50 \\ \hline \end{gathered}$	mV mV mV mV
Dropout Voltage $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}$ (Notes 5, 6)	$\begin{aligned} & I_{\text {LOAD }}=1 \mathrm{~mA}, T_{j}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=1 \mathrm{~mA} \end{aligned}$	\bullet		0.10	$\begin{aligned} & 0.15 \\ & 0.19 \end{aligned}$	V
	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LAAD }}=10 \mathrm{~mA} \end{aligned}$	\bullet		0.17	$\begin{aligned} & 0.22 \\ & 0.29 \end{aligned}$	V
	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA} \end{aligned}$	\bullet		0.24	$\begin{aligned} & 0.31 \\ & 0.40 \end{aligned}$	V
	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$	\bullet		0.30	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	V
GND Pin Current $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}$ (Notes 5, 7)	$\begin{aligned} & I_{\text {LOAD }}=0 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$	$\stackrel{-}{\bullet}$		$\begin{gathered} 20 \\ 55 \\ 230 \\ 1 \\ 2.2 \end{gathered}$	$\begin{gathered} 45 \\ 90 \\ 400 \\ 2 \\ 4 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
Output Voltage Noise	$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {BYP }}=0.01 \mu \mathrm{~F}, \mathrm{~L}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{BW}=10 \mathrm{~Hz}$ to 100 kHz			20		$\mu \mathrm{V}$ RMS
ADJ Pin Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \quad($ Notes 3, 8)			30	100	nA
Minimum Input Voltage	LT1761 $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	\bullet		1.8	2.3	V
Ripple Rejection	$\begin{aligned} & \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OU }}=1 \mathrm{~V}(\mathrm{Avg}), \mathrm{V}_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }}, \\ & \mathrm{f}_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA} \end{aligned}$		55	65		dB

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Ourrent Limit	$\begin{aligned} & \mathrm{V}_{\text {IN }}=7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL })}+1 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$	\bullet	110	200		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Reverse Leakage Current	$\mathrm{V}_{\text {IN }}=-20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet			1.0	mA
Reverse Output Ourrent (Note9)	LT1761 (Note 2) $\mathrm{V}_{\text {OUT }}=1.22 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<1.22 \mathrm{~V}$			5	10	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1761 is tested and specified under pulse load conditions such that $T_{J} \approx T_{A}$.
Note 3: The LT1761 (adjustable version) is tested and specified for these conditions with the ADJ pin connected to the OTT pin.
Note 4: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current, the input voltage range must be limited.
Note 5: To satisfy requirements for minimum input voltage, the LT1761 (adjustable version) is tested and specified for these conditions with an
external resistor divider (two 250k resistors) for an output voltage of 2.44V. The external resistor divider will add a $5 \mu \mathrm{~A} \mathrm{DCload} \mathrm{on} \mathrm{the} \mathrm{otuput}$.

Note 6: Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage will be equal to: $\mathrm{V}_{I N}-\mathrm{V}_{\text {DROPOr. }}$.
Note 7: GND pin current is tested with $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{O}}$ (NOMINAL) and a current source load. This means the device is tested while operating in its dropout region. This is the worst-case GND pin current. The GND pin current will decrease slightly at higher input voltages.
Note 8: ADJ pin bias current flows into the ADJ pin.
Note 9: Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into the OUT pin and out the GND pin.

PIn FUnCTIO NS

IN (Pin 1): Input. Power is supplied to the device through the INpin. Abypass capacitor is required on this pin if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency, so it is advisable to includea bypass capacitor in battery-powered circuits. A bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient. The LT1761 is designed to withstand reverse voltages on the INpin with respect to ground and the OUT pin. In the case of areverseinput, which can happen if abattery is plugged in backwards, the LT1761 will act as if there is a diode in series with its input. There will be no reverse current flow into the LT1761 and no reverse voltage will appear at the load. The device will protect both itself and the load.

GND (Pin 2): Ground.

BYP (Pin 3): Bypass. The BYP pin is used to bypass the referenceof the LT1761 to achievelow noise performance from the regulator. The BYP pin is clamped internally to
$\pm 0.6 \mathrm{~V}$ (one V_{BE}) from ground. A small capacitor from the output to this pin will bypass the reference to lower the output voltage noise. A maximum value of $0.01 \mu \mathrm{~F}$ can be usedfor reducing output voltagenoisetoatypical $20 \mu \mathrm{~V}_{\mathrm{RMS}}$ over a 10 Hz to 100 kHz bandwidth. If not used, this pin must be left unconnected.
ADJ (Pin 4): Adjust Pin. This is the input to the error amplifier. This pin is internally clamped to $\pm 7 \mathrm{~V}$. It has a bias current of 30 nA which flows into the pin. The ADJ pin voltage is 1.22 V referenced to ground and the output voltage range is 1.22 V to 20 V .

OUT (Pin 5): Output. The output supplies power to the load. A minimum output capacitor of $1 \mu \mathrm{~F}$ is required to prevent oscillations. Larger output capacitors will be required for applications with largetransient loads to limit peak voltage transients. Seethe Applications Information section for more information on output capacitance and reverse output characteristics.

LT1761

APPLICATIO NS INFO RMATIO

The LT1761 is a 100 mA low dropout regulator with micropower quiescent current and shutdown. Thedevice is capable of supplying 100 mA at a dropout voltage of 300 mV . Output voltage noise can be lowered to $20 \mu \mathrm{~V}_{\mathrm{RMS}}$ over a 10 Hz to 100 kHz bandwidth with the addition of a 0.01μ Freferencebypass capacitor. Additionally, thereference bypass capacitor will improve transient response of the regulator, lowering the settling time for transient load conditions. Quiescent operating current is alow $20 \mu \mathrm{~A}$. In additionto thelowquiescent current, theLT1761 incorporates several protection features which make it ideal for use in battery-powered systems. The device is protected against both reverse input and reverse output voltages. In battery backup applications where the output can be held up by abackup battery when the input is pulled to ground, the LT1761 acts like it has adiode in series with its output and prevents reverse current flow. Additionally, in dual supply applications wheretheregulator load is returned to a negative supply, the output can be pulled below ground by as much as 20 V and still allow the device to start and operate.

Adjustable Operation

The adjustable version of the LT1761 has an output voltage range of 1.22 V to 20 V . Theoutput voltage is set by theratio of two external resistors as showninFgure1. The device servos theoutput to maintainthevoltageat the ADJ pin at 1.22 V referenced to ground. The current in R1 is then equal to $1.22 \mathrm{~V} / \mathrm{R} 1$ and thecurrent in R 2 is the current in R1 plus the ADJ pin bias current. The ADJ pin bias current, 30nA at $25^{\circ} \mathrm{C}$, flows through R2 into the ADJ pin. Theoutput voltage can becalculated using the formula in Figure 1. The value of R1 should be less than 250k to minimize errors in the output voltage caused by the ADJ pin bias current.
The adjustable device is tested and specified with the ADJ pin tied to the OUT pin for an output voltage of 1.22 V . Specifications for output voltages greater than 1.22 V will beproportional to the ratio of the desired output voltageto 1.22V: $\mathrm{V}_{\mathrm{or}} / 1.22 \mathrm{~V}$. For example, load regulation for an output current change of 1 mA to 100 mA is -1 mV typical at $\mathrm{V}_{\mathrm{OUT}}=1.22 \mathrm{~V}$. At $\mathrm{V}_{\mathrm{OUT}}=12 \mathrm{~V}$, load regulation is:
$(12 \mathrm{~V} / 1.22 \mathrm{~V})(-1 \mathrm{mV})=-9.8 \mathrm{mV}$

Figure 1. Adjustable Operation

Bypass Capacitance and Low Noise Performance

The LT1761 may be used with the addition of a bypass capacitor from $\mathrm{V}_{\text {ourto the }}$ BYP pinto lower output voltage noise. A good quality low leakage capacitor is recommended. This capacitor will bypass the reference of the LT1761, providing alow frequency noise pole. The noise pole provided by this bypass capacitor will lower the output voltage noise to as low as $20 \mu \mathrm{~V}_{\text {RMS }}$ with the addition of a $0.01 \mu \mathrm{~F}$ bypass capacitor. Using a bypass capacitor has the added benefit of improving transient response. With no bypass capacitor and a $3.3 \mu \mathrm{~F}$ output capacitor, a1mAto50mAload step will settleto within 5% of its final value in less than 50 $\mu \mathrm{s}$. With the addition of a 0.01μ Fbypass capacitor, settling time is reduced to less than $5 \mu \mathrm{~s}$. However, regulator start-up time is inversely proportional to thesizeof thebypass capacitor, slowing to 15 ms with a $0.01 \mu \mathrm{~F}$ bypass capacitor and $10 \mu \mathrm{~F}$ output capacitor.

Output Capacitance and Transient Response

The LT1761 is designed to be stable with a wide range of output capacitors. The ESR of theoutput capacitor affects stability, most notably with small capacitors. A minimum output capacitor of $1 \mu \mathrm{~F}$ with an ESR of 3Ω or less is recommended to prevent oscillations. The LT1761 is a micropower device and output transient response will be a function of output capacitance. Larger values of output capacitance decrease the peak deviations and provide

APPLICATIO NS INFO RMATIO

improved transient response for larger load current changes. Bypass capacitors, used to decouple individual components powered by the LT1761, will increase the effective output capacitor value. With larger capacitors used to bypass the reference (for low noise operation), larger values of output capacitors are needed. For 100pF of bypass capacitance, 2.2μ Fof output capacitor is recommended. With a330pFbypass capacitor or larger, a3.3 $\mu \mathrm{F}$ output capacitor is recommended.

Thermal Considerations

The power handling capability of the device will belimited by themaximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device will be made up of two components:

1. Output current multiplied by the input/output voltage differential: $\left(\mathrm{l}_{\mathrm{Or}}\right)\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OU}}\right)$, and
2. GND pin current multiplied by the input voltage: $\left(l_{G N D}\right)\left(V_{I N}\right)$.
The GND pin current can be estimated using the GND Pin Current specification inthe Bectrical Characteristicstable. Power dissipation will be equal to the sum of the two components listed above.
The LT1761 series regulators have internal thermal limiting designed to protect the device during overload conditions. For continuous normal conditions, the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistancefromjunctionto ambient. Additional heat sources mounted nearby must also be considered.
For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PCboard and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.

The following table lists thermal resistance for several different board sizes and copper areas. All measurements were taken in still air on 3/32" FR-4 board with one ounce copper.
Table 1. Measured Thermal Resistance

COPPER AREA			THERMAL RESISTANCE
TOPSIDE	BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)
$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$125^{\circ} \mathrm{C} / \mathrm{W}$
$1000 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$125^{\circ} \mathrm{C} / \mathrm{W}$
$225 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$130^{\circ} \mathrm{C} / \mathrm{W}$
$100 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$135^{\circ} \mathrm{C} / \mathrm{W}$
$50 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$150^{\circ} \mathrm{C} / \mathrm{W}$

* Device is mounted on topside.

Calculating Junction Temperature

Example: Given an output voltageof 3.3 V , an input voltage rangeof 4 V to 6 V , an output current range of 0 mAto 50 mA and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?
The power dissipated by the device will be equal to:

$$
\mathrm{I}_{\mathrm{OU}(\operatorname{MAX})}\left(\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{OUT}}\right)+\mathrm{I}_{\mathrm{GND}}\left(\mathrm{~V}_{\operatorname{IN}(\mathrm{MAX})}\right)
$$

where,

$$
\begin{aligned}
& \mathrm{I}_{\text {OUT(MAX }}=50 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{IN}(\mathrm{MAX})}=6 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{GND}} \text { at }\left(\mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}=6 \mathrm{~V})=1 \mathrm{~mA}}\right.
\end{aligned}
$$

so,

$$
\mathrm{P}=50 \mathrm{~mA}(6 \mathrm{~V}-3.3 \mathrm{~V})+1 \mathrm{~mA}(6 \mathrm{~V})=0.14 \mathrm{~W}
$$

The thermal resistance will bein the range of $125^{\circ} \mathrm{C} W$ to $150^{\circ} \mathrm{C}$ W depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$$
0.14 \mathrm{~W}\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=21.2^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+21.2^{\circ} \mathrm{C}=71.2^{\circ} \mathrm{C}
$$

APPLICATIO NS INFO RMATIO \cap

Protection Features

TheLT1761 incorporates several protectionfeatures which make it ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the device is protected against reverse input voltages, reverse output voltages and reverse voltages from output to input.
Ourrent limit protection and thermal overload protection areintended to protect thedeviceagainst current overload conditions at the output of the device. For normal opera tion, the junction temperature should not exceed $125^{\circ} \mathrm{C}$.
The input of the device will withstand reverse voltages of 20 V . Current flow into thedevicewill belimited tolessthan 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at theoutput. The devicewill protect both itself and the load. This provides protection against batteries which can be plugged in backward.

The output of the LT1761 can be pulled below ground without damaging the device. If theinput isleft opencircuit or grounded, the output can be pulled below ground by 20 V . For adjustable versions, the output will act like an open circuit; no current will flow out of thepin. If theinput is powered by a voltage source, the output will sourcethe short-circuit current of thedeviceand will protect itself by thermal limiting.
The ADJ pin of the adjustable device can be pulled above or below ground by as much as 7 V without damaging the
device. If theinput is left open circuit or grounded, the ADJ pin will act like an open circuit when pulled below ground and like a large resistor (typically 100k) in series with a diode when pulled above ground.
In situations where the ADJ pin is connected to a resistor divider that would pull the ADJ pin above its 7 V clamp voltage if the output is pulled high, the ADJ pin input current must be limited to less than 5 mA . For example, a resistor divider is used to provide a regulated 1.5 V output from the 1.22 V referencewhentheoutput isforcedto 20 V . The top resistor of the resistor divider must be chosen to limit thecurrent intotheADJpintoless than 5mAwhen the ADJ pin is at 7 V . The 13 V difference between output and ADJ pin divided by the5mAmaximum current intotheADJ pin yields a minimum top resistor value of 2.6 k .

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to someintermediatevoltageor is left open circuit. Ourrent flow back into the output will be less than $15 \mu \mathrm{~A}$.
When the INpin of theLT1761 is forced bel ow theOUTpin or theOUT pin is pulled abovethe INpin, input current will typically droptoless than $2 \mu \mathrm{~A}$. This can happen if theinput of the LT1761 is connected to a discharged (low voltage) battery and theoutput is held up by either abackup battery or a second regulator circuit.

PACKAG E DESCRIPTIO n Dimensions in incheses mililimeerss unnessontemisis onoted.

S5 Package
5-Lead Plastic SOT-23
(LTCDWG\# 05-08-1633)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1120	125 mA Low Dropout Regulator with $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$	Includes 2.5V Reference and Comparator
LT1121	150mA Micropower Low Dropout Regulator	$30 \mu \mathrm{Al} \mathrm{I}_{\mathrm{Q}}$ SOT-223 Package
LT1129	700mA Micropower Low Dropout Regulator	504A Quiescent Ourrent
LT1521	300mA Low Dropout Micropower Regulator with Shutdown	$15 \mu \mathrm{Al} \mathrm{I}_{\text {Q }}$ Reverse Battery Protection
LT1529	3A Low Dropout Regulator with $50 \mu \mathrm{Al} \mathrm{I}_{\mathrm{Q}}$	500mV Dropout Voltage
LT1611	Inverting 1.4MHz Switching Regulator	5 V to -5V at 150mA, Low Output Noise, SOT-23 Package
LT1613	1.4MHz Single-Cell Micropower DC/DCConverter	SOT-23 Package, Internally Compensated
$\underline{\text { LTC1627 }}$	High Efficiency Synchronous Step-Down Switching Regulator	Burst Mode ${ }^{\text {TM }}$ Operation, Monolithic, 100\% Duty Oycle

Burst Mode is a trademark of Linear Technology Corporation.

[^0]: $\overline{\mathbf{\Sigma}}$, LTC and LT are registered trademarks of Linear Technology Corporation．

