DS05-11148-1E

MEMORY Un-buffered

8 M \times 64 BIT SYNCHRONOUS DYNAMIC RAM SO-DIMM

MB8508S064CF-100/-100L

144-pin, 2 Clock, 2-bank, based on 4 M \times 16 Bit SDRAMs with SPD

DESCRIPTION

The Fujitsu MB8508S064CF is a fully decoded, CMOS Synchronous Dynamic Random Access Memory (SDRAM) Module consisting of eight MB81F641642C devices which organized as two banks of 8 M \times 8 bits and a 2K-bit serial EEPROM on a 144-pin glass-epoxy substrate.

The MB8508S064CF features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence.

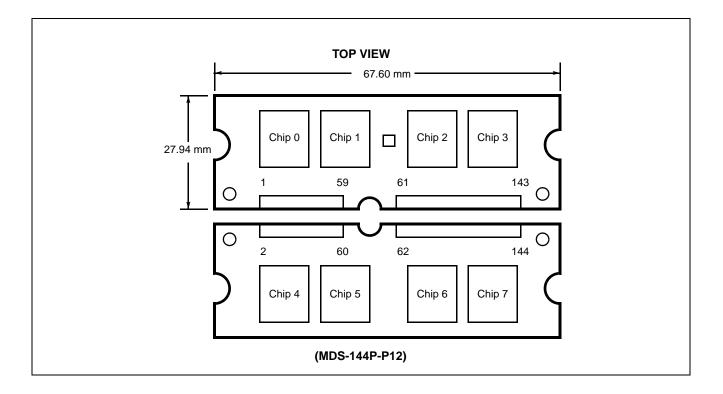
The MB8508S064CF is optimized for those applications requiring high speed, high performance and large memory storage, and high density memory organizations.

This module is ideally suited for workstations, PCs, laser printers, and other applications where a simple interface is needed.


PRODUCT LINE & FEATURES

Parameter	MB8508	S064CF			
Farameter	-100	-100L			
Clock Frequency	100 MHz max.				
Burst Mode Cycle Time	10 ns min.				
Access Time from Clock	8.5 ns ma	x. (CL = 3)			
Operating Current	400 m/	A max.			
Power Down Mode Current (Icc2P)	16 mA max.	8 mA max.			
Self Refresh Current (Icc6)	8 mA max.	4 mA max.			

- Unbuffered 144-pin SO-DIMM Socket Type (Lead pitch: 0.8 mm)
- Conformed to JEDEC Standard (2 CLK)
- Organization: 8,388,608 words \times 64 bits
- Memory: MB81F641642C (4 M × 16, 4-bank) × 8 pcs.
- 3.3 V ±0.3 V Supply Voltage
- All input/output LVTTL compatible
- 4096 Refresh Cycle every 65.6 ms


- Auto and Self Refresh
- CKE Power Down Mode
- DQM Byte Masking (Read/Write)
- Serial Presence Detect (SPD) with Serial EEPROM: JEDEC Standard SPD Format
- Module size:
 - 1.1" (height) \times 2.66" (length) \times 0.15" (thickness)
- CL-trcd-trp: 3-3-3 clk min. @100 MHz,
 - 2-2-2 clk min. @66 MHz

■ PIN ASSIGNMENTS

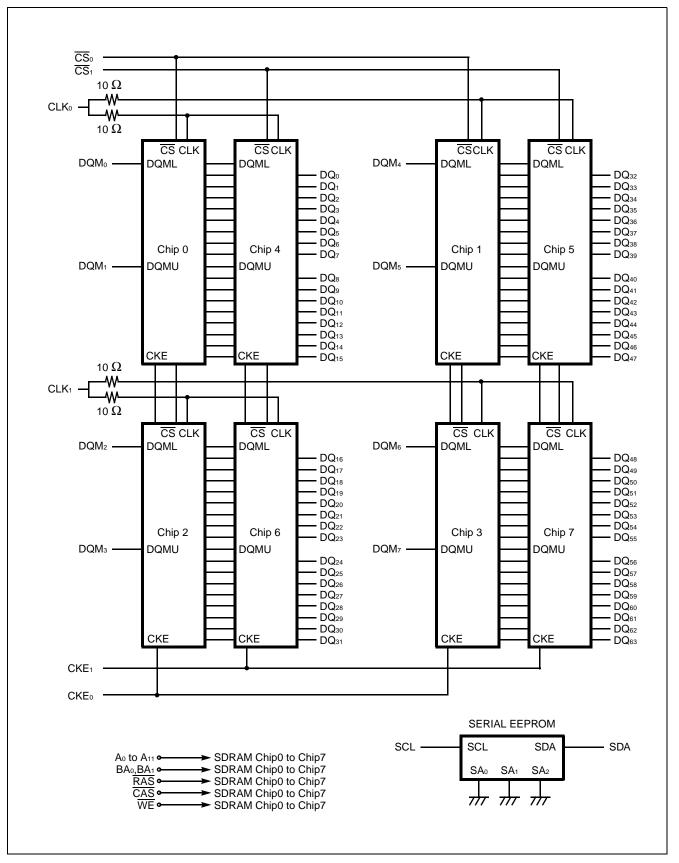
Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	Vss	49	DQ13	97	DQ22	2	Vss	50	DQ45	98	DQ ₅₄
3	DQ ₀	51	DQ ₁₄	99	DQ23	4	DQ32	52	DQ ₄₆	100	DQ55
5	DQ1	53	DQ ₁₅	101	Vcc	6	DQ33	54	DQ ₄₇	102	Vcc
7	DQ ₂	55	Vss	103	A ₆	8	DQ34	56	Vss	104	A7
9	DQ ₃	57	N.C.	105	A ₈	10	DQ35	58	N.C.	106	BA ₀
11	Vcc	59	N.C.	107	Vss	12	Vcc	60	N.C.	108	Vss
13	DQ4	61	CLK ₀	109	A9	14	DQ ₃₆	62	CKE ₀	110	BA ₁
15	DQ₅	63	Vcc	111	A10	16	DQ ₃₇	64	Vcc	112	A11
17	DQ ₆	65	RAS	113	Vcc	18	DQ38	66	CAS	114	Vcc
19	DQ7	67	WE	115	DQMB ₂	20	DQ39	68	CKE1	116	DQMB ₆
21	Vss	69	CS ₀	117	DQMB ₃	22	Vss	70	N.C.	118	DQMB7
23	DQMB ₀	71	CS ₁	119	Vss	24	DQMB ₄	72	N.C.	120	Vss
25	DQMB1	73	N.C.	121	DQ ₂₄	26	DQMB₅	74	CLK1	122	DQ ₅₆
27	Vcc	75	Vss	123	DQ25	28	Vcc	76	Vss	124	DQ ₅₇
29	Ao	77	N.C.	125	DQ26	30	Аз	78	N.C.	126	DQ ₅₈
31	A ₁	79	N.C.	127	DQ ₂₇	32	A4	80	N.C.	128	DQ ₅₉
33	A ₂	81	Vcc	129	Vcc	34	A5	82	Vcc	130	Vcc
35	Vss	83	DQ ₁₆	131	DQ ₂₈	36	Vss	84	DQ48	132	DQ60
37	DQ8	85	DQ ₁₇	133	DQ29	38	DQ40	86	DQ49	134	DQ ₆₁
39	DQ ₉	87	DQ ₁₈	135	DQ30	40	DQ ₄₁	88	DQ ₅₀	136	DQ ₆₂
41	DQ10	89	DQ ₁₉	137	DQ31	42	DQ42	90	DQ ₅₁	138	DQ ₆₃
43	DQ ₁₁	91	Vss	139	Vss	44	DQ ₄₃	92	Vss	140	Vss
45	Vcc	93	DQ ₂₀	141	SDA	46	Vcc	94	DQ ₅₂	142	SCL
47	DQ12	95	DQ ₂₁	143	Vcc	48	DQ ₄₄	96	DQ ₅₃	144	Vcc

■ PIN DESCRIPTIONS

Symbol	I/O	Function	Symbol	I/O	Function
A ₀ to A ₁₁	I	Address Input	$\overline{CS}_{0}, \overline{CS}_{1}$	I	Chip Select
BA ₀ , BA ₁	I	Bank Address	DQ ₀ to DQ ₆₃	I/O	Data Input/Data Output
RAS	I	Row Address Strobe	Vcc	_	Power Supply (+3.3 V)
CAS	I	Column Address Strobe	Vss	_	Ground (0 V)
WE	Ι	Write Enable	N.C.	_	No Connection
DQMB ₀ to DQMB ₇	I	Data (DQ) Mask	SCL	I	Serial PD Clock
CLK ₀ , CLK ₁	I	Clock Input	SDA	I/O	Serial PD Address/Data
CKE ₀ , CKE ₁	Ι	Clock Enable	SDA	1/0	Input/Output

■ SERIAL-PD INFORMATION

Byte	Function Described		Hex Value
Byte	Function Described		-100/100L
0	Defines Number of Bytes Written into Serial Memory at Module Manufacture	128 Byte	80h
1	Total Number of Bytes of SPD Memory Device	256 Byte	08h
2	Fundamental Memory Type	SDRÁM	04h
3	Number of Row Addresses	12	0Ch
4	Number of Column Addresses	8	08h
5	Number of Module Banks	2 bank	02h
6	Data Width	64 bit	40h
7	Data Width (Continuation)	+0	00h
8	Interface Type	LVTTL	01h
9	SDRAM Cycle Time (Highest CAS Latency)	10 ns	A0h
10	SDRAM Access from Clock (Highest CAS Latency)	8.5 ns	85h
11	DIMM Configuration Type	Non-Parity	00h
12	Refresh Rate/Type	Self, Normal	80h
13	Primary SDRAM Width	×16	10h
14	Error Checking SDRAM Width	0	00h
15	Minimum Clock Delay for Back to Back Random Column Addresses	1 Cycle	01h
16	Burst Lengths Supported	1, 2, 4, 8, Page	8Fh
17	Number of Banks on Each SDRAM Device	4 bank	04h
18	CAS Latency	2, 3	06h
19	CS Latency	Ó	01h
20	Write Latency	0	01h
21	SDRAM Module Attributes	UN-buffer	00h
22	SDRAM Device Attributes	*1	0Eh
23	SDRAM Cycle Time (2nd. Highest CAS Latency)	15 ns	F0h
24	SDRAM Access from Clock (2nd. Highest CAS Latency)	9 ns	90h
25	SDRAM Cycle Time (3rd. Highest CAS Latency)	No Support	00h
26	SDRAM Access from Clock (3rd. Highest CAS Latency)	No Support	00h
27	Precharge to Activate Min. (t _{RP})	30 ns	1Eh
28	Row Activate to Row Activate Min. (trrd)	20 ns	14h
29	RAS to CAS Delay Min. (trcd)	30 ns	1Eh
30	Activate to Precharge Minimum Time (tRAS)	60 ns	3Ch
31	Module Bank Density	32 MByte	08h
32 to 61	Unused Storage Locations	_´	00h
62	SPD Data Revision Code	1	01h
63	Checksum for Byte 0 to 62	*2	57h
64 to 98	Manufacturer's Information: Unused Storage	—	00h
99 to 125		—	00h
126	Intel Specification Frequency	66 MHz	66h
127	Intel Specification Details for 66 MHz Support	CL=2, 3	CFh
128+	Unused Storage Locations	, -	_


Note: Any write operation must NOT be executed into the addresses of Byte 0 to Byte 127. Some or all data stored into Byte 0 to Byte 127 may be broken.

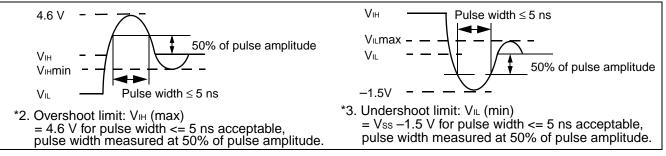
*1. SDRAM Device Attributes

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBD	TBD	Upper Vcc tolerance 0 = 10%	Lower Vcc tolerance 0 = 10%	Supports Write 1 /Read Burst	Supports Precharge All	Supports Auto- Precharge	Supports Early RAS Precharge
0	0	0	0	1	1	1	0

*2.Checksum for Bytes 0 to 62 This byte is the checksum for bytes 0 through 62. This byte contains the value of the low 8-bits of the arithmetic sum of bytes 0 through 62.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)


Deremeter	Cumhal	Va	Unit	
Parameter	Symbol Min.		Max.	Unit
Supply Voltage*	Vcc	-0.5	+4.6	V
Input Voltage*	Vin	-0.5	+4.6	V
Output Voltage*	Vout	-0.5	+4.6	V
Storage Temperature	Тѕтс	-55	+125	°C
Power Dissipation	PD	—	8.0	W
Output Current (D.C.)	Ιουτ	-50	+50	mA

* : Voltages referenced to Vss (= 0 V)

RECOMMENDED OPERATING CONDITIONS

Parameter	Notos	Notes Symbol		Value			
Falameter	Notes	Symbol	Min.	Тур.	Max.	Unit	
Supply Voltage	*1	Vcc	3.0	3.3	3.6	V	
Supply voltage	Ĭ	Vss	0	0	0	V	
Input High Voltage, All Inputs	*1, 2	Vін	2.0	—	Vcc +0.5	V	
Input Low Voltage, All Inputs	*1, 3	VIL	-0.5	—	0.8	V	
Ambient Temperature		TA	0		+70	°C	

*1. Voltages referenced to Vss (= 0 V)

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating conditionranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ CAPACITANCE

			(Vcc = + 3	.3 V, f = 1 MHz, T	× = +25°C)
Parame	tor	Symbol	Va	– Unit	
Falalie		Symbol	Min.	Max.	Onit
	Ao to A11, BAo, BA1	CIN1	—	59	pF
	RAS, CAS, WE	CIN2		52	pF
	$\overline{CS}_0, \overline{CS}_1$	Сімз		32	pF
Input Capacitance	CKE ₀ , CKE ₁	CIN4		32	pF
	CLK ₀ , CLK ₁	CIN5		35	pF
	DQMB ₀ to DQMB ₇	CIN6		18	pF
	SCL	CSCL		12	pF
Input/Output Capacitance	SDA	CSDA		12	pF
	DQ ₀ to DQ ₆₃	CDQ		19	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 1, 2

					Value			
Parameter	Notes	Symbol	Condition	Min	M	ax.	Unit	
				Min.	Std. ver.	Low ver.		
Operating Current (Average Power Supply Current)	*3	Icc1s	Burst: Length = 1 t_{RC} = min for BL = 1 t_{CK} = min One Bank Active, Outputs Open Addresses changed up to 1-time during t_{CK} (min.) $0 V \le V_{IN} \le V_{IL}$ (max.) V_{IH} (min.) $\le V_{IN} \le V_{CC}$	_	4	00	mA	
		Ісс2р	$\begin{array}{l} CKE = V_{\text{IL}}, All \; Banks \; Idle \\ tck = min, Power \; Down \; Mode \\ 0 \; V \leq V_{\text{IN}} \leq V_{\text{IL}} \; (max.) \\ V_{\text{IH}} \; (min.) \leq V_{\text{IN}} \leq V_{\text{CC}} \end{array}$		16	8	mA	
Precharge Standby Current (Power Supply Current)		ICC2PS	$\begin{array}{l} CKE=V_{\text{IL}},AIIBanksIdle\\ CLK=HorL,PowerDownMode\\ 0V\leqV_{\text{IN}}\leqV_{\text{IL}}(max.)\\ V_{\text{IH}}(min.)\leqV_{\text{IN}}\leqV_{\text{CC}} \end{array}$	_	8	4	mA	
	ver *3 ent)	ICC2N	$\begin{array}{l} CKE=V_{IH}, All \ Banks \ Idle, tck=min \\ NOP \ commands \ only, Input \ signals \\ (except \ to \ CMD) \ are \ changed \ 1\text{-time} \\ during \ 3 \ clock \ cycles \\ 0 \ V \leq V_{IN} \leq V_{IL} \ (max.) \\ V_{IH} \ (min.) \leq V_{IN} \leq V_{CC} \end{array}$	_	80		mA	
		Icc2NS	$\begin{array}{l} CKE = V_{IH}, AII \; Banks \; Idle \\ CLK = H \; or \; L, Input \; signal \; are \; stable \\ 0 \; V \leq V_{IN} \leq V_{IL} \; (max.) \\ V_{IH} \; (min.) \leq V_{IN} \leq V_{CC} \end{array}$		1	16	mA	
		Іссзр	$\begin{array}{l} CKE = V_{\text{IL}}, Any \ Bank \ Active \\ tck = min. \\ 0 \ V \leq V_{\text{IN}} \leq V_{\text{IL}} \left(max.\right) \\ V_{\text{IH}} \left(min.\right) \leq V_{\text{IN}} \leq V_{\text{Cc}} \end{array}$	_	16	8	mA	
Activo Standby		Іссзря	$\begin{array}{l} CKE = V_{IL}, Any \ Bank \ Active \\ CLK = H \ or \ L \\ 0 \ V \leq V_{IN} \leq V_{IL} \ (max.) \\ V_{IH} \ (min.) \leq V_{IN} \leq V_{CC} \end{array}$	_	8	4	mA	
Active Standby Current (Power Supply Current)	*3	Іссзи	$\begin{array}{l} CKE = V_{IH}, Any Bank Active \\ tck = min., NOP commands only, Input \\ signals (except to CMD) are changed \\ 1-time during 3 clock cycles \\ 0 V \leq V_{IN} \leq V_{IL} (max.) \\ V_{IH} (min.) \leq V_{IN} \leq V_{CC} \end{array}$	_	1.	20	mA	
		Іссзия	$\begin{array}{l} CKE = V_{IH}, Any Bank Active \\ CLK = H or L \\ 0 V \leq V_{IN} \leq V_{IL} (max.) \\ V_{IH} (min.) \leq V_{IN} \leq V_{CC} \end{array}$		1	6	mA	

(Continued)

(Continued)

Parameter I	Notes	Symbol	Condition	Min.	Ma	Unit		
				Std. v		Low ver.		
Burst Mode Current (Average Power Supply Current)	*3	Icc4	$\begin{array}{l} t_{CK} = min, \ Burst \ Length = 4 \\ Outputs \ Open, \ All \ Banks \ Active \\ Gapless \ Data \\ 0 \ V \leq V_{IN} \leq V_{IL} \ (max.) \\ V_{IH} \ (min.) \leq V_{IN} \leq V_{CC} \end{array}$		38	30	mA	
Auto-refresh Current (Average Power Supply Current)	*3	Icc5	Auto Refresh tck = min tRc = min $0 V \le V_{IN} \le V_{IL}$ (max.) V_{IH} (min.) $\le V_{IN} \le V_{CC}$		1360		mA	
Self-refresh Current (Average Power Supply Current)	*3	Icc6	$\begin{array}{l} \text{Self-Refresh} \\ t_{CK} = \min. \\ \text{CKE} \leq 0.2 \text{ V} \\ 0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}} \left(\max. \right) \\ \text{V}_{\text{IH}} \left(\min. \right) \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{CC}} \end{array}$	_	8	4	mA	
Input Leakage Current (All Inputs)		II (L)	$0 V \le V_{IN} \le V_{CC}$ All other pins not under test = 0 V	-20	2	0	μA	
Output Leakage Currer	nt	lo (L)	$0 V \le V_{IN} \le V_{CC}$ Output is disabled (Hi-Z)	-10	1	0	μA	
LVTTL Output High Voltage	*4	Vон	Іон = -2.0 mA	2.4	-	_	V	
LVTTL Output Low Voltage	*4	Vol	lo _L = +2.0 mA	_	0	.4	V	

Notes: *1. An initial pause (DESL on NOP) of 200 μs is required after power-on followed by a minimum of eight Auto-refresh cycles.

*2. DC characteristics is the Serial PD standby state (VIN = Vss or Vcc).

*3. Icc depends on the output termination, load conditions, clock cycle rate and signal clock rate. The specified values are obtained with the output open and no termination register.

*4. Voltages referenced to $V_{SS} = V_{SSQ} (= 0 \text{ V})$.

■ AC CHARACTERISTICS

(1) BASE CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 1, 2, 3

No.	Parameter Notes	Notes		MB8508 -100	Unit	
			Symbol	Min.	Max.	
1	Clock Period	CL = 3	t скз	10	—	ns
1	Clock Fellou	CL = 2	tск2	15	_	ns
2	Clock High Time	tсн	3.5	_	ns	
3	Clock Low Time		tc∟	3.5	_	ns
4	Input Setup Time	tsi	3	_	ns	
5	Input Hold Time	tнı	1	_	ns	
6	Output Valid from Clock	CL = 3	tасз	—	8.5	ns
0	^x clκ = min) *4, *5	CL = 2	t _{AC2}	—	9	115
7	Output in Low-Z *6	;	t∟z	0	-	ns
8	Output in High-Z *6	CL = 3	t HZ3	3	8.5	ns
0		CL = 2	tHZ2	3	9	ns
9	Output Hold Time *6	;	tон	3	-	ns
10	Time between Refresh		t REF	_	65.6	ms
11	Transition Time		tτ	0.5	2	ns
12	CKE Setup Time for Power Down Exit Time)	t cksp	3		ns

(2) BASE VALUES FOR CLOCK COUNT/LATENCY

No.	Parameter Notes		Symbol	MB8508 -100/	Unit	
				Min.	Max.	
1	RAS Cycle Time *7		t RC	90	—	ns
2	RAS Precharge Time	t RP	30	_	ns	
3	RAS Active Time	tras	60	110000	ns	
4	RAS to CAS Delay Time *8	trcd	30	_	ns	
5	Write Recovery Time		twr	10	_	ns
6	RAS to RAS Bank Active Delay Time		t RRD	20		ns
7	Data-in to Precharge Lead Time		t dpl	10	_	ns
8	Data-in to Active/Refresh Command Period	CL = 3	tdal3	2 cyc + t _{RP}	_	ns
0	Data-in to Active/Reliesh Command Period	CL = 2	tdal2	1 cyc + t _{RP}	—	ns
9	Mode Register Set Cycle Time	trsc	20		ns	

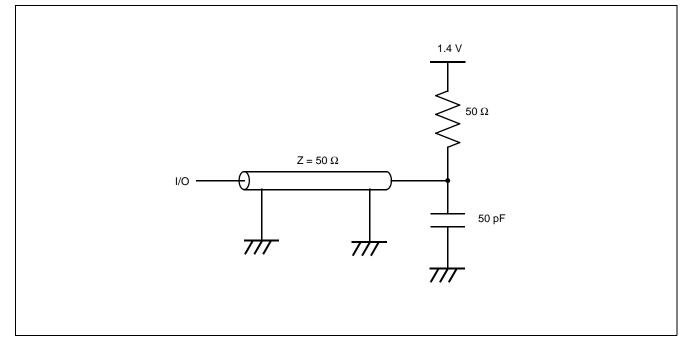
(3) CLOCK COUNT FORMULA (*9)

 $Clock \ge \frac{Base Value}{Clock Period}$ (Round off a whole number)

(4) LATENCY (The latency values on these parameters are fixed regardless of clock period.)

No.	Parameter	Symbol	MB8508S064CF -100/100L	Unit	
1	CKE to Clock Disable		Іске	1	Cycle
2	DQM to Output in High-Z		Idqz	2	Cycle
3	DQM to Input Data Delay		Idqd	0	Cycle
4	Last Output to Write Command Delay		lowd	2	Cycle
5	Write Command to Input Data Delay		lowd	0	Cycle
6	Procharge to Output in High 7 Delay	CL = 3	Ігонз	3	Cycle
0	Precharge to Output in High-Z Delay	CL = 2	IROH2	2	Cycle
7	Durat Step Command to Output in Lligh 7 Delay	CL = 3	Івѕнз	3	Cycle
	Burst Stop Command to Output in High-Z Delay	CL = 2	Івзн2	2	Cycle
8	CAS to CAS Delay (min)		Ісср	1	Cycle
9	CAS Bank Delay (min)		Ісвр	1	Cycle

Notes: *1. An initial pause (DESL on NOP) of 200 μs is required after power-up followed by a minimum of eight Auto-refresh cycles.


- *2. 1.4 V or V_{REF} is the reference level for measuring timing of signals. Transition times are measured between V_{IH} (min) and V_{IL} (max).
- *3. AC characteristics assume $t_T = 1$ ns and 50 pF of capacitive load.
- *4. Maximum value of CL = 2 depends on tck.
- *5. tac also specifies the access time at burst mode except for first access.
- *6. Specified where output buffer is no longer driven. toн, tLz, and tHz define the times at which the output level achieves ±200 mV.
- *7. Actual clock count of trc (Irc) will be sum of clock count of tras (Iras) and trp (Irp).
- *8. Operation within the tRCD (min) ensures that access time is determined by tRCD (min) + tAC (max); if tRCD is greater than the specified tRCD (min), access time is determined by tAC.
- *9. All base values are measured from the clock edge at the command input to the clock edge for the next command input.

All clock counts are calculated by a simple formula:

clock count equals base value divided by clock period (round off to a whole number).

*Source: See MB81F641642C Data Sheet for details on the electrical.

■ SERIAL PRESENCE DETECT(SPD) FUNCTION

1. PIN DESCRIPTIONS

SCL (Serial Clock)

SCL input is used to clock all data input/output of SPD

SDA (Serial Data)

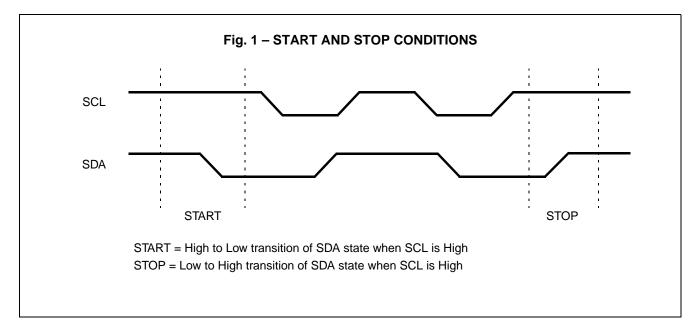
SDA is a common pin used for all data input/output of SPD. The SDA pull-up resistor is required due to the open-drain output.

SA₀, SA₁, SA₂ (Address)

Address inputs are used to set the least significant three bits of the eight bits slave address. The address inputs must be fixed to select a particular module and the fixed address of each module must be different each other. For this module, any address inputs are not required because all addresses (SA₀, SA₁, SA₂) are driven to V_{ss} on the module.

2. SPD OPERATIONS

CLOCK and DATA CONVENTION


Data states on the SDA can change only during SCL = Low. SDA state changes during SCL = High are indicated start and stop conditions. Refer to Fig. 1 below.

START CONDITION

All commands are preceded by a start condition, which is a transition of SDA state from High to Low when SCL = High. SPD will not respond to any command until this condition has been met.

STOP CONDITION

All read or write operation must be terminated by a stop condition, which is a transition of SDA state from Low to High when SCL = High. The stop condition is also used to make the SPD into the state of standby power mode after a read sequence.

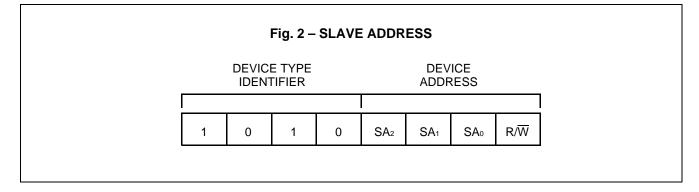
ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfer. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle the receiver will put the SDA line to Low in order to acknowledge that it received the eight bits of data.

The SPD will respond with an acknowledge when it received the start condition followed by slave address issued by master.

In the read operation, the SPD will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is issued by master, the SPD will continue to transmit data. If an acknowledge is not detected, the SPD will terminated further data transmissions. The master must then issue a stop condition to return the SPD to the standby power mode.

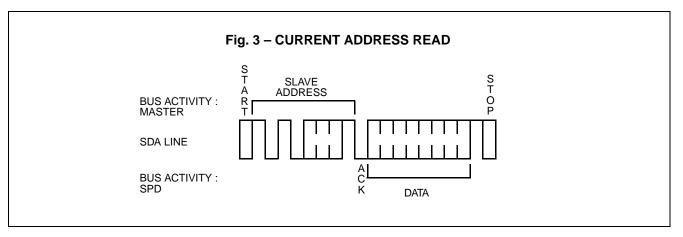
In the write operation, upon receipt of eight bits of data the SPD will respond with an acknowledge, and await the next eight bits of data, again responding with an acknowledge until the stop condition is issued by master.


SLAVE ADDRESS ADDRESSING

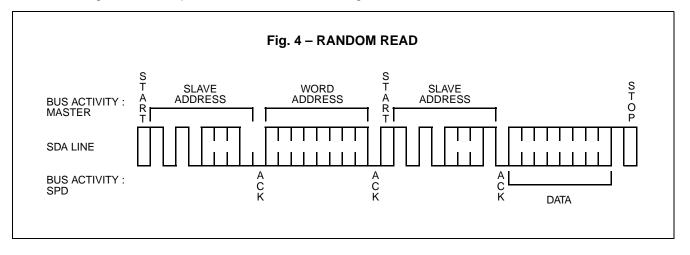
Following a start condition, the master must output the eight bits slave address. The most significant four bits of the slave address are device type identifier. For the SPD this is fixed as 1010[B]. Refer to the Fig. 2 below.

The next three significant bits are used to select a particular device. A system could have up to eight SPD devices —namely up to eight modules— on the bus. The eight addresses for eight SPD devices are defined by the state of the SA₀, SA₁ and SA₂ inputs. For this module, the three bits are fixed as 000[B] because all addresses are driven to Vss on the module. Therefore, no address inputs are required.

The last bit of the slave address defines the operation to be performed. When R/\overline{W} bit is "1", a read operation is selected, when R/\overline{W} bit is "0", a write operation is selected.

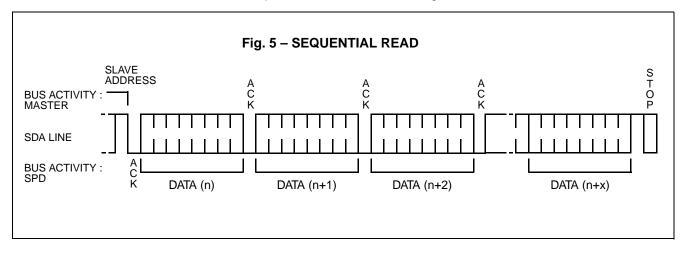

Following the start condition, the SPD monitors the SDA line comparing the slave address being transmitted with its slave address (device type and state of SA₀, SA₁, and SA₂ inputs). Upon a correct compare the SPD outputs an acknowledge on the SDA line. Depending on the state of the R/W bit, the SPD will execute a read or write operation.

3. READ OPERATIONS


CURRENT ADDRESS READ

Internally the SPD contains an address counter that maintains the address of the last data accessed, incremented by one. Therefore, if the last access (either a read or write operation) was to address(n), the next read operation would access data from address(n+1). Upon receipt of the slave address with the R/W bit = "1", the SPD issues an acknowledge and transmits the eight bits of data during the next eight clock cycles. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 3 for the sequence of address, acknowledge and data transfer.

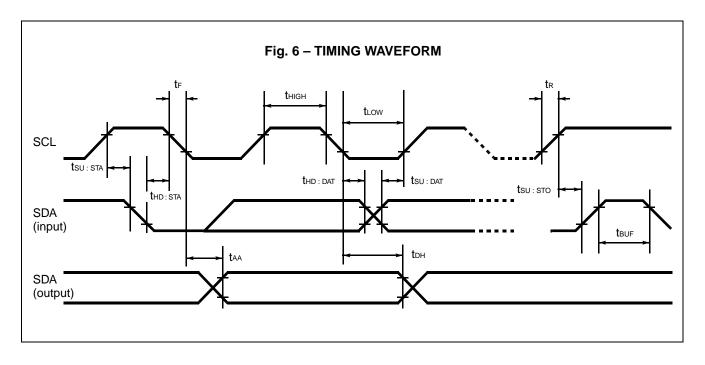
RANDOM READ


Random Read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/W bit = "1", the master must first perform a "dummy" write operation on the SPD. The master issues the start condition, and the slave address followed by the word address. After the word address acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit = "1". This will be followed by an acknowledge from the SPD and then by the eight bits of data. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 4 for the sequence of address, acknowledge and data transfer.

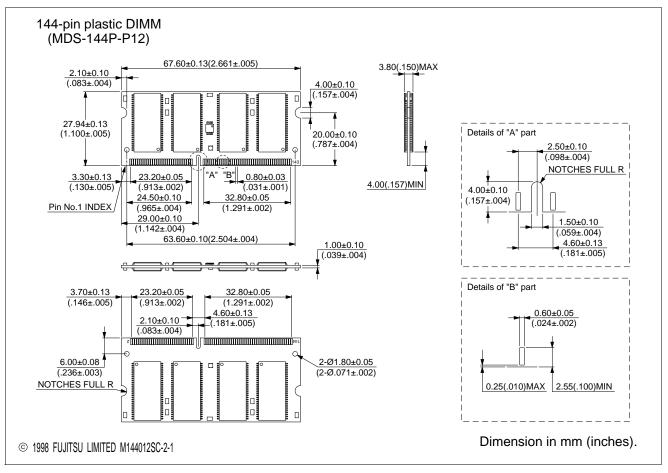
SEQUENTIAL READ

Sequential Read can be initiated as either a current address read or random read. The first data are transmitted as with the other read mode, however, the master now responds with an acknowledge, indicating it requires additional data. The SPD continues to output data for each acknowledge received. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 5 for the sequence of address, acknowledge and data transfer.

The data output is sequential, with the data from address(n) followed by the data from address(n+1). The address counter for read operations increments all address bits, allowing the entire memory contents to be serially read during one operation. At the end of the address space (address 255), the counter "rolls over" to address0 and the SPD continues to output data for each acknowledge received.


4. DC CHARACTERISTICS

Parameter	Note	Symbol	Condition	Va	Unit	
Farameter			Condition	Min.	Max.	Unit
Input Leakage Current		Sili	$0~V \leq V_{\text{IN}} \leq V_{\text{CC}}$	-10	10	μA
Output Leakage Current		SILO	$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}$	-10	10	μA
Output Low Voltage	*1	Svol	lo∟ = 3.0 mA	—	0.4	V


Note: *1. Referenced to Vss.

5. AC CHARACTERISTICS

No.	Parameter	Symbol	Value		
		Symbol	Min.	Max.	Unit
1	SCL Clock Frequency	fscL		100	KHz
2	Noise Suppression Time Constant at SCL, SDA Inputs	Tı	—	100	ns
3	SCL Low to SDA Data Out Valid	taa	—	3.5	μs
4	Time the Bus Must Be Free Before a New Transmission Can Start	tBUF	4.7	—	μs
5	Start Condition Hold Time	thd:sta	4.0	—	μs
6	Clock Low Period	tLow	4.7		μs
7	Clock High Period	tнigн	4.0		μs
8	Start Condition Setup Time	tsu:sta	4.7	—	μs
9	Data in Hold Time	thd:dat	0	—	μs
10	Data in Setup Time	tsu:dat	250	—	ns
11	SDA and SCL Rise Time	tR	_	1	μs
12	SDA and SCL Fall Time	t⊧	—	300	ns
13	Stop Condition Setup Time	tsu:sto	4.7	_	μs
14	Data Out Hold Time	tон	100	—	ns
15	Write Cycle Time	twr	—	15	ms

PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9904 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.