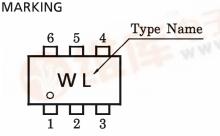
TOSHIBA TRANSISTOR SILICON NPN EPITAXIAL PLANAR TYPE

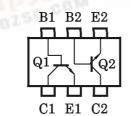
HN3C10FE

VHF~UHF BAND LOW NOISE AMPLIFIER APPLICATIONS

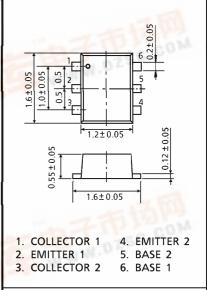
Two devices are built in to the super-thin and extreme super mini (6pins) package: ES6

MOUNTED DEVICES


"一工行场PM	Q1/Q2
Three-pins (SSM) mold products are corresponded	2SC5086


MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	Q1/Q2	UNIT	
Collector-Base Voltage	v_{CBO}	20	V	
Collector-Emitter Voltage	v_{CEO}	12	V	
Emitter-Base Voltage	$V_{ m EBO}$	3	V	
Collector Current	I _C	80	mA	
Base Current	I_{B}	40	mA	
Collector Power Dissipation	P _C (Note 1)	100	mW	
Junction Temperature	T_{j}	125	°C	
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55~125	°C	


(Note 1): Total power dissipation of Q1 and Q2.

PIN ASSIGNMENT (TOP VIEW)

Unit in mm

JEDEC EIAJ TOSHIBA 2-2N1B

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Collector Cut-off Current	I_{CBO}	$V_{CB} = 10 \text{ V}, I_{E} = 0$		_	1	μ A
Emitter Cut-off Current	$I_{ m EBO}$	$V_{EB} = 1 \text{ V}, I_{C} = 0$		_	1	μ A
DC Current Gain	${ m h_{FE}}$	$V_{CE} = 10 \text{ V}, I_{C} = 20 \text{ mA}$	80	_	240	_
Transition Frequency	${ m f_T}$	$V_{CE} = 10 \text{ V}, I_{C} = 20 \text{ mA}$	5	7	_	GHz
Insertion Gain	$ S_{21e} ^2$ (1)	$egin{aligned} { m V_{CE}} &= 10 \ { m V, \ I_{C}} &= 20 \ { m mA,} \ { m f} &= 500 \ { m MHz} \end{aligned}$	1	16.5	_	- dB
	$ S_{21e} ^2$ (2)	$egin{aligned} { m V_{CE}} &= 10 \ { m V, \ I_{C}} &= 20 \ { m mA,} \ { m f} &= 1000 \ { m MHz} \end{aligned}$	8	11.5	_	
Noise Figure	NF (1)	$V_{CE} = 10 \text{ V}, I_{C} = 5 \text{ mA}, $ f = 500 MHz	_	1	_	- dB
	NF (2)	$egin{aligned} { m V_{CE}} &= 10 \ { m V, \ I_{C}} &= 5 \ { m mA,} \ { m f} &= 1000 \ { m MHz} \end{aligned}$		1.1	2	
Reverse Transfer	$\mathrm{C_{re}}$	$V_{CB} = 10 \text{ V}, I_{E} = 0,$ f = 1 MHz (Note 2)	_	0.7	1.2	рF
Capacitance Q1						
Reverse Transfer Capacitance Q2	$\mathrm{C_{re}}$	$V_{CB} = 10 \text{ V}, I_{E} = 0,$ f = 1 MHz (Note 2)		0.65	1.15	pF

(Note 2): C_{re} is measured by 3 terminal method with capacitance bridge.