
Semiconductor Group 03.97, Rel. 01

Microcontrollers
ApNote AP1601

o additional file
APXXXX01.EXE available

Biquad IIR Filter - C166 Family with Signal Processing
Capabilities

Many applications like disk drives need both, controller and signal processing
capabilities.

K. Westerholz / Siemens HL MCB PD

查询AP1601供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/stock_ap1601.html
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 2 of 9 AP1601 03.97

1 Abstract ... 3

2 Transfer function / algorithm ... 3

3 Program flow of the filter algorithm .. 5

4 Example code listing .. 6

AP1601 ApNote - Revision History
Actual Revision : Rel.01 Previous Revison: Rel. none
Page of
actual Rel.

Page of
prev. Rel.

Subjects changes since last release)

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 3 of 9 AP1601 03.97

1 Abstract

Many applications like disk drives need both, controller and signal processing capabilities.
For instance Infinite Impulse Response (IIR) filters are an application today performed by
dedicated signal processors. They are capable of implementing rational transfer functions
as required by band pass filters.

z-1
z-1

z-1z-1

B0

B1

B2 2

-A1

-A

X n
Y n

Figure 1:
Second-order Biquad IIR Filter Section

2 Transfer function / algorithm

The second order biquad IIR filter shown in the figure above and discussed below realizes
the transfer function:

H z
B B z B z

A z A z
() = + ⋅ + ⋅

+ ⋅ + ⋅

− −

− −
0 1

1
2

2

1
1

2
21

where A1, A2, B0, B1, and B2 are coefficients that determine the desired impulse
response. Furthermore, the corresponding difference equation for a biquad section is:

Y B X B X B X A Y A Yn n n n n n= ⋅ + ⋅ + ⋅ − ⋅ − ⋅− − − −0 1 1 2 2 1 1 2 2

This equation can be directly translated into a digital filtering algorithm. Higher-order
filters can be obtained by cascading several biquad sections with appropriate coefficients.
The C166 family of processors offers a fast multiply and divide unit that delivers results
every 500 ns. Furthermore the C166 possesses a register file of 16 general purpose
registers for each task. That allows to execute the biquad filter equation in 5.7us. The
C166 family is therefore suitable for performing advanced signal processing tasks
alongside other controller tasks. This application note demonstrates how to implement a
biquad IIR filter by exploiting the signal processing capabilities of the C166 family. In
combination with the algorithm depicted here the C166 architecture is suitable for
sampling rates up to 160 KHz.

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 4 of 9 AP1601 03.97

This application note addresses three problems:

* How does the processor store the filter coefficients and state variables within its
memory ?

* How does the processor tackle the problem of register overflows?
* How do we implement the filter equation tailored to the capabilities of the C166 family ?

The algorithm presented assumes coefficients and variables normalised to the interval of [
1,1) respectively [8000h,7FFFh]. This representation guarantees that the most significant
bits also contain the leading part of the numbers. The interval is translated to the
corresponding 16 bit hex representation by multiplying the fractional numbers by 32768
(8000h). Afterwards negative numbers have to be converted to their 2's complement. This
representation means that the 16th bit indicates the sign and the implied radix point is
located right behind the sign bit. Supposing we perform a signed multiplication the result
will be a 32 bit signed number stored in the register pair of the multiply and divide unit,
MDL and MDH. After the multiplication has been executed the implied radix point will be
located between bit 14 and 13 of the MDH register. In order to adjust the imaginary radix
point again right behind the sign bit a shift left is necessary.

In contrast, add instructions for accumulating the results do not affect the format but
attention has to be paid to register overflows. Examining the overflow problem we see that
two coefficients are positive and two are negative hence the maximum overflow would
only amount to one bit. If we suspend the shift left to adjust the radix point till all
multiplication results have been accumulated, we won't lose the most significant bit
because it is stored in bit 30.

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 5 of 9 AP1601 03.97

3 Program flow of the filter algorithm

Start Init

End Init

Initialisation
of registerfile
with filter
coefficients

reading input value Xn

input prescaling

Start
Interrupt

calculation of filtering result
Y(n) = A0*X(n) + A1*X(n-1) + A2*X(n-2)

- B1*Y(n-1) - B2*Y(n-2)

updating the state variables
X(n-2) = X(n-1); X(n-1) = X(n)
Y(n-1) = Y(n-2); Y(n-1) = Y(n)

output postscaling

Return from
Interrupt

Figure 2:
Flow Chart Diagram of the Filter Algorithm

The algorithm itself comprises an initialization phase to preset the register file with the
coefficients and a separate computing phase that is invoked by an interrupt. The input
value is taken from a given memory location for instance the AD Converter's register. This
value is then prescaled to reduce quantisation errors and after the computations it is
postscaled.

The calculation of the output itself is performed by four 16 bit multiplications and the 32 bit
results are accumulated in an general purpose register pair that contains the filter result.
Due to the signed multiplication the accumulated 32 bit result has to be shifted one bit left
to adjust the radix point. This operation only has to be performed once after all results
have been accumulated. The general purpose register that contains the most significant
bits is then used for updating the state variables. This has the effect that the 32 bit result
is truncated to its 16 most significant bits. After a postscaling step the truncated result is
stored to memory. Supposing all state variables and coefficients are kept in the register
file and the code is executed out of the internal ROM an execution time of 5.7 us will be
achieved for a C167 with 20 MHz. Assuming the program is executed out of an external
memory accessed via a 16 bit non multiplexed bus without wait states, then the execution
time amounts to 7.3 us. If several biquad filters are concatenated in order to get higher
order filters, the register file can be easily switched by adjusting the context pointer to a
further register file.

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 6 of 9 AP1601 03.97

This application is directly coded in assembler because C as a HLL does not support the
fixed point arithmetic required for an efficient implementation. Example code listing for the
C167 (medium memory model):

4 Example code listing
;***
;* IIR Band Pass Filter *
;* *
;* This example comprises an interrupt routine that performs the *
;* filtering algorithm and a main program that initializes the *
;* register file with the filter coefficients *
;* The intention of this program is that the AD Converter *
;* runs continuously providing the input. The filter output *
;* is stored to a memory location called _Yn. Each time a *
;* conversion is completed an interrupt is generated that *
;* invokes the _band_pass_filter interrupt routine. *
;* The medium memory model is assumed in order to enable an *
;* integration of this example into larger applications. *
;***

$EXTEND
$NOMOD166
$STDNAMES(reg.def)
$SEGMENTED
$CASE
$MODEL(MEDIUM)

; definition of storage for the filter output Yn
NAME BPF
ASSUME DPP3:SYSTEM

BPF_1_NB SECTION DATA WORD PUBLIC 'CNEAR'
ASSUME DPP2:BPF_1_NB

BPF_1_NB_ENTRY LABEL BYTE
_Yn LABEL WORD

DS 4
PUBLIC _Yn

_Xn LABEL WORD
DS 2
PUBLIC _Xn

BPF_1_NB ENDS

; definition of storage for the filter coefficients within the FARROM
; initialization of the coefficients B1, B2, A0, A1, A2 with arbitrarily
; chosen values

BPF_2_FC SECTION DATA WORD PUBLIC 'CFARROM'
_B0 LABEL WORD

DW 05h ;B0 = 0.0001526
PUBLIC _B0

_B1 LABEL WORD
DW 03h ;B1 = 0.0000916
PUBLIC _B1

_B2 LABEL WORD
DW 01h ;B2 = 0.0000305
PUBLIC _B2

_A1 LABEL WORD
DW 0FFFCh ;A1 = -0.0001221

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 7 of 9 AP1601 03.97

PUBLIC _A1
_A2 LABEL WORD

DW 0FFFEh ;A2 = -0.0000610
PUBLIC _A2

BPF_2_FC ENDS

;**
;* *
;* Main program for pre-setting the register bank BPF_RB *
;* with filter coefficients *
;* *
;**

PUBLIC _main

BPF_3_PR SECTION CODE WORD PUBLIC 'CPROGRAM'
_main PROC NEAR

MOV BUSCON0,#04BFh ;0 wait states, non multiplexed 16 bit
MOV ADCON,#013h ;Single Channel Continuos, Channel 3
MOV ADCIC,#044h ;Interrupt enable ADC, interrupt level 1

;group level 0
MOV DPP3:BPF_RB,R0 ;Initialize register R0 of register

;bank BPF_RB with user Stack Pointer
SCXT CP,#DPP3:BPF_RB; Switching to the register bank of the

; interrupt routine "band_pass_filter"
SCXT DPP0,#PAG _B0

; initializing the register bank for the very first time with initial
; values for the state variables and the coefficients

MOV R4,#00h ;Yn_1 State variable in Q15 format
;decimal range -1,1

MOV R7,#00h ;Yn_2
MOV R2,#00h ;Xn_1
MOV R3,#00h ;Xn_2
MOV R12,POF _B0 ;B0
MOV R13,POF _B1 ;B1
MOV R14,POF _B2 ;B2
MOV R10,POF _A1 ;A1
MOV R11,POF _A2 ;A2
POP DPP0
POP CP
BSET ADST ; start AD Converter ADST = 1
BSET IEN ; global interrupt enable IEN = 1
... ; further application specific code
RET

_main ENDP

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 8 of 9 AP1601 03.97

;**
;* *
;* Interrupt task "band_pass_filter" with interrupt number 028h *
;* It calculates the difference equation : *
;* It calculates the difference equation : *
;* Yn = B0*Xn + B1*Xn_1 + B2*Xn_2 + A1*Yn_1 + A2*Yn_2 *
;* *
;**
_band_pass_filter PROC TASK BPF_TASK INTNO BPF_INUM = 028h

MOV DPP3:BPF_RB,R0 ;Initialize register R0 of register
;bank BPF_RB with user Stack Pointer

SCXT CP,#DPP3:BPF_RB;save registers affected by the
;interrupt routine
SCXT MDC,#00h
SCXT DPP0,#PAG _Yn
PUSH MDL
PUSH MDH
MOV R1,_Xn ;_Xn contains the AD conversion result
;provided by ADDAT register

; calculation of the filter eqation
; Yn = B0*Xn + B1*Xn_1 + B2*Xn_2 + A1*Yn_1 + A2*Yn_2;

SHL R1,#05h ; prescaling of _Xn by 2^5
; simultaneously this has the effect that the

 ; channel number provided in combination with
; the AD conversion result is masked out

MUL R12,R1 ; B0*Xn
MOV R4,MDL ; register R4 and R5 are containing the 32 bit

; result
 MOV R5,MDH ; for the first time the previous content of R4

; and R5 will be overwritten
MUL R13,R2 ; B1*Xn_1
ADD R4,MDL ; the multiplication result is added to the
ADDC R5,MDH ; register pair R4 and R5
MUL R14,R3 ; B2*Xn_2
ADD R4,MDL ; the multiplication result is added to the
ADDC R5,MDH ; register pair R4 and R5
MUL R10,R6 ; A1*Yn_1
ADD R4,MDL ; the multiplication result is added to the
ADDC R5,MDH ; register pair R4 and R5
MUL R11,R7 ; A2*Yn_2
ADD R4,MDL ; the multiplication result is added to the
ADDC R5,MDH ; register pair R4 and R5
MOV R7,R6 ;Yn_2 = Yn_1, update of the state variable Yn_2
ADD R4,R4 ;one bit shift left to adjust the radix point
ADDC R5,R5 ;between bit 30 and 31
MOV R6,R5 ;Yn_1 = Yn, due to the value range of -1,1

;only the MSW is stored to Yn_1
ASHR R5,#05h ;postscaling of filter output by 2^5
MOV _Yn,R5 ;due to the value range of -1,1

;only the MSW is stored
MOV R3,R2 ;Xn_2 = Xn_1, update of the state variable Xn_2
MOV R2,R1 ;Xn_1 = Xn, update of the state variable Xn_1
POP MDH ;restore saved registers
POP MDL
POP DPP0
POP MDC
POP CP ; switch to old context
RETI ; return from interrupt

Biquad IIR Filter
C166 Family with Signal Processing Capabilities

Semiconductor Group 9 of 9 AP1601 03.97

_band_pass_filter ENDP
BPF_3_PR ENDS

C166_BSS SECTION DATA WORD GLOBAL 'CINITROM'
DW 06h
DPPTR BPF_1_NB_ENTRY
DW 0Eh

C166_BSS ENDS

EXTERN __CSTART:FAR
C166_DGROUP DGROUP BPF_1_NB
BPF_RB REGDEF R0-R15

END

