
Semiconductor Group 03.97, Rel. 01

Microcontrollers
ApNote AP1609

o additional file
APXXXX01.EXE available

How to make Instruction Sequences uninterruptable

Under certain conditions (e.g inter-task communication, initialization of global system
resources, etc.), it may be desirable to protect a critical sequence of instructions from
being interrupted by CPU interrupts, PEC transfers, or exception traps, including the
external NMI.

C. Meinold / Siemens HL MCB PD

查询AP1609供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/stock_ap1609.html
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Interrupt System,
uninterruptable Sequences

Semiconductor Group 2 of 11 AP1609 03.97

1 How to make Instruction Sequences uninterruptable ... 3

1.1 Disabling the Interrupt System before Entry into the Critical Sequence............... 3
1.1.1 Example 1: Using BCLR IEN to disable Interrupts.. 4
1.1.2 Example 2: Using BFLDH PSW, #0F0h, #0F0h to disable Interrupts............... 6
1.1.3 Example 3: Using SCXT PSW, #0F800h to disable Interrupts 7
1.1.4 Notes for C Programmers ... 7
1.1.5 Pipeline Diagrams .. 8
1.1.5.1 Using BCLR IEN to disable Interrupts.. 8
1.1.5.2 Using BFLDH PSW, #0F0h, #0F0h to disable Interrupts 8
1.2 Example 4: Execution of Critical Sequences on the Class A Trap Level.............. 9

AP1609 ApNote - Revision History
Actual Revision : Rel.01 Previous Revison: Rel. none
Page of
actual Rel.

Page of
prev. Rel.

Subjects changes since last release)

1

Interrupt System,
uninterruptable Sequences

Semiconductor Group 3 of 11 AP1609 03.97

1 How to make Instruction Sequences uninterruptable

Under certain conditions (e.g inter-task communication, initialization of global system
resources, etc.), it may be desirable to protect a critical sequence of instructions from
being interrupted by CPU interrupts, PEC transfers, or exception traps, including the
external NMI.

The methods which are discussed in this application note can not only be applied to
sequences of instructions, but also to single multiply and divide instructions, which are
implemented as interruptable multi-cycle instructions in the SAB 80C166.

For this study, the potential sources of interruption of a program sequence can be divided
into two classes as follows:

i) Interrupts, including PEC transfers, which are maskable and which have a
programmable priority.

When an application is not using the external NMI, sequences which should be
uninterruptable must only be protected against interrupts, which might occur at any
time during execution of a critical sequence.

ii) Exception traps, which are non-maskable and always cause immediate system
reaction.

All hardware traps in the SAB 80C166, except for the external NMI trap, are caused
by instructions. This means that except by the NMI, an instruction sequence will never
be interrupted by an exception trap unless an instruction within this sequence itself
causes an exception condition.

This classification leads to two basic approaches of protecting critical instruction
sequences against interruption:

1. Disabling the interrupt system before entry into the critical sequence.
2. Execution of a critical sequence on the class A trap level.

In the following, these methods will be discussed in detail with respect to software
overhead and the effects on the interrupt response time.

1.1 Disabling the Interrupt System before Entry into the Critical Sequence

In applications where the external NMI trap is not used, critical instruction sequences
which should not be interrupted must only be protected against interrupts. In the SAB
80C166, there are basically two ways to disable interrupt requests from being
acknowledged by the CPU:

1. by clearing the IEN bit in the PSW (see Example 1)
2. by setting the CPU priority in bit field ILVL of the PSW to level 15 (0Fh) (see

Examples 2, 3).

Interrupt System,
uninterruptable Sequences

Semiconductor Group 4 of 11 AP1609 03.97

1.1.1 Example 1: Using BCLR IEN to disable Interrupts

Main Program:

BCLR IEN ; globally disable interrupts instr N-1
; any instruction which does not belong to

the critical sequence
1)

First: instr N ; first instruction of uninterruptable
sequence

...
Last: instr N+x ; last instruction of uninterruptable sequence

BSET IEN ; re-enable interrupt system 2)

1) Note: Software modifications of the PSW are performed in the execute phase of an
instruction. However, in order to maintain fast interrupt response, modifications of
IEN or ILVL are not considered for the current round of interrupt prioritization, but
in the next round. This means that an interrupt may potentially be acknowledged
after the instruction which disables interrupts via IEN or ILVL in the PSW, or after
the instruction following this instruction. Therefore, one instruction must be
placed between the instruction which disables the acceptance of interrupts
and the first instruction of the critical sequence to ensure that this sequence
is not interrupted.

2) Note: Any pending interrupt will not be acknowledged until the second instruction cycle
after the instruction which re-enables the interrupt system.

When BCLR IEN is used to globally disable interrupts, but an interrupt is still
acknowledged before the start of the critical sequence, the status of the IEN flag is = 0
upon entry and during execution of the interrupt service routine. This means that all
further interrupts are disabled during execution of the interrupt service routine. Assuming
that an interrupt request of a source x which is acknowledged after BCLR IEN and before
the start of the critical sequence has a relatively low priority, this may block higher priority
interrupts, which would otherwise have been serviced, for the whole duration of the
interrupt service routine of source x until interrupts are re-enabled at the end of the critical
sequence:

BCLR IEN
-----> if interrupt occurs here
instr N-1
-----> or here, PSW.IEN = 0, i.e.

the associated interrupt service routine
is NOT interruptable by higher priority

interrupts !
First: instr N

The Main Program Overhead of the method so far described is just 2 single word
instructions to disable/enable the interrupt system. However, the Interrupt Latency
Overhead caused by instructions which do not directly belong to the critical sequence
may be as long as the longest interrupt service routine of the application.

Interrupt System,
uninterruptable Sequences

Semiconductor Group 5 of 11 AP1609 03.97

If this is not tolerable, interrupts may be re-enabled e.g. by a BSET IEN instruction at the
beginning of the interrupt service routine. Note that in this case the BSET IEN instruction
must be included in each interrupt service routine (task procedure) of the application:

Task Procedure:

BSET IEN ; re-enable interrupts at beginning of interrupt
service routine

... ; code for interrupt service routine
BCLR IEN ; disable interrupts before RETI

3)

RETI

3) Note: In order to maintain fast interrupt response, implicit modifications of IEN or ILVL in
the PSW by the RETI instruction are not considered in the current round of
interrupt prioritization which is performed in parallel with instruction execution.
This may lead to a situation where a critical instruction sequence can be
interrupted after the first instruction under the following sequence of conditions:
- an interrupt was acknowledged immediately before entry into a critical

sequence,
- the interrupt system was not globally disabled during execution of the following

interrupt service routine,
- an interrupt request of higher priority than the routine just terminated by the

RETI instruction has been generated while the instruction following RETI (=
first instruction of critical sequence) is fetched.

This problem can be avoided by placing an instruction which disables the
interrupt system immediately before the RETI instruction of each interrupt
service routine.

In this case, the Interrupt Latency Overhead is reduced to 2 instruction cycles, but an
additional Task Procedure Overhead of 2 single word instructions for each task
procedure of the application is required.

Interrupt System,
uninterruptable Sequences

Semiconductor Group 6 of 11 AP1609 03.97

1.1.2 Example 2: Using BFLDH PSW, #0F0h, #0F0h to disable Interrupts

Main Program:

BFLDH PSW, #0F0h, #0F0h ; set ILVL field of PSW to highest priority
instr N-1 ; any instruction which does not belong to the

critical
; sequence (see Note

1)
)

First: instr N ; first instruction of uninterruptable sequence
...

Last: instr N+x ; last instruction of uninterruptable sequence
BFLDH PSW, #0F0h, #70h ; restore previous priority of PSW.ILVL field

; (assuming original task priority was 7h) (see
Note

2)
)

Task Procedure:

... ; code for interrupt service routine
BFLDH PSW, #0F0h, #0F0h ; disable interrupts before RETI (see Note

3)
)

RETI

When BFLDH PSW, #0F0h, #0F0h is used to disable interrupts, but an interrupt is
acknowledged before the start of the critical sequence, the ILVL field in the PSW is
updated with the priority of this interrupt request upon entry into the interrupt service
routine. This automatically allows higher priority interrupts to be acknowledged during the
execution of this interrupt service routine. In this case, the real-time behaviour of the
application is not affected:

BFLDH PSW, #0F0h, #0F0h
-----> if interrupt occurs here

instr N-1
-----> or here, PSW.ILVL = priority of
interrupting task, i.e.

ALL interrupts are serviced according to
their original priority !

First: instr N

This method requires a Main Program Overhead of 2 double word instructions per
execution of a critical sequence, and a Task Procedure Overhead of 1 double word
instruction. The Interrupt Latency Overhead (2 BFLDH instructions) is negligible.

Interrupt System,
uninterruptable Sequences

Semiconductor Group 7 of 11 AP1609 03.97

1.1.3 Example 3: Using SCXT PSW, #0F800h to disable Interrupts

Main Program:

SCXT PSW, #0F800h ; push PSW, set ILVL field of PSW to highest
priority

instr N-1 ; any instruction which does not belong to the
critical

; sequence (see Note
1)

)

First: instr N ; first instruction of uninterruptable sequence
...

Last: instr N+x ; last instruction of uninterruptable sequence
POP PSW ; restore PSW, re-enable interrupt system (see

Note
2)

)

Task Procedure:

... ; code for interrupt service routine
BFLDH PSW, #0F0h, #0F0h ; disable interrupts before RETI (see Note

3)
)

RETI

When SCXT PSW, #0F800h is used to disable interrupts, but an interrupt is
acknowledged before the start of the critical sequence, the ILVL field in the PSW is
updated with the priority of this interrupt request. This automatically allows higher priority
interrupts to be acknowledged and processed according to their priority, without affecting
the real-time behaviour of the application.

This method requires a Main Program Overhead of 1 double and 1 single word
instruction, and a Task Procedure Overhead of 1 double word instruction. Additionally, a
Stack Overhead of 1 word is required. As for the method described in section 1.1.2, the
Interrupt Latency Overhead (3 instructions) is negligible.

1.1.4 Notes for C Programmers

The corresponding instructions to disable/enable the interrupt system may be inserted
into the source code using the inline assembly facility via #pragma asm/#pragma endasm.

In order to insert the BFLDH PSW, #0F0h, #0F0h instruction, the built in function _bfld
(PSW, 0xF000, 0xF000) may be used.

Note that the compiler may generate additional code to support context switching at the
end of an interrupt service routine. This code is placed after the last statement in the
interrupt service routine and before the RETI instruction.

Interrupt System,
uninterruptable Sequences

Semiconductor Group 8 of 11 AP1609 03.97

1.1.5 Pipeline Diagrams

The following pipeline diagrams show the function of the discussed methods to make
instruction sequences uninterruptable.

1.1.5.1 Using BCLR IEN to disable Interrupts

Interrupt
Possible at
End of Cycle

yes 1) yes 1) no no no no yes

Pipeline Stage
Decode BCLR IEN N-1 N ... BSET IEN next next+1

Execute ... BCLR IEN N-1 ... N+x BSET IEN next

Write Back BCLR IEN N+x BSET
IEN

1) Note: If an interrupt occurs after this cycle, the associated service routine will not be
interruptable!

1.1.5.2 Using BFLDH PSW, #0F0h, #0F0h to disable Interrupts

Relevant CPU
Priority during
Prioritization

p < 15 p < 15 p = 15 p=15 p = 15 p = 15 p < 15

Interrupt
Possible at
End of Cycle

yes 2) yes 2) no no no no yes

Pipeline Stage
Decode BFLDH... N-1 N

...
RETI(1) RETI(2) next

Execute ... BFLDH... N-1
...

N+x RETI(1) RETI(2)

Write Back BFLDH...
...

N+x RETI(1)

2) Note: If an interrupt occurs after this cycle, the associated service routine will be
interruptable by higher priority interrupts!

Interrupt System,
uninterruptable Sequences

Semiconductor Group 9 of 11 AP1609 03.97

1.2 Example 4: Execution of Critical Sequences on the Class A Trap Level

In the SAB 80C166, there are two classes of exception traps, class A and class B traps.
The external NMI trap belongs to the class A hardware traps. Class A trap service
routines can not be interrupted by class B traps or other class A traps. This means that
any instruction sequence which is executed on the class A trap level can not be
interrupted, neither by the NMI nor by CPU interrupts.

A class A trap can be forced by software by setting one of the trap flags NMI, STKOF,
STKUF in register TFR. In case that all class A traps are already used in an application,
an additional flag must be defined which indicates to the trap service routine whether an
uninterruptable sequence or an exception trap is to be processed. An example how
uninterruptable sequences (named AtomicProc1..n) may be executed on the class A trap
level is shown in the following. It is assumed that both the exception trap routine and the
uninterruptable sequence use the same registerbank:

Main Program:

DataSection SECTION BIT
1)

Atomic DBIT ; flag for uninterruptable sequence
 GLOBAL Atomic

; may be used by different task
 procedures

DataSection ENDS

MainRB REGDEF R2-R3 COMMON = Para, R0-R1 PRIVATE

CodeSection SECTION CODE
MainProc PROC TASK INTNO = 0 ; task which is executed after reset

...
MOV R3, #SOF AtomicProc1 ; segment offset of AtomicProc1

; parameter for trap routine
BSET STKOF ; set STKOF flag to force trap
BSET Atomic ; flag uninterruptable sequence

1)

...

1)Note: When trap flags are set by software, 1 (at least) or 2 (at most) instructions
following the instruction which set the trap flag may be executed before the trap is
entered.

Trap Service Routine:

EXTERN Atomic:BIT
1)

StackOvRB REGDEF R0-R1 COMMON = Para, R2-R3 PRIVATE

CodeSec SECTION CODE
StackOvTrap PROC Task INTNO = 4 ; stack overflow task

SCXT CP, #StackOvRB ; switch registerbank
BCLR STKOF ; clear trap flag

Interrupt System,
uninterruptable Sequences

Semiconductor Group 10 of 11 AP1609 03.97

JBC Atomic, SHORT AtomicService ; test and clear Atomic
 flag

1)

ExceptionTrapService:
... ; code for exception trap service
... ;
JMP Continue ; end of exception trap

service
1)

AtomicService:
CALLI cc_UC, [R1] ; execute AtomicProc1..n

specified by R1

Continue:
POP CP ; restore previous

registerbank
RETI ; return from trap service

routine

StackOvTrap ENDP

1)Note: instruction/directive only required when trap routine is shared between
uninterruptable sequence and exception trap processing

Interrupt System,
uninterruptable Sequences

Semiconductor Group 11 of 11 AP1609 03.97

Note: Since the SAB 80C166 instruction set only provides an intra-segment indirect
subroutine call instruction (CALLI cc, [Rwn]), it is most efficient when all
uninterruptable sequences (AtomicProc1..n) are located within segment 0.
Otherwise, #SEG AtomicProc1..n (segment number) must additionally be passed to
the trap routine, #SEG/#SOF Continue and #SEG/#SOF AtomicProc1..n must be
pushed on the stack, and a RETS instruction must be executed in order to perform
an indirect inter-segment call to AtomicProc1..n.

The advantages of processing uninterruptable instruction sequences on the class A trap
level are the immediate response and the constant interrupt latency overhead. In addition,
other task procedures/interrupt service routines of the application are not affected and
must not be modified, as it may be required in the case of some of the methods described
in section 1.1.

The overhead which is required by this method of executing uninterruptable instruction
sequences (including the RETurn from subroutine call to AtomicProc1..n) is as follows:

Trap Routine Overhead: 7 words of code are required when the trap routine is
exclusively used for processing uninterruptable instruction sequences, and 5 words when
the trap routine is shared with exception trap handling

Main Program Overhead: for each occurrence of an uninterruptable sequence, 3 words
of code are required in the main program when the trap routine is exclusively used for
processing uninterruptable instruction sequences, and 4 words when the trap routine is
shared with exception trap handling.

Stack Overhead: 1 word when the trap routine is shared, and 4 (5) words when
segmentation is disabled (enabled) and the trap routine is used exclusively.

Execution Time Overhead: 1.5 us (trap routine exclusive) or 1.8 us (trap routine shared)
per invocation of an uninterruptable sequence for a 16-bit non-multiplexed data bus with 0
waitstates.

Interrupt Latency Overhead: 1.2 us (trap routine exclusive) or 1.4 us (trap routine
shared) for a 16-bit non-multiplexed data bus with 0 waitstates.

