

BAT81S...BAT83S

Vishay Telefunken

Schottky Barrier Diodes

Features

- Integrated protection ring against static discharge
- Low capacitance
- Low leakage current
- Low forward voltage drop
- Very low switching time

General purpose and switching Schottky barrier diode HF–Detector

Protection circuit

Diode for low currents with a low supply voltage

Small battery charger

Power supplies

DC / DC converter for notebooks

94 9367

Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Value	Unit
Reverse voltage		BAT81S	V_R	40	V
		BAT82S	V_{R}	50	V
		BAT83S	V _R	60	V
Peak forward surge current	t _p ≤10ms		I _{FSM}	500	mΑ
Repetitive peak forward current	t _p ≤1s		I _{FRM}	150	mΑ
Forward current	无切时		I _F	30	mΑ
Junction temperature	Lec.Com		T _i	125	°C
Storage temperature range	01-		T _{stq}	<i>–</i> 65+150	°C

Maximum Thermal Resistance

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	I=4mm, T _L =constant	R _{thJA}	320	K/W

Electrical Characteristics

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F =0.1mA		V _F			330	mV
The Late of the La	I _F =1mA		V _F			410	mV
199	I _F =15mA		V _F			1	V
Reverse current	$V_R = V_{Rmax}$		I _R			200	nA
Diode capacitance	V _R =1V, f=1MHz		C _D			1.6	pF

BAT81S...BAT83S

Vishay Telefunken

Characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

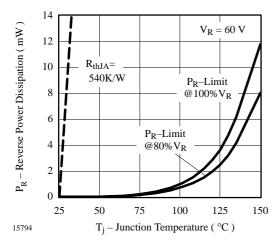


Figure 1. Max. Reverse Power Dissipation vs. Junction Temperature

1000

100

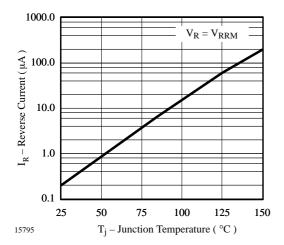


Figure 2. Reverse Current vs. Junction Temperature

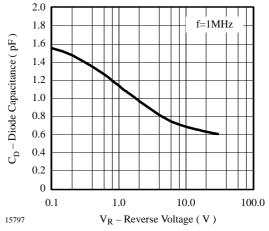
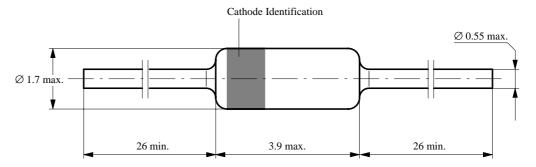


Figure 4. Diode Capacitance vs. Reverse Voltage


Vishay Telefunken

Dimensions in mm

technical drawings according to DIN specifications

94 9366

Standard Glass Case 54 A 2 DIN 41880 JEDEC DO 35 Weight max. 0.3 g

BAT81S...BAT83S

Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
 - with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer

application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423