

Quad Low Power Line Driver

FEATURES

- Low Operating Voltage ±5V to ±15 V
- 500µA Supply Current
- Zero Supply Current when Shut Down
- Outputs can be Driven ± 30V
- Output "Open" when Off (3-State)
- 10mA Output Drive
- Pin Compatible with 1488
- Output of Several Devices can be Paralleled

APPLICATIONS

- RS232 Driver
- Micropower Interface
- Level Translator

DESCRIPTION

The LT1030 is an RS232 line driver that operates over a \pm 5V to \pm 15V range on low supply current and can be shut down to zero supply current. Outputs are fully protected from externally applied voltages of ±30V by current limiting. Since the output swings to within 200mV of the positive supply and 1V of the negative supply, power supply needs are minimized.

A major advantage of the LT1030 is the high impedance output state when off or powered down, which allows several different drivers on the same bus.

TYPICAL APPLICATION

RS232 Line Driver

*NO CONNECTION NEEDED WHEN NOT USED.

 $t_{5V} = 0N$.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ± 15 V
Logic Input Pins V ⁻ to 25V
On- <u>Off</u> Pin
Output (Forced) $V^- + 30V$, $V^+ - 30V$
Short Circuit Duration (to $\pm 30V$) Indefinite
Operating Temperature Range
LT1030C 0°C to 70°C
Guaranteed Functional by Design −25°C to 85°C
Storage Temperature
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS (Supply Voltage = \pm 5V to \pm 15V)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Supply Current	$V_{ON-\overline{OFF}} \ge 2.4V$, $I_{OUT} = 0$, All Outputs Low		•		500	1000	μА
Power Supply Leakage Current	$V_{ON-\overline{OFF}} \le 0.4V$ $V_{ON-\overline{OFF}} \le 0.1V$		•		1 10	10 150	μA μA
Output Voltage Swing	Load = 2mA	Positive		V + - 0.3V	V ⁺ - 0.1V		
		Negative			V - + 0.9V	V ⁻ + 1.4V	
Output Current	V _{SUPPLY} ±5V to ±15V			5	12		mA
Output Overload Voltage (Forced)	Operating or Shutdown		•	V + - 30V		V - + 30V	V
Output Current	Shutdown	$V_{OUT} = \pm 30V$			2	100	μА
Input Overload Voltage (Forced)	Operating or Shutdown		•	٧-		15	٧
Logic Input Levels	Low Input (V _{OUT} = High) High Input (V _{OUT} = Low)		•	2	1.4 1.4	0.8	V
Logic Input Current	V _{IN} > 2.0V V _{IN} < 0.8V				2 10	20 20	μA μA
On-Off Pin Current	0 ≤ V _{IN} ≤ 5V		•	-10	30	65	μА
Slew Rate				4	15	30	V/µS

The lacktriangle denotes specifications which apply over the operating temperature range.

Note 1: 3V applied to the strobe pin will force all outputs low. Strobe pin input impedance is about 2k to ground. Leave open when not used.

PIN FUNCTIONS

PIN	FUNCTION	COMMENT
1	Minus Supply	Operates -2V to -15V
2,5,9,12	Logic Input	Operates properly on TTL or CMOS levels. Output valid from $(V^- + 2V) \le V_{IN} \le 15V$. Connect to 5V when not used.
3,6,8,11	Output	Line drive output.
4	On- Off	Shuts down entire circuit. Cannot be left open. For 'normally on' operation, connect between 5V-10V.
7	Ground	Ground must be more positive than ${ m V}^-$
13	Strobe	Forces all outputs low. Drive with 3V.
14		Positive supply 5V to 15V.

Note: As with other bipolar ICs, forward biasing the substrate diode can cause problems. The LT1030 will draw high current from V^+ to ground if the V^- pin is open circuited or pulled above ground. If this is possible, connecting a diode from V^- to ground will prevent the high current state. Any low cost diode can be used.