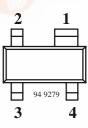
查询S888T供应商

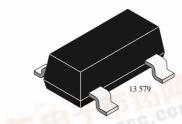
S888T

Vishay Telefunken

N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

Electrostatic sensitive device. Observe precautions for handling.




Applications

Input- and mixer stages in low voltage UHF- and VHF- tuner with olny 5 V supply voltage and in cordless phones.

Features

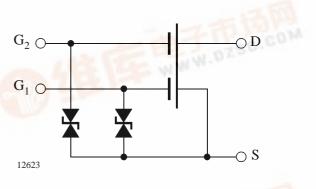
- Integrated gate protection diodes
- Low noise figure
- High gain .

S888T Marking: 888 Plastic case (SOT 143) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$, unless otherwise specified

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Drain - source voltage	18 6	9.200	V _{DS}	10	V
Drain current	1212		I _D	20	mA
Gate 1/Gate 2 - source peak current	SC.COM		±I _{G1/G2SM}	10	mA
Gate 1/Gate 2 - source voltage			±V _{G1/G2SM}	6	V
Total power dissipation	T _{amb} ≤ 78 °C		P _{tot}	160	mW
Channel temperature			T _{Ch}	150	°C
Storage temperature range			T _{stg}	-55 to +150	°C


Maximum Thermal Resistance

 $T_{amb} = 25^{\circ}C$, unless otherwise specified

Parameter	Test Conditions	Symbol	Value	Unit
Channel ambient	on glass fibre printed board (25 x 20 x 1.5) mm ³ plated with 35μ m Cu	R _{thChA}	450	K/W

- Only 5V supply voltage
- Low input capacitance
- High AGC-range

S888T

Vishay Telefunken

Electrical DC Characteristics

 $T_{amb} = 25^{\circ}C$, unless otherwise specified

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Drain - source breakdown voltage	$I_D = 10 \ \mu A, -V_{G1S} = -V_{G2S} = 2 \ V$	V _{(BR)DS}	10			V
Gate 1 - source breakdown voltage	$\pm I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	±V _{(BR)G1SS}	7		10	V
Gate 2 - source breakdown voltage	$\pm I_{G2S} = 10 \text{ mA}, V_{G1S} = V_{DS} = 0$	±V _{(BR)G2SS}	7		10	V
Gate 1 - source leakage current	$\pm V_{G1S} = 5 V, V_{G2S} = V_{DS} = 0$	±I _{G1SS}			50	nA
Gate 2 - source leakage current	$\pm V_{G2S} = 5 V, V_{G1S} = V_{DS} = 0$	±I _{G2SS}			50	nA
Drain current	$V_{DS} = 4 V, V_{G1S} = 0, V_{G2S} = 2 V$	I _{DSS}	1		12	mA
Gate 1 - source cut-off voltage	$V_{DS} = 4 \text{ V}, V_{G2S} = 2 \text{V}, I_D = 20 \ \mu\text{A}$	-V _{GS(OFF)}			1.0	V
Gate 2 - source cut-off voltage	$V_{DS} = 4 \text{ V}, V_{G1S} = 0, I_D = 20 \ \mu\text{A}$	-V _{GS(OFF)}			0.8	V

Electrical AC Characteristics

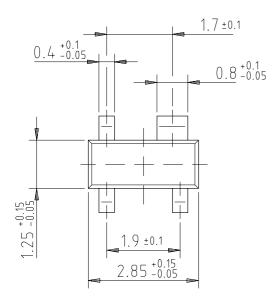
 V_{DS} = 4 V, I_{D} = 10 mA, V_{G2S} = 2 V, f = 1 MHz , T_{amb} = 25 $^{\circ}C,$ unless otherwise specified

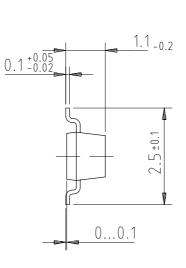
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Forward transadmittance		y _{21s}	20	24		mS
Gate 1 input capacitance		C _{issg1}		1.9		pF
Gate 2 input capacitance	V _{G1S} = 0, V _{G2S} = 2 V	C _{issg2}		1.2		pF
Feedback capacitance		C _{rss}		20		fF
Output capacitance		C _{oss}		0.9		pF
Power gain	$G_s = 2 \text{ mS}, G_L = 0.5 \text{ mS}, f = 200 \text{ MHz}$	G _{ps}		26		dB
	G _s = 3.3 mS, G _L = 1 mS, f = 800 MHz	G _{ps}	16.5	20		dB
AGC range	$V_{G2S} = 2 \text{ to } -1 \text{ V}, \text{ f} = 800 \text{ MHz}$	ΔĠ _{ps}	40			dB
Noise figure	$G_{S} = 2 \text{ mS}, G_{L} = 0.5 \text{ mS}, f = 200 \text{ MHz}$	F		1.0		dB
	G _S = 3,3 mS, G _L = 1 mS, f = 800 MHz	F		1.3		dB

S888T Vishay Telefunken

Common Source S–Parameters

V_{G2S} , = 4 V, V_{DS}/V = 4, Z_0 = 50 Ω , T_{amb} = 25°C, unless otherwise space	pecified
---	----------


		S11		S21		S12		S22	
I _D /mA	f/MHz	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG
		dB	deg	dB	deg	dB	deg	dB	deg
	100	-0.04	-6.8	5.89	169.2	-58.18	84.4	-0.05	-3.3
	200	-0.14	-13.7	5.65	157.6	-52.56	78.7	-0.11	-6.6
	300	-0.33	-19.9	5.36	146.7	-49.71	73.5	-0.21	-9.7
	400	-0.54	-26.0	4.97	136.3	-48.01	69.5	-0.29	-12.5
	500	-0.78	-32.1	4.55	126.1	-47.44	65.4	-0.43	-15.7
	600	-1.03	-37.6	4.10	116.9	-47.33	66.7	-0.54	-18.2
5	700	-1.26	-43.0	3.71	108.3	-47.59	68.5	-0.64	-21.0
	800	-1.51	-48.2	3.31	100.1	-48.16	75.6	-0.74	-23.5
	900	-1.74	-53.5	2.95	92.0	-48.25	86.7	-0.85	-26.2
	1000	-1.94	-58.3	2.54	84.0	-48.59	98.3	-1.01	-28.5
	1100	-2.18	-63.3	2.22	76.5	-48.17	117.8	-1.11	-31.2
	1200	-2.34	-68.4	2.01	69.6	-46.19	135.8	-1.12	-34.1
	1300	-2.57	-73.1	1.77	62.4	-43.65	147.4	-1.16	-36.8
	100	-0.04	-7.4	7.54	169.3	-57.68	84.3	-0.08	-3.4
	200	-0.15	-14.6	7.32	157.8	-52.06	78.8	-0.15	-6.8
	300	-0.35	-21.4	7.01	147.1	-49.12	73.9	-0.24	-10.0
	400	-0.58	-28.1	6.59	136.7	-47.51	69.8	-0.35	-13.1
	500	-0.83	-34.4	6.17	126.7	-46.85	65.8	-0.48	-16.2
	600	-1.10	-40.3	5.70	117.8	-46.64	67.6	-0.61	-18.7
10	700	-1.36	-46.1	5.31	109.5	-46.80	69.3	-0.73	-21.4
	800	-1.62	-51.5	4.90	101.3	-47.07	76.0	-0.83	-24.1
	900	-1.86	-57.2	4.54	93.6	-47.06	85.6	-0.94	-26.9
	1000	-2.09	-62.3	4.14	85.8	-47.29	95.0	-1.09	-29.1
	1100	-2.34	-67.6	3.80	78.4	-46.88	110.8	-1.21	-31.8
	1200	-2.52	-72.7	3.60	71.7	-45.49	127.1	-1.22	-34.8
	1300	-2.75	-77.6	3.33	64.5	-43.34	139.2	-1.26	-37.6


S888T

Vishay Telefunken

Dimensions in mm

96 12240

technical drawings according to DIN specifications

S888T Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.

2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423