

DS3170DK DS3/E3 Single-Chip Transceiver Design Kit

www.maxim-ic.com

GENERAL DESCRIPTION

The DS3170DK is a fully integrated design kit for the DS3170 DS3/E3 single-chip transceiver (SCT). This design kit contains all the necessary circuitry to evaluate the DS3170 in all modes of operation. The design kit also includes an on-board microprocessor to run real-time code for further part evaluation.

DESIGN KIT CONTENTS

DS3170DK Board Download:

ChipView Software DS3170DK.DEF Definition File DS3170DK Data Sheet

ORDERING INFORMATION

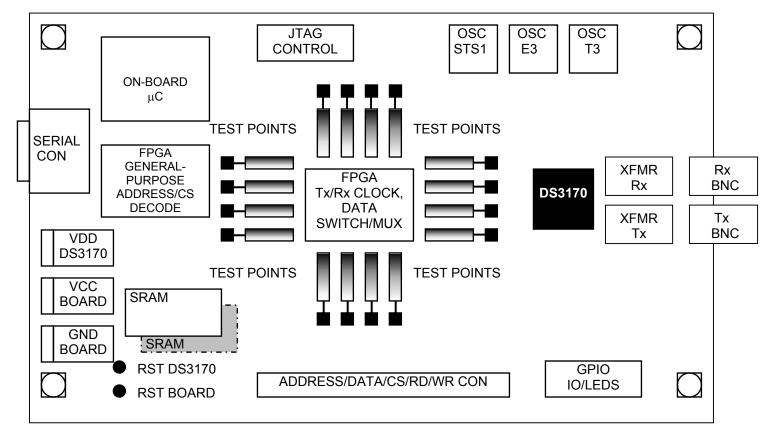
PART	DESCRIPTION
DS3170DK	Design Kit for the DS3170 DS3/E3 Single-Chip Transceiver

Windows is a registered trademark of Microsoft Corp.

FEATURES

- Expedites New Designs by Eliminating First-Pass Prototyping
- Demonstrates Key Functions of the DS3170 DS3/E3 Single-Chip Transceiver (SCT)
- Includes DS3170 Single-Chip Transceiver (SCT), Transformers, 75Ω BNC, and Termination Passives
- Interfaces with Any PC with an RS-232 Serial Interface
- High Level Windows®-Based Software Provides Visual Access to All Registers
- Software Controlled (Register) Mapped Configuration Switches Facilitate Real-Time Clock and Signal Routing
- Precision Test Points for All Clocks and Signals
- On-Board DS3 and E3 Crystal Oscillators for Stable Clock Generation
- Easy-to-Read Silkscreen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDS

COMP	ONENT	LIST
------	-------	------


DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
$\begin{array}{c} C1, C4, C5, C10,\\ C14, C15, C18,\\ C19, C21, C24,\\ C25-C32, C36-\\ C38, C39-C44,\\ C47-C49, C50,\\ C52-C56,\\ C59-C61, C66,\\ C68, C70, C73,\\ C74 \end{array}$	44	0.1μF 20%, 16V X7R ceramic capacitors (0603)	AVX	0603YC104MAT
C2, C3, C16, C17, C20, C22, C23, C33, C34, C51, C57, C69, C75	13	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K
C6, C62, C65	3	0.001µF 10%, 50V ceramic capacitors (0603)	Panasonic	ECJ-1VB1H102K
C7, C8, C9, C11, C35, C58, C76	7	68μF 20%, 16V tantalum capacitors (D case)	Panasonic	ECS-T1CD686R
C12, C13	2	10pF 5%, 50V ceramic capacitors (tall case)	Phycomp	1206CG100J9B200
C45, C46	2	10,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C103K
C63, C64, C67	3	0.01µF 10%, 50V X7R ceramic capacitors (0603)	AVX	06035C103KAT
C71, C72	2	56,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C563K
D1, D2	2	1A 50V general-purpose silicon diodes	General Semiconductor	1N4001
DS1, DS2, DS6–DS10	7	LED, green, SMD	Panasonic	LN1351C
DS3, DS4, DS5, DS11–DS19	12	LED, red, SMD	Panasonic	LN1251C
J1, PWR_CONNBAN1	2	Banana plug sockets (horizontal, black)	Mouser Electronics	164-6218
J2	1	DB9 right-angle connector (long case)	AMP	747459-1
J3	1	50-pin, dual-row, vertical terminal strip	Samtec	TSW-125-07-T-D
J4	1	100-mils 4-position jumper	Samtec	NA
J5	1	50Ω BNC connector (5-pin right-angle header)	Trompeter	CBJR220
J6, J7	2	Terminal strip, 10-pin, dual row, vertical	Samtec	NA
J8, J9	2	75Ω BNC connectors (5-pin right- angle)	Trompeter	UCBJR220
JP1, JP2, JP3, JP5, JP7, JP8	6	2-pin headers, 0.100" centerline (vertical)	Samtec	TSW-102-07-T-S
JP4	1	14-pin connector (dual row, vertical)	Samtec	NA
JP6	1	100-mils 3-position jumper	Samtec	NA
L1	1	1.0μH 20% 2-pin surface-mount inductor	Coiltronics	UP1B-1R0
PWR_CONNBAN2	1	Banana plug socket (horizontal, red)	Mouser Electronics	164-6219

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER	
R1–R4, R12, R42, R43, R54–R56, R59, R63, R68, R69, R70, R73, R74, R83, R93, R107	20	150Ω 1%, 1/16W resistors (0603)	Panasonic	ERJ-3EKF1500V	
R5–R8, R10, R15, R51, R57, R62, R71, R81, R85, R92, R94, R95, R100, R101, R103–R106, R109	22	33Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ330V	
R9, R11, R16, R22, R30, R32, R38, R46, R60, R61, R64, R65, R72, R77–R80, R89, R90, R91, R96	22	330Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ331V	
R13	1	$1.0M\Omega$ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ105V	
R14, R17–R21, R23–R29, R31, R33–R37, R39, R40, R41, R44, R45, R47, R48, R49, R52, R53, R58, R67, R75, R76, R82, R86, R87, R98, R99, R102, R108, R110	41	10kΩ 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ103V	
R50	1	1.0kΩ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ102V	
R66, R88, R97	3	0Ω 1%, 1/16W resistors (0603)	AVX	CJ10-000F	
R84	1	51.1Ω 1%, 1/16W resistor (0603)	Panasonic	ERJ-3EKF51R1V	
SW1, SW2, SW5	3	4-pin single-pole switch MOM	Panasonic	EVQPAE04M	
SW3, SW4	2	8-position switch, 16-pin DIP, low profile	AMP	435668-7	
SW6	1	Slide switch (DPDT) 6-pin through-hole	Тусо	SSA22	
T1, T2	2	1:2 XFMR T3/E3/STS-1 (industrial)	Pulse	T3012	
TP1–TP24	24	Test points, compensated, $3pF$, 953Ω , 3 plated holes	NA	KIT1	
U1, U5	2	8-pin power-μMAX (1.8V or Adj)	Maxim	MAX1792EUA18	
U2	1	M-CORE 32-bit microcontroller	Motorola	MMC2107	
U3, U6	2	Spartan-IIE 200K gate, 1.8V FPGA, 256 PIN BGA	Xilinx	XC2S200E-6FT256C	
U4, U11	2	128K x 8 SRAM	Cypress	CY62128V	
U7	1	DS3/E3 SCT 100-pin CSBGA (11mm x 11mm)	Dallas Semiconductor	DS3170	
U8	1	3.3V RS-232 20-pin SO	Maxim	MAX3233EEWP	
U9, U14, U16– U20, U23	8	High-speed buffer	Fairchild	NC7SZ86	

DS3170DK DS3/E3 Single-Chip Transceiver Design Kit

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
U10, U12	2	2Mb flash-based configuration memory	Xilinx	XCF02SV020C
U13	1	Quad 2-input NAND gate 14-pin SO	Toshiba	TC74HC00AFN
U15, U21, U24	3	Hex inverter, SO	Toshiba	TC74HC04AFN
U22	1	SOT switch debouncer	Maxim	MAX6816
X1	1	8.0MHz low-profile crystal	Dove Electronic	EC1-8.000M
Y1	1	3.3V 51.840MHz oscillator, crystal clock	SaRonix	NTH089AA3-51.840
Y2	1	3.3V 34.368MHz oscillator, crystal clock	SaRonix	NTH089AA3-34.368
Y3	1	3.3V 44.736MHz oscillator, crystal clock	SaRonix	NTH089AA3-44.736

BOARD FLOORPLAN

BASIC OPERATION

This design kit relies upon several supporting files, which are available for downloading on our website at <u>www.maxim-ic.com/telecom</u>. See the DS3170DK QuickView page for files.

The support files are used with an evaluation program called ChipView with is available for download at <u>www.maxim-ic.com/telecom</u>.

HARDWARE CONFIGURATION

Quick Start (Hardware Settings)

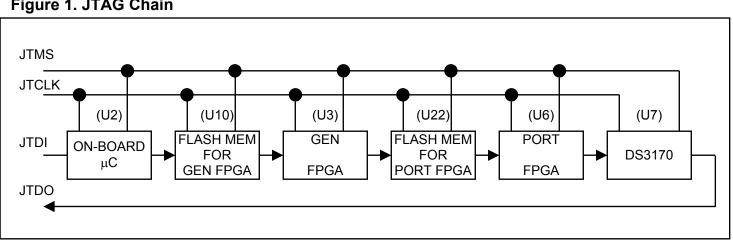
- For single power-supply operation, short jumpers JP1-JP3. This connects VDD of the DS3170 to the board VCC.
- Ensure that PROGRAM FLASH MICRO is selected (SW6). DS3 should not be on.
- Connect reference clock. See <u>Table 1</u>.
- DIP switches (SW3) can be in either the ON or OFF position depending on the desired configuration. See <u>Table 6.</u>
- Connect serial cable from DS3170DK (J2) to PC.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V.

Reference Clock Configuration

The reference clock for the DS3170 (SCT) can be configured a number of ways depending on the application's need. This is done by shorting the REFCLK signal on J6 to the signal inputs, which are also connected to J6.

REFERENCE CLOCK	DESCRIPTION
GND	Short pins J6.1 and J6.2 together. Open all other pins on J6.
BNC Input	Short pins J6.3 and J6.4 together. Open all other pins on J6.
STS1 OSC	Short pins J6.5 and J6.6 together. Open all other pins on J6.
E3 OSC	Short pins J6.7 and J6.8 together. Open all other pins on J6.
T3 OSC	Short pins J6.9 and J6.10 together. Open all other pins on J6.

Table 1: Reference Clock Configuration


JTAG Configuration

The JTAG chain is controlled by the following connectors: J4, JP4, and JP5. Depending on the function, such as programming the internal microcontroller flash or performing boundary scan operations, the three connectors can be configured to accomplish the desired task. For information on programming the internal flash of the microcontroller, refer to the microcontroller user manual and board schematic.

For most purposes, having the complete JTAG chain is sufficient. Figure 1 shows the complete chain as well as what order the devices will appear during boundary scan. To set up this configuration, perform the following:

- Connect JTDI to JP4.1
- Connect JTDO to JP4.3
- Connect JTMS to JP4.10
- Connect JCLK to JP4.5
- Connect J4.1 to J4.2
- Connect J4.3 to J4.4
- Connect JP5.1 to JP5.2

DS3170DK DS3/E3 Single-Chip Transceiver Design Kit

Figure 1. JTAG Chain

Address/Data BUS Connector

The DS3170DK has a connector (J3) to monitor all local bus activity for the design kit. All the signals can be captured with a high-impedance probe and displayed on an oscilloscope or logic analyzer. Note: If FPGA ENABLE (SW3.3) is logic 0, the on-board microcontroller will no longer drive any data onto the local bus. Therefore, the user can now connect the local bus of the DS3170 into another system without making any modifications to the hardware. See <u>Table 2</u> for specific pin information for connector J3.

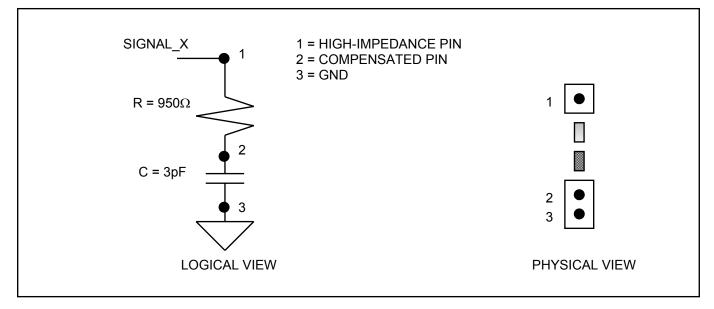

PIN NUM	PIN NAME	DESCRIPTION	PIN NUM	PIN NAME	DESCRIPTION
1	A0	Local Address Bit 0	2	D0	Local Data Bit 0
3	A1	Local Address Bit 1	4	D1	Local Data Bit 1
5	A2	Local Address Bit 2	6	D2	Local Data Bit 2
7	A3	Local Address Bit 3	8	D3	Local Data Bit 3
9	A4	Local Address Bit 4	10	D4	Local Data Bit 4
11	A5	Local Address Bit 5	12	D5	Local Data Bit 5
13	A6	Local Address Bit 6	14	D6	Local Data Bit 6
15	A7	Local Address Bit 7	16	D7	Local Data Bit 7
17	A8	Local Address Bit 8	18	D8	Local Data Bit 8
19	A9	Local Address Bit 9	20	D9	Local Data Bit 9
21	CS3170	Chip Select DS3170	22	D10	Local Data Bit 10
23	CSFPGA	Chip Select Port FPGA	24	D11	Local Data Bit 11
25	INT3170	INT PIN DS3170	26	D12	Local Data Bit 12
27	RST3170	RST PIN DS3170	28	D13	Local Data Bit 13
29	RDY	Ready Handshake DS3170	30	D14	Local Data Bit 14
31	TEST0	Generic I/O Bit 0	32	D15	Local Data Bit 15
33	TEST1	Generic I/O Bit 1	34	SPI	DS3170 Serial/Parallel Bus Mode
35	TEST2	Generic I/O Bit 2	36	ALE	Address Latch Enable
37	TEST3	Generic I/O Bit 3	38	RD_DS	Read (Intel)/Data Strobe (MOT)
39	TEST4	Generic I/O Bit 4	40	WR_W/R	Write (Intel)/Write_READ (MOT)
41	TEST5	Generic I/O Bit 5	42	CS_OUT	Programmable CS_OUT Pin
43	TEST6	Generic I/O Bit 6	44	MODE	Mot/Intel Mode
45	TEST7	Generic I/O Bit 7	46	WIDTH	Data Bus Width
47	GND	GND	48	TEST	Test Enable (Active Low)
49	GND	GND	50	HIZ	High Impedance (Active Low)

Table 2. Address/Data Connector

High Impedance and Compensated Test Points

The test points for all the clock and data lines are unique for this board such that each test point listed in <u>Table 3</u> have a relative high-impedance pin and a compensated pin. The compensated pin is part of a (20:1) voltage divider that when used with the standard 50Ω load of an oscilloscope provides a very clean signal. If you are making critical timing and or slew rate measurements, the compensated test points are very useful. Figure 2 shows the relationship between the high-impedance and compensated test point pins.

Table 3. Test Points

REF	SIGNAL	REF	SIGNAL
DES	NAME	DES	NAME
TP5	TCLKI	TP7	TNEG
TP6	TCLKO	TP8	RNEG
TP4	RCLKO	TP2	TPOS
TP20	TLCLK	TP3	RPOS
TP19	RLCLK	TP11	TSER
TP10	TOHSOF	TP9	RSER
TP12	ROHSOF	TP13	TOHEN
TP16	TOHCLK	TP14	ТОН
TP17	ROHCLK	TP15	ROH
TP19	TSOFO	TP23	REFCLK
TP22	RSOFO	TP21	TSOFI

General Purpose Input/Output for DS3170

The DS3170 SCT has an 8-bit port that can be bit configured as either general-purpose I/O or specific alarms, a TEMI input, or PMU input. Refer to the DS3170 data sheet for specific questions about the operation of the DS3170 GPIO port.

Each GPIO pin has two types of inputs and an LED for easy identification of the pin's state. The first input type for the GPIO port is an 8-bit switch (SW4). Each pin on SW4 corresponds to the bit in the GPIO. When the switch is in the "On" position, the pin for the switch is grounded and provides logic 0 to the port. When the switch is in the "Off" position, the pin for the switch floats to VDD and provides logic 1 to the port.

The second input type for the GPIO port is a straight 10-pin header (J7). This can be simply a monitoring pin for the GPIO port or used as input stimulus. **Note:** If you plan to drive a bit to a value other than GND, the GPIO bit in SW4 must be in the "Off" position. See the DS3170DK schematic for questions on the connection of the GPIO port.

Table 4 provides a description of pin out of SW4 and J7.

PIN NUMBER		PIN NAME
SW4.1	J7.1	GPIO Bit 1
SW4.2	J7.2	GPIO Bit 2
SW4.3	J7.3	GPIO Bit 3
SW4.4	J7.4	GPIO Bit 4
SW4.5	J7.5	GPIO Bit 5
SW4.6	J7.6	GPIO Bit 6
SW4.7	J7.7	GPIO Bit 7
SW4.8	J7.8	GPIO Bit 8

Table 4. GPIO Header and Switch Pinout

TEMI and PMU Inputs

GPIO Bit 6 and GPIO Bit 8 can be configured to be the TEMI and PMU inputs respectively. A pushbutton (SW5) and 3-position jumper (JP6) are available to provide a glitch-free input to either of these inputs. **Note:** When using the pushbutton (SW5) and 3-position jumper (JP6) as an input to the GPIO pins, you must have the appropriate switch in SW4 in the "Off" position.

Table 5. TEMI and PMU Configuration

SIGNAL NAME	SETUP PROCEDURE
TEMI	Set SW4.6 to the "Off" position
	Short (Jumper) JP6.3 and JP2
PMU	Set SW4.8 to the "Off" position
	Short (Jumper) JP6.1 and JP2

User Input Switch (SW3)

SW3 is an 8-pin DIP switch that controls the function of the on-board microcontroller and the two on-board FPGAs, and offers a number of generic inputs for user programs.

PIN	NAME	FUNCTION
1	FPGA INPUT 1	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general- purpose register XXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
2	FPGA INPUT 2	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general- purpose register XXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
3	FPGA ENABLE	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.3 is OFF), the FPGA is enabled and will transfer data from the DS3170 and FPGA as directed from the on-board microcontroller. When this pin is logic 0 (SW3.3 is ON), the FPGA is disabled. All inputs and outputs to the DS3170 and port FPGA are tri-stated. Note: This pin does not cause a hardware enable for the PORT FGPA.
4	DATA BUS SELECT	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.4 is OFF), the DS3170 and the port FPGA are set up such that they use the 16-bit bus from the on-board microcontroller. When this pin is logic 0 (SW3.4 is ON), the DS3170 and the port FPGA are set up such that they use the 8-bit bus from the on-board microcontroller. This pin has no effect if FPGA ENABLE is logic 0.
5	BOOT SEL	Input-Only Pin to the On-Board Microcontroller. When this pin is logic 1 (SW3.5 is OFF), the on-board microcontroller loads the firmware from an external source rather than the internal flash bank. When this pin is logic 0 (SW3.5 is ON), the microcontroller loads the firmware from the internal flash bank. If you choose to load code from an external source, refer to the user manual for the on-board microcontroller (U2) to ensure that all the timing and data are correct to run this program. This option should only be used by the advanced user.
6	KIT	Input-Only Pin to the On-Board Microcontroller. Not implemented with the firmware shipped from Dallas Semiconductor. This pin can be used by a user program.
7	USER INPUT 1	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS4) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.7) must be in the off position.
8	USER INPUT 2	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS5) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.8) must be in the off position.

SOFTWARE CONFIGURATION

Quick Start (Software—ChipView)

- Perform steps in the Quick Start (Hardware Settings).
- Load ChipView software.
- Select COM port.
- Select Register View.
- From the Programs menu, launch the host application named ChipView.EXE. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.
- Load the DS3170DK.DEF file.
- Make sure that all the register settings are correct for the proper function desired for the DS3170DK.
- Refer to the DS3170 data sheet for all questions pertaining to device functionality.

MEMORY MAP

The on-board microcontroller is configured to start the user address space at 0x81000000. All offsets given in <u>Table 7</u> are relative to the beginning of the user address space. All device registers can be easily modified using ChipView.EXE host-based user-interface software.

Table 7. Relative Address Map

REF DES	DEVICE	OFFSET
U3	General-purpose FPGA	0x0000
U6	FPGA Tx/Rx clock, data switch/mux	0x1000
U7	DS3170 DS3/E3 single- chip transceiver	0x2000

Table 8. General-Purpose Memory Map

OFFSET	REGISTER NAME	TYPE	DESCRIPTION
0x00	BRDID	Read Only	Board ID
0x02	DSIDH	Read Only	Dallas Extended ID Upper Nibble
0x03	DSIDM	Read Only	Dallas Extended ID Middle Nibble
0x04	DSIDL	Read Only	Dallas Extended ID Lower Nibble
0x05	BRDREV	Read Only	Board Rev
0x06	ASMREV	Read Only	Assembly Rev
0x07	FPGAREV	Read Only	FPGA Firmware Rev
0x08	CTRL1	Control	Control Reg #1

ID REGISTERS

BID: BOARD ID (Offset=0X0000) BID is read only with a value of 0xD. XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset=0X0002) XBIDH is read only with a value of 0x00. XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset=0X0003) XBIDM is read only with a value of 0x07. XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset=0X0004) XBIDL is read only with a value of 0x00. BREV: BOARD FAB REVISION (Offset=0X0005) BREV is read only and displays the current fab revision. AREV: BOARD ASSEMBLY REVISION (Offset=0X0006) AREV is read only and displays the current assembly revision. PREV: PLD REVISION (Offset=0X0007) PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: **CTRL1** Register Description: **Control Register 1** Register Offset: **0x0008**

Bit # 7 Name <u>SPI_CPC</u> Default 0	6 DL SPI_CPHA 0	5 SPI_SWAP 0	4 SPI 0	3 HIZ 1	2 WIDTH 0	1 MOT 0	0 MUX 0		
Bit 7: SPI_CPOL:	This bit controls the SPI Interface Clock Polarity pin, which is muxed with the D7 pin on the DS3170. Bit 7 is only active when bit 4 (SPI) is a logic 1. Refer to the DS3170 data sheet for pin operation.								
Bit 6: SPI_CPHA:	This bit controls t DS3170. Bit 6 is for pin operation.								
Bit 5: SPI_SWAP:	This bit controls t the DS3170. Bit s sheet for pin ope	is only activ							
Bit 4: SPI:	This bit controls t 0 = parallel bus n 1 = SPI bus mod	node	/lode bit.						
Bit 3: HIZ:	digial outputs and	This bit controls the high-impedance test-enable bit (active low). This signal puts all the digial outputs and bidirectional outputs to a high-impedance state when pulled low and also when the JTRST is pulled low. For nomal operation, keep it as a logic 1.							
Bit 2: WIDTH:	This bit controls the databus width pin for parallel bus mode. 0 = 8-bit parallel mode 1 = 16-bit parallel mode								
Bit 1: MOT:	This bit controls t 0 = RD/WR strob 1 = DS strobe mo	e mode (Intel	I)	S3170.					
Bit 0: MUX:	This bit determine (constantly high). 0 = nonmux mod 1 = mux mode		pin on the	e DS3170 is ir	n mux mode o	or nonmux m	ode		

Register Name: CTRL2 Register Description: Control Register 2–Line IO Register Offset: 0x0009

Bit #	7	6	5	4	3	2	1	0
Name	RNEG3	RNEG2	RNEG1	RNEG0	RPOS3	RPOS2	RPOS1	RPOS0
Default	0	0	0	0	1	0	0	0

Bits 7 to 4: RNEGx: These bits control the source of the RNEG signal.

Bits 3 to 0: RPOSx: These bits control the source of the RPOS signal.

RPOSx	DESCRIPTION
0x00	HI-Z
0x01	TPOS
0x02	T3 OSC
0x03	E3 OSC
0x04	STS1 OSC
0x05	BNC_INPUT
0x06	Logic 0
0x07	Logic 1
0x08–0xFF	HI-Z

RNEGx	DESCRIPTION
0X00	HI-Z
0X01	TNEG
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL3 Register Description: Control Register 3–Line RCLK Register Offset: 0x000A

Bit #	7	6	5	4	3	2	1	0
Name	_	_		—	RLCLK3	RLCLK2	RLCLK1	RLCLK0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: RLCLKx: These bits control the source of the RLCLK signal.

RLCLKx	DESCRIPTION
0X00	HI-Z
0X01	TLCLK
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL4 Register Description: Control Register 4 Overhead Interface Register Offset: 0x000B

Bit #	7	6	5	4	3	2	1	0
Name	TOHEN3	TOHEN2	TOHEN1	TOHEN0	TOH3	TOH2	TOH1	TOH0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: TOHENx: These bits control the source of the TOHEN signal.

Bits 3 to 0: TOHx: These bits control the source of the TOH signal.

TOHENx	DESCRIPTION
0X00	HI-Z
0X01	TOHSOF
0X02	ROHSOF
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

TOHx	DESCRIPTION
0X00	HI-Z
0X01	ROH
0X02	Not used
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL5 Register Description: Control Register 5 Serial Data Overhead Interface Register Offset: 0x000C

Bit #	7	6	5	4	3	2	1	0
Name	—	_	_	_	TSER3	TSER2	TSER1	TSER0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: TSERx: These bits control the source of the TSER signal.

TSERx	DESCRIPTION
0X00	HI-Z
0X01	RSER
0X02	Not Used
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

Register Name: CTRL6 Register Description: Control Register 6 Serial Data Overhead Interface Register Offset: 0x000D

Bit #	7	6	5	4	3	2	1	0
Name	TSOFI3	TSOFI2	TSOFI1	TSOFI0	TCLKI3	TCLKI2	TCLKI1	TCLKI0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: TSOFIx: These bits control the source of the TSOFI signal.

Bits 3 to 0: TCLKIx: These bits control the source of the TCLKI signal.

TSOFIx	DESCRIPTION
0X00	HI-Z
0X01	TSOFO
0X02	RSOFO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

TCLKIx	DESCRIPTION
0X00	HI-Z
0X01	TCLKO
0X02	RCLKO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

DS3170 INFORMATION

For more information about the DS3170, refer to the DS3170 data sheet available on our website at <u>www.maxim-ic.com/DS3170</u>. Software downloads are also available for this design kit.

DS3170DK INFORMATION

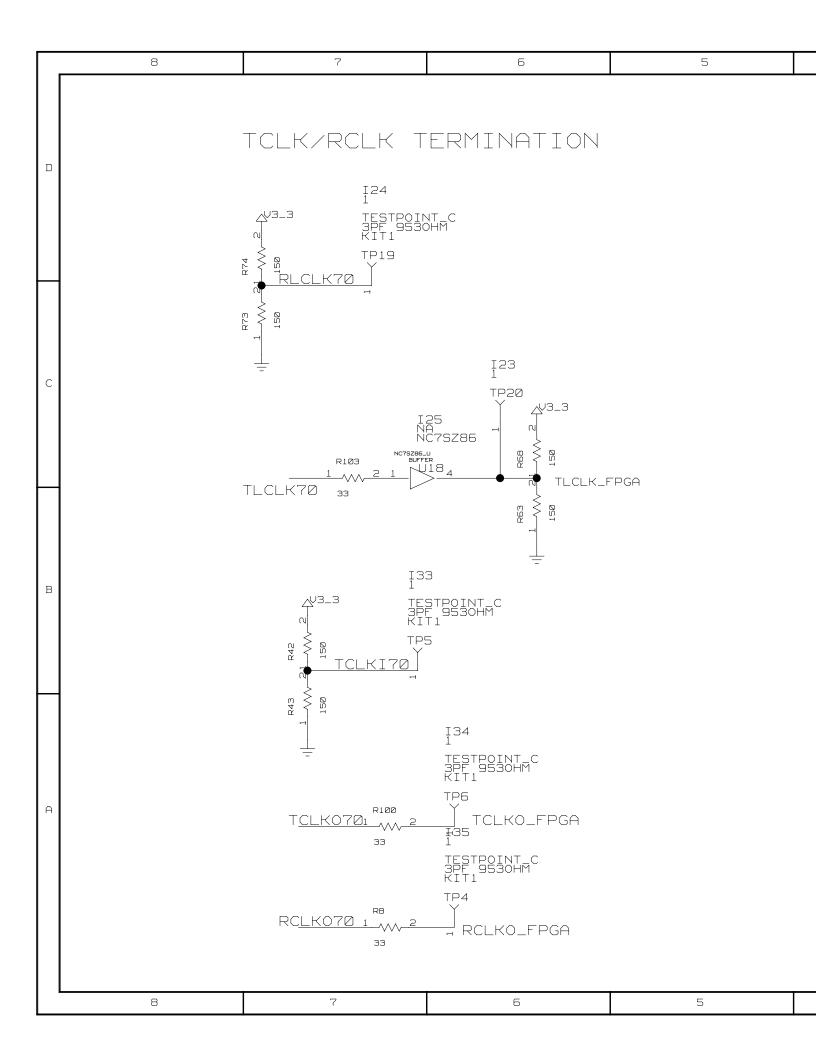
For more information about the DS3170DK including software downloads, consult the DS3170DK data sheet available on our website at <u>www.maxim-ic.com/DS3170DK</u>.

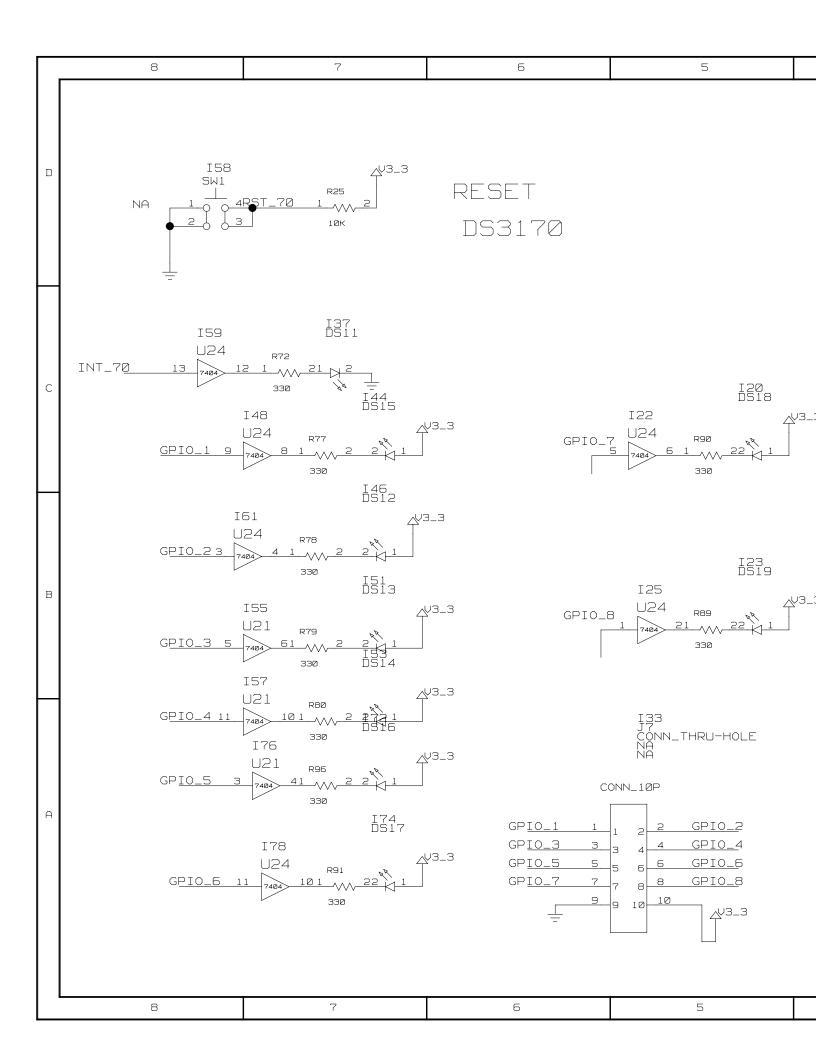
TECHNICAL SUPPORT

For additional technical support, e-mail your questions to telecom.support@dalsemi.com.

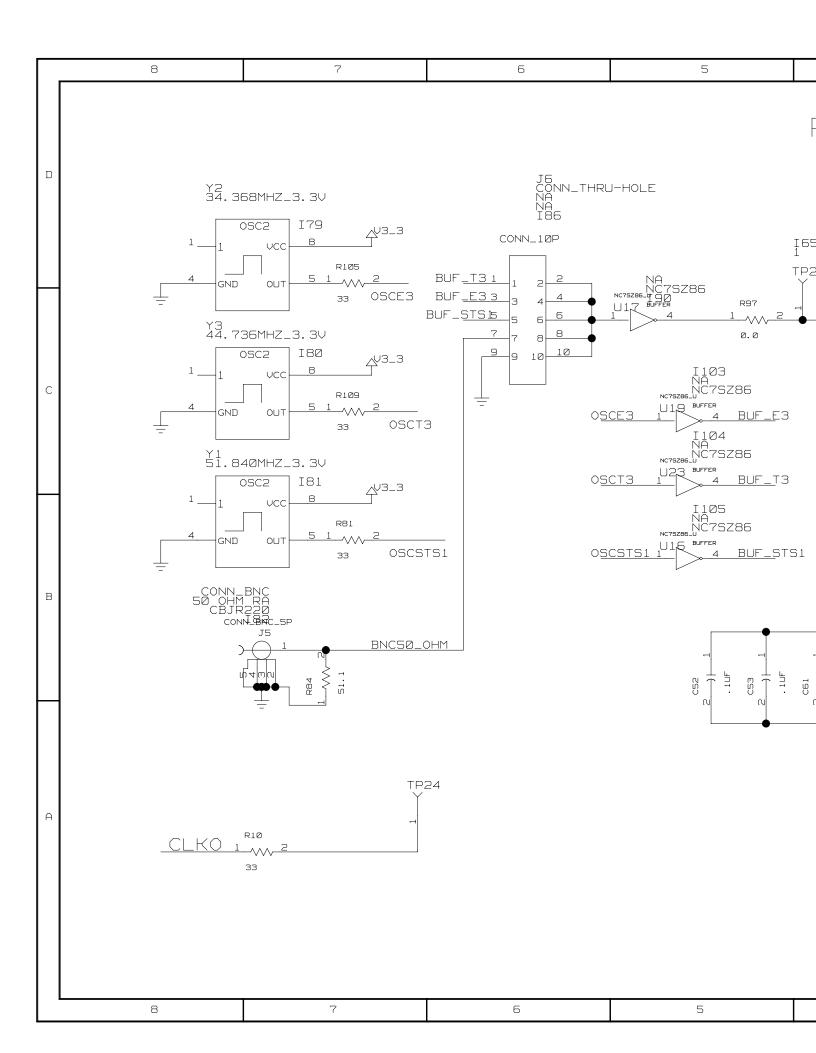
SCHEMATICS

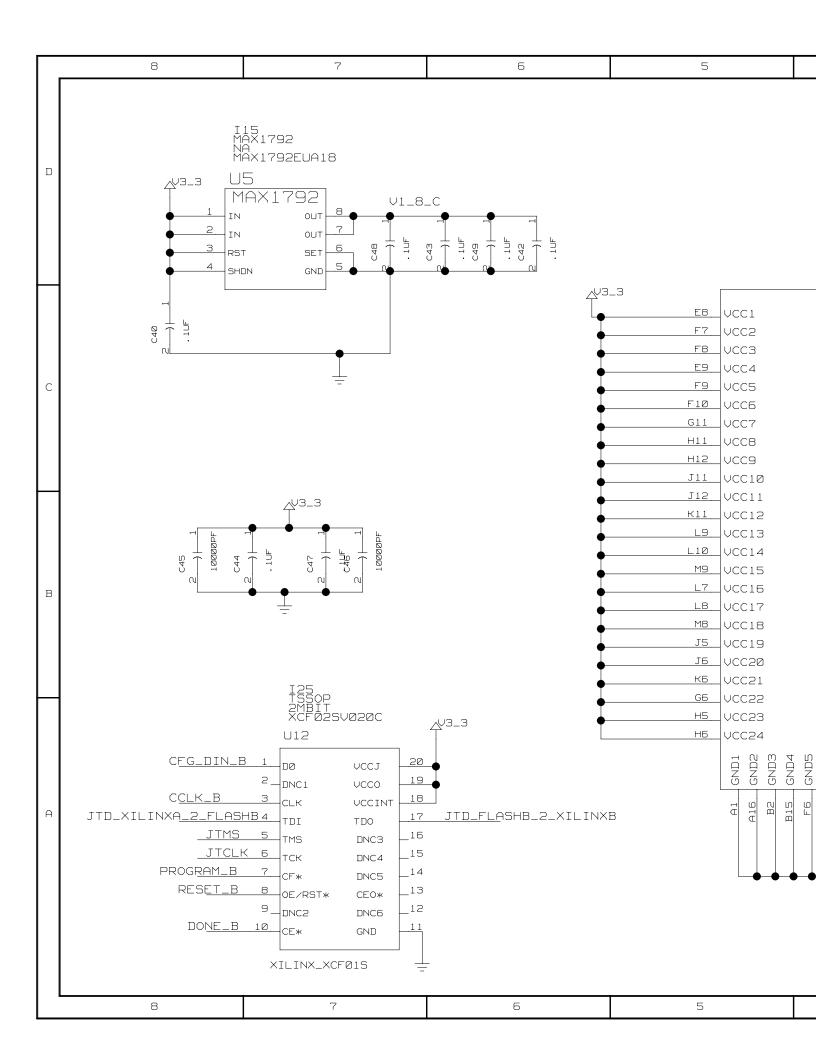
The DS3170DK schematics are featured in the following 23 pages.


Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products • Printed USA

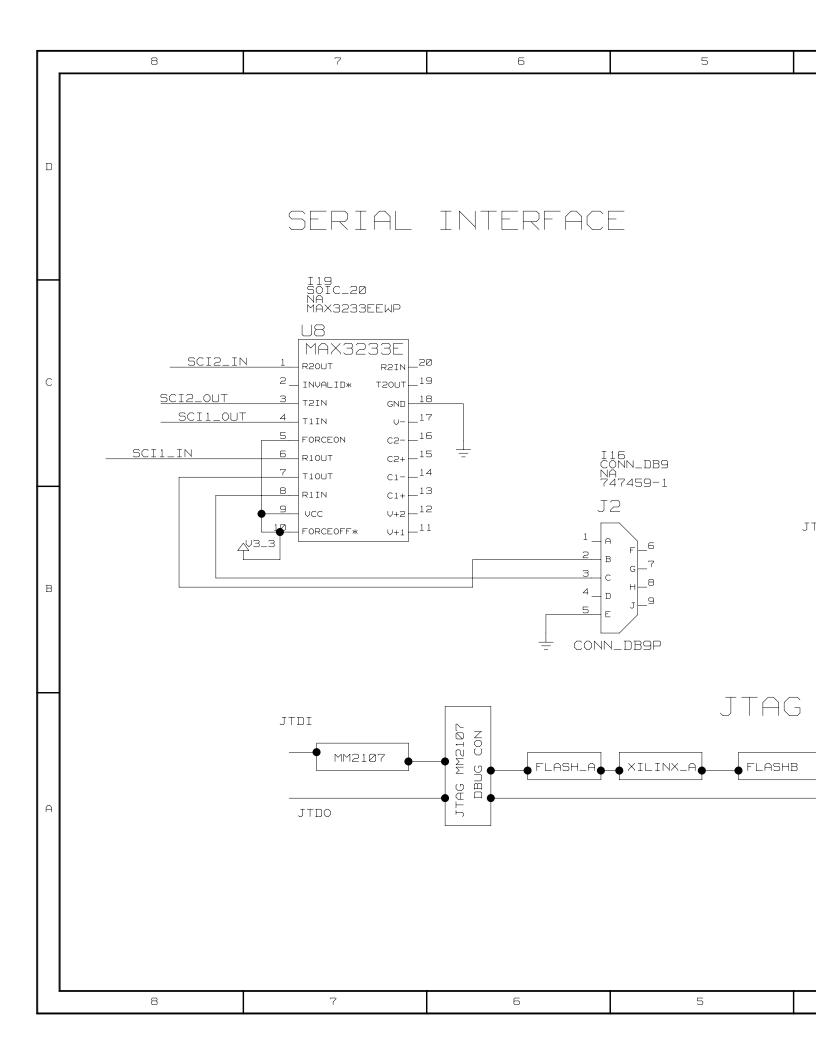

17 of 40

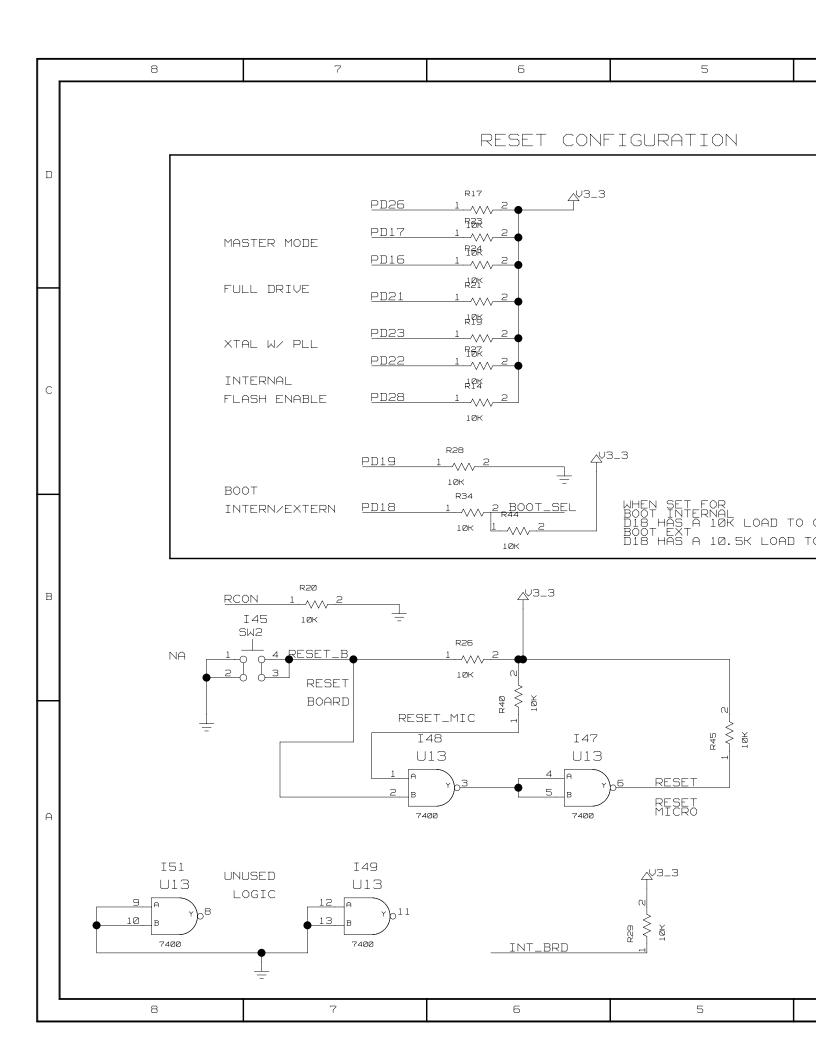
	8		7	б	5	
				DALLA	70 DES CREATED IS SEMIC INE 26,	_
С	Pag	e 2.	COVER DS3170 LIU IN			
В	Pag Pag	e 5. e 6.	DS3170	RCLK/TELECO Ø RESET / G FELECOM SIG 60	PIO	
A	Pag	e 9.	PORT F	FPGA CONTRO FPGA BLOCK1 FPGA BLOCK		
	8		7	6	5	

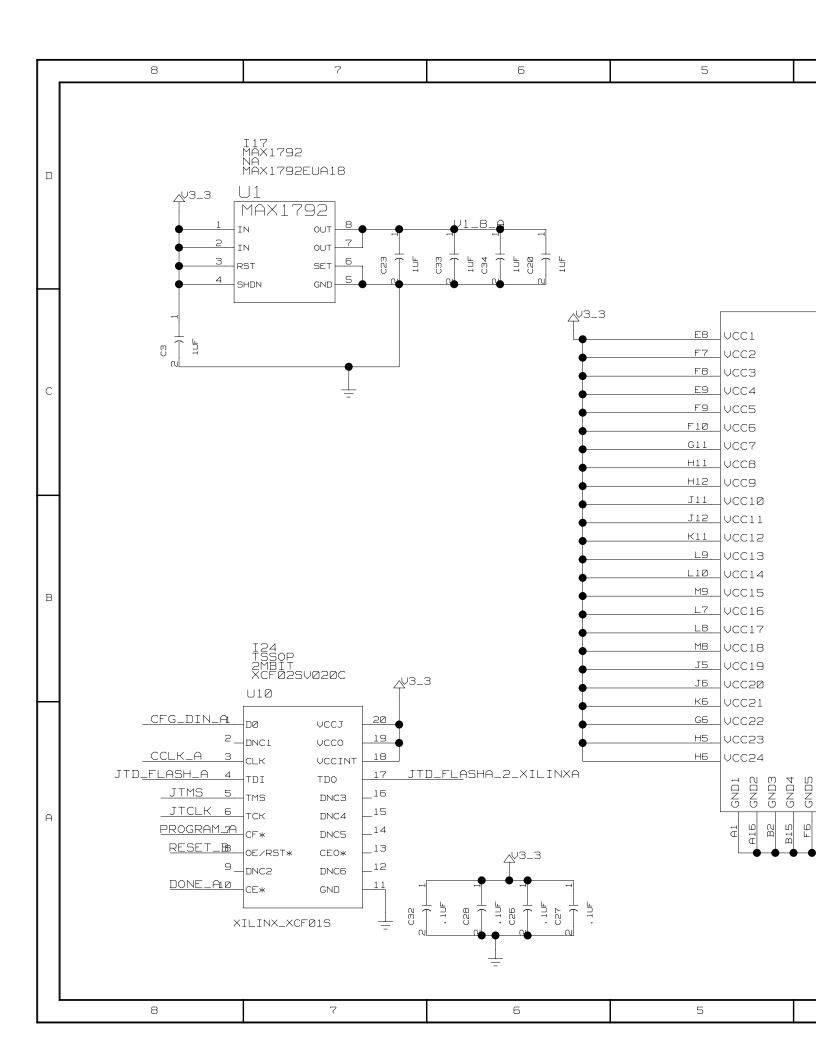

Γ.	8	7		б	5	
а	DS31 100 PI	70 In Bga		ALE G4 ALE csk A1 CS3170 RD*/DSk B2 RD DS WR*/RW C2 AR AZR	JTCLK A5 JTCLK JTMS B3 JIMS JTD1 C4 JTN XILINXB_2_D53170 JTRST* E5 JTD0 UDD1 B1 UDD2 D1 B1 UDD3 K4	D10
С		. 01UF	<u>LAØ</u> K9 <u>LA1</u> j2 <u>LA2</u> K3 <u>LA3</u> H3 <u>LA5</u> K3 <u>LA5</u> H4 <u>LA7</u> j3 <u>LA8</u> H5	 A<0>/BSWAP A<1> A<2> A<2> A<3> A<4> A<5> A<5> A<5> A<7> A<5> A<8> 	I1 NA DS31 U7	70
в			<u>XD1 к</u> XD2 ја XD3 на XD4 к XD5 ј XD6 на XD7 ка XD7 ка XD9 са XD9 са XD10 ја XD10 ја XD12 на XD12 на	 D<1>/SPI_MOSI D<2>/SPI_SCLK D<3> D<4> D<5>/SPI_SWAP D<5>/SPI_CPHA D<6>/SPI_CPHA D<7>/SPI_CPOL D<8> D<9> D<10> D<11> D<12> 	DS3170_1	BGI
A			XD14 H10 XD15 G0 XD15 G0 XD15 G0 XD15 C0 K	B<14> D<14> D<15> HIDTH ZO DB INT MUDTH ZO DB MUDTH ZO DB MUDT	C1 USS1 K1 USS2 K6 USS3 C100 USS2 A100 USS5 A0S5 A0S5 A0S5 A0S5 A0S5	G1 AVSSC
	8	7		Б	5	


	8	7	6	5	
D			1	DS3170 20 pin bga	
С		TRANSMIT		1 (T2 2 (T2 2 3 1 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
в					
A		RECEIVE		4. U Life U Life U Life U SUR_XFM U U U U U U U U U U U U U	2688PF
	8	7	Б	5	

Γ.	8	7	б	5	
D			MISI	DS3170 C telecom t	FFF
		I108 I TP21		R <u>oh7ø 1</u>	R104
С		I110 TP14 L TOH I ±09	$\frac{70}{2} \frac{2}{33} \frac{1}{2} $	<u>ROHCLIR</u> B ROH <u>SOF 701</u>	95 95 93 95 93 93
в		TOH <u>CLK7</u>	33 <u>201 R7 2 TOHCLK_I_3</u> 33 <u>11</u> <u>701 R92 2TOHSOF_I_3</u> 33	TP16	33
A		TP11		I104 P18	
	8	7	6	5	

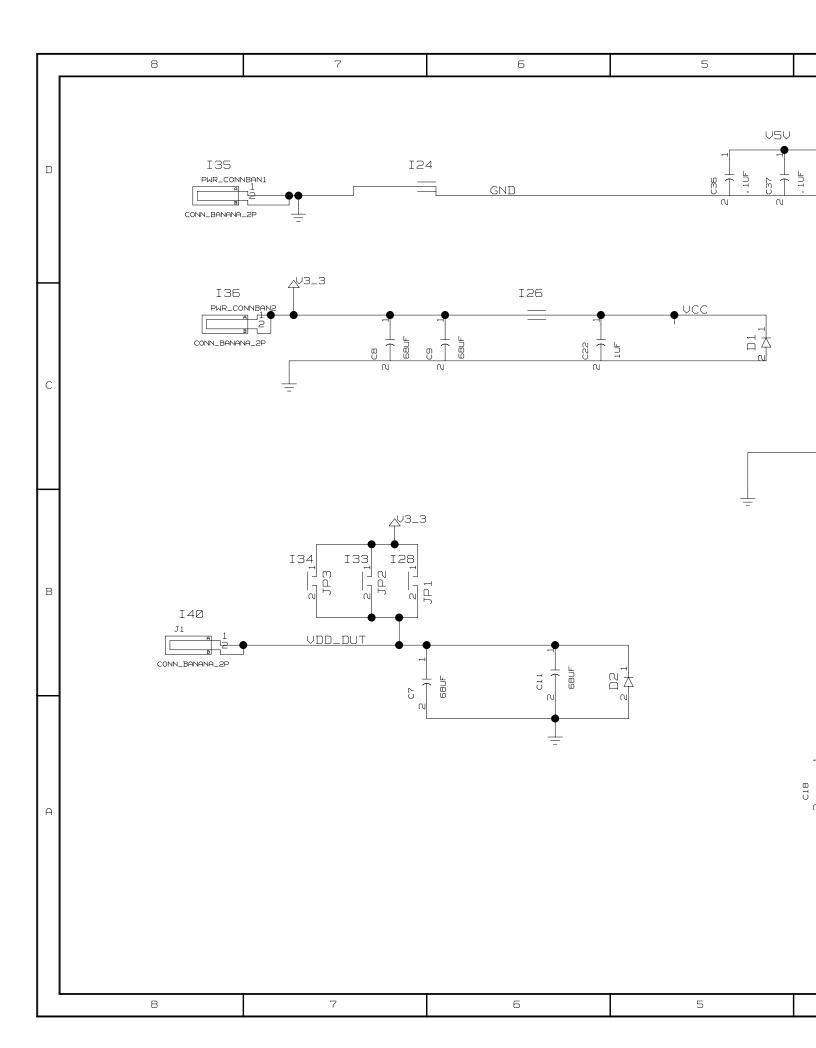



	8	7			6		5	
D				BB RCLKO FPGA		AIP TNEG T 3	2 11 1 XD7 1 XD7 1 XD7 1 XD7 2 XD7 8 XD3 8 X	
С	TCLK0-	.F <u>PGA</u> LAØ LA1 LA2	A7 I00. E7_ I00. D7 I00. C7 I00.	_1_8N_DLL	IO1_1_18P_Y IO1_2_18N_Y IO1_3 IO1_3 IO1_4		\square	-10-
В		_LA3 _LA5 _LA6 _LA8 _LA9 _LA7 _LA4 _RPOS_70	A6 I 00 B6 I 00 C6 I 00 A5 I 00 B5 I 00 D6 I 00 D5 I 00 C5 I 00 B4 I 00	_	BANKO _VREF		SPARTAI	5
A		TPOS_I_3 INT_BRD		-19_0N_YY -20 103_1_41N_Y IN_YY_IN_	P16 I03_2_41P_YYD7 N15 I03_3_40N N16 I03_4_40P N14 I03_5_39N M14 I03_6_39P	_ I03_7_	BUF F3 M16 103_8_38P M13_ 103_9 L14_ 103_10 L15_ 103_11_36N L15_ 103_11_36N L15_ 103_11_36N K14_ 103_11_35N_YD5 K14_ 103_11_35P_Y K16_ 103_15_34N K16_ 103_15_34N L12_ 103_17_33N	K12 I03_18_33P
	8	7			б		5	


Γ	8		7	б	Ę	5	
D				0 T -1-61N_YY P4 -2-61P_YY R4 IO5_3-60N U T0HCLK T 3 IO5_4-60P T4 IO5_4-60P T4		12_56P T6 ROHCLK_I_3 13_55N _M6 14_55P _N7 105_15 _P7 16_54N R7	7_54P
с		_K70 _K_FPGA	P9_ I04 N9_ I04 T10_ I04 R10_ I04 P10_ I04 R11_ I04 T11_ I04 N10_ I04	_1_52P_DLL 0 0 0 _2_51N _3_51P _4_50N _5_50P_VREF _6_49N _7_49P	N IOS_FISBN_YY_UREF N IOS_FISBN_YY_UREF N IOS_FISBN_YY_UREF N IOS_B_SBP_YY N N N N N N N N N N N N N N N N N N N	1001 1001 1001	105_1
в		<u>50FI_0_3</u>	R12 IO4 T12 IO4 T13 IO4 N11 IO4 M11 IO4 P12 IO4 N12 IO4 R13 IO4 P13 IO4	_11_47N _12_47P _13_46N _14_46P _15_45N_YY _16_45P_YYVREF _17_44N_YY _18_44P_YY _19_43N _20_43P _21_42N_YY	SPARTA	an iie	
A				-22- 107-2-L83P C2- 107-2-L83P C1 107-3-L83N C1 107-3-L83N P2- 107-4-L82P_YY E3 107-5-L82N_YY E3 107-5-L81P_UREF E4 107-7-L81N E2 107_8-L80P	-2-701 11-701 11-701 11-701 -21-701 -21-701 -21-701 -41-701	G3_ 107_15_77N G3_ 107_16_76P_YY G4_ 107_17_76N_YY G2_ 107_18_75P_UREF G1_ 107_19_75N	H4 I07_20_74P
	8		7	Б	5		1

8	7	б	5
	14 44PIN_TQFP 162107		
C <u>ICOC23</u>	52 53 53 1cocccc 54 1coccc1 Δ Δ μ μ μ μ μ μ μ μ μ μ μ μ μ	рава рава рана рана рана 107 рана 107 рана 110 135 ONCE 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_62 _67
I13 <u>GND</u> T <u>SCI2_00</u> <u>SCI2_IN</u> <u>SCI1_00</u> <u>SCI1_IN</u>	55 ICOC20 56 ICOC13 57 ICOC12 58 ICOC11 61 ICOC10 IST 63 TEST 66 TXD2 68 RXD2 69 TXD1 70 RXD1	NTROL CS3* CS2* CS1* CS0* RESET* CLKOUT RSTOUT* SCK DE* SS*	81 <u>83</u> CS2_BOARD 85 <u>85</u> CSØ_RAM <u>118 RESET</u> R15 <u>128 1 WV</u> <u>120 RESET_OUT</u> 33 <u>93 SCK</u> <u>143 JDE_B</u>
A	LISER LED1 89 IN LISER LED2 84 IN LISER IN1 82 IN RUN KIT LISR 75 IN TNTED DT 72 IN	88 90 124 125 138 138	$\begin{array}{c} 224\\ 2\end{array} \\ B. 10F\\ B. 10F\\ C15\\ C15\\ C15\\ 0. 10F \end{array}$
	~	~	-
8	7	б	5

\square	8	7	Б	5	
D					•
с		PD3Ø	H44 15 15 15 15 15 15 15 15 15 15	URL	UDD4 45
в		PD29 PD28 PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18 PD17	2 D29 3 D28 4 D27 5 D26 7 D25 10 D24 12 D23 15 D22 16 D21 17 D20 20 D19 21 D18	MMC21Ø7 PORT	
A		<u>PD16</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	8	7	6	5	1



Γ	8	7	б	5	
			-	LOCAL SWAPPED	Df
ם			GCK2 _B8 Y_CS _B8 Y_LWR _A13 T_17P _B13 _17N _C12 P_YY _B12_INTERUPT M_YY _A12_XN15	D12 XD1 D12 XD1 E11 XD1 D11 XD1 B11 XD1 A11 XD3 E18 XD3 D10 XD3 C18 XD6 C19 XD6	B10 H10
С		^{10K} <u>2</u> A7 I00 ^{R18} <u>A0</u> E7 I00	1-8N-70 1-1-18N-7 101-01-0 101-01-0 101-01-0 100-0 1000-0 100-0 100-0 1000-0 1000-0 1000-0 10000	101_7_101 101_7_105 101_101 101_101 101_101 101_101 101_101 101_101 101_101 101_101 101_101 101_101	IO1_17_
	ADDRESS BUS From Micro	A3 B7 I00 A4 A6 I00 A5 B6 I00 A6 C6 I00	.8_5P Z XC. .9_5N 0	C2965_F725	3
в		A8 B5 I 00 A9 D6 I 00 A10 E6 I 00 A11 D5 I 00 A12 C5 I 00 A13 B4 I 00 A14 C4 I 00 A15 A4 I 00	10_4P 11_4N 12_3P 13_3N 14_2P_YY 15_2N_YY_VREF 16_1P_YY 17_1N_YY 18_0P_YY	SPARTA	\searrow
A		<u>A15 A3</u> IO0 <u>A17 B3</u> IO0	41N_YY_IN 41P_YYD7 40N 40P 39N 33N_UREF	103_8_38P 103_9 103_18 103_18 103_11_36N 103_11_36PD6 103_13_35N_YYD5 103_14_35P_Y 103_15_34N 103_15_34N 103_15_34P	I03_18_33P
				PD16 M16 PD17 M13 PD18 L14 PD19 L15 PD20 L16 PD21 L13 PD21 L13 PD22 K14 PD23 K15 PD24 K16 PD25 L12	PD26 K12
			ADDRESS BUS FROM MICRO	DATA BUS From Micr	С
	8	7	б	5	

	8	7	Б	5
ם			стороди и с 4 хи	
с	LATCH ADDRE FROM M	55 <u>LA5</u>	T8 GCK1 U U T9 GCK0 I N P9 IO4_1_52P_DLL 0 I P9 IO4_2_51N I I N9 IO4_3_51P I I I04 IO4_5_50P_VREF I I P10 IO4_6_49N I I R11 IO4_7_49P I I I104 IO4_8 I I N10 IO4_9_48N I I	IO5-3-68N IO5-3-68N IO5-4-68P IO5-4-68P VY-065 IO5-4-68P VY-075 IO5-6-59 VY-075 IO5-105-10 VY-075 IO5-105-10 VY-075 VY-075 IO5-105-10 VY-075
в			M10 I04_3_40R M10 I04_10_48P P11 I04_11_47N Y R12 I04_12_47P Z T12 I04_13_46N M T13 I04_14_46P N11 I04_15_45N_YY M11 I04_16_45P_YYVRE P12 I04_17_44N_YY N12 I04_18_44P_YY R13 I04_20_43P	F SPARTAN
A		CLKOUT	T14_ I04_21_42N_YY <u>R14</u> I04_22_42P_YY	107_7_L81N 107_8_L80P 107_8_L80N 107_9_L80N 107_11_79P 107_12_78P 107_12_78P 107_12_78P 107_15_77P 107_15_76P
	8	7	б	5

	8	7	6	5
D		118 J3 ØL-THR NA TSW-12	OUGH HOLE 5-07-T-D	
С		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XDØ XD1 XD2 XD3 XD4 XD5 XD6 XD7 XD8 XD9	I8 <u>CS3170</u>
в	<u>C53</u> <u>C53</u> _IN	170 21 21 22 22 23 23 24 24 T_70 25 25 26 26 _70_OUT 27 27 28 28 _70 29 29 30 30 0 31 31 32 32 1 33 33 34 34 2 35 35 36 6 3 37 37 38 38 8 4 39 39 40 40 4	XD10 XD11 XD12 XD13 XD14 XD15 SPI LE	112 125 125 1 1 1 1 1 1 1 1 1 1 1 1 1
A		6 43 43 44 7 45 45 46 47 47 48 48	MODE	

	8	7	б	5
D			<u> </u>	
С		I6 S0IC NA CY62128V	OF CSR RAM	
в		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 21 PD 107 20 106 19 105 18 104 18 103 17 102 15 101 14 102 13	30 29 28 27 26 25
A			A4 9 A4 A5 10 A3 A6 11 A2 A7 12 A1 A8 27 A0	
	8	7	Б	5

Γ	8	7	Б	5
D		6IGN NOTE: 1/20/05		/ LAYOUT
С				
в				
A				
	8	7	6	5

, ,	8	7		6	5		
	<pre>#### Signal Cross-Reference A0 12A4<> 16C</pre>	-	JTCLK	8A8<> 11A6<> 13C3< 8C2< 15B1< 11C6<> 13C3<>	> 15A8<> 2D5<	RUN_KIT_L RW RXN_70	JSR
	A1 12A4<> 16C A2 12A4<> 16C	7<> 19A3<> 19A7<> 7<> 19A3<> 19A7<> 7<> 19A3<> 19A7<> 7<> 19A3<> 19A7<>	JTDO JTD_FLASHA_2_X	2D5<> 13C4< ILINXA 15A6<> 15C1< ILINXB 8A6<> 8C2<		RXP_70 SCI1_IN SCI1_OUT	
D	A4 12A4<> 16C A5 12A4<> 16C	7<> 19A3<> 19A6<> 7<> 19A3<> 19A6<>	JTD_FLASH_A JTD_XILINXA_2_	15A8<> 13C4< FLASHB 8A8<> 15B1>		SCI2_IN SCI2_OUT	
	A7 12B4<> 16B A8 12B4<> 16B	7<> 19A3<> 19A6<> 7<> 19A3<> 19A6<> 7<> 19A3<> 19A6<> 7<> 19A3<> 19A6<>	JTMS	DS3170 8B2> 2D5< 8A8<> 8C2<> 13B4<> 2D5<		SCK SPI SS	
	A1Ø 12B4<> 16B A11 12B4<> 16B	7<>19B4<>19B7<> 7<>19B4<>19B7<> 7<>19B4<>19B7<> 7<>19B4<>19B7<>	JTMS_MIC JTRST_B LAØ	11A6<> 13B4<> 13C2 11A6<> 13B2<> 9C7<> 17C7<> 18C8<	> 2C7<	TA TCLKI7Ø TCLK07Ø	
	A13 12B4<> 16B	?<> 19B4<>> 19B7<>> ?<> 19B4<>> 19B7<>> ?<> 19B4<>> 19B7<>>	LA1 LA2 LA3	9C7<> 17C7<> 18C8< 9C7<> 17C7<> 18C8< 9B7<> 17C7<> 18C8<	> 2C7<	TCLKO_FPO TEA TEST	3A
	A16 12B4<> 16B	7<> 19B4<> 19B7<> 7<> 19B4<> 19B7<> 7<> 19B4<> 19B7<> 7<> 19B4<> 19B7<>	LA4 LA5 LA6	9B7<> 17C7<> 18C8< 9B7<> 17C7<> 18C8< 9B7<> 17C7<> 18C8< 9B7<> 17C7<> 18C8<	> 2C7<	TEST_70 TIM_16H_8 TLCLK70	3L
	A18 12B4<>>16A A19 12C4<>>16A A20 12C4<>>16A	6<>	LA7 LAB LA9	9B7<> 17B7<> 18C8< 9B7<> 17B7<> 18C8< 9B7<> 17B7<> 18C8<	> 2C7<	TLCLK_FPC TNEG_70 TNEG_I_3	GA
С	A21 12C4<> 16A A22 12C4<> 16A ALE 9C2<> 16B2		MISO MODE MOSI	11A6<> 17D5<> 9B2<> 16B2<> 18A6< 11A6<> 17D5<>	> 2A6< 18B3<	TOH7Ø TOHCLK7Ø TOHCLK_I_	З
	BNC5Ø_OHM 7B7<> BOOT_SEL 14C3<> 16B		OE ONCE_TDO OSCE3	12D6<> 16B2<> 19C3 11C6<> 13C4< 7C6<> 7C7<	3<> 19C5<>	TOHEN7Ø TOHEN_0_3 TOHSOF7Ø	
	BUF_STS1 785<> 7C6<	> 10D4<> 7C1< > 10A4<> 7C2<	OSCETS1 OSCT3 OSC_MCU	7B5<> 7B5< 7C5<> 7C7< 11A5<> 11C2<		TOHSOF_I_ TOH_0_3 TPOS_70	_3
	CCLK_B BA8<> BB1<	2<>	PD16 PD17 PD18	12A7<> 16A5<> 19B2 12B7<> 16A5<> 19B2 12B7<> 16A5<> 19B2 12B7<> 16A5<> 19B2	2<> 14D7<	TPOS_I_3 TSER70 TSER_0_3	
	CLKO 2D4>7A8< CLKOUT 17A7<>11B CSØ 17A2<>18C	4<	PD19 PD20 PD21	12B7(> 16A5(> 19B2 12B7(> 16A5(> 19B2 12B7(> 16A5(> 19B2 12B7(> 16A5(> 19B2	2<> 14C7< 2<>	TSOFI70 TSOFI_0_3 TSOF070	3
	CS0_RAM 11B5<> 19C CS2_B0ARD 11B5<> 16B CS3 9C2<> 17B2	3<> 19C6<>	PD22 PD23 PD24	1287<> 1665<> 1982 1287<> 1665<> 1982 1287<> 1665<> 1982 1287<> 1665<> 1983	2<> 14C7< 2<> 14C7<	TSOFO_I_3 TXN_70 TXP_70	Э
	CS3170 18B8<> 2D6 CS_OUT 17A2<> 18B	< 18C5< 5<>	PD25 PD26	1287<> 16A5<> 1985 1287<> 16A4<> 1985	5<> 5<> 14D7<	USER_IN1 USER_IN2	1
В	CYB1 9B2<> 17A4 CYB2 9B2<> 17A4	<> 18B8<> <> 18B8<>	PD27 PD28 PD29	1287<> 16A4<> 1985 1287<> 16A4<> 1985 12C7<> 16A4<> 1985	5<> 14C7< 5<>	USER_LEDI USER_LEDI V1_8_A	
	CYB3 9B2<> 17A4 CYB4 9B2<> 17A4 CYB5 9A2<> 17A5	<> 18B8<> <> 18B8<>	PD3Ø PD31 PROGRAM_A	12C7<> 16A4<> 19B5 12C7<> 16A4<> 19B5 15A8<> 15B1<		V1_8_C VSV VDDSYN	
	CYB6 9A2<>>> 17A5 CYB7 9A2<>>> 17A5 DONE_A 15A2<>>> 15A2<	<> 18A8<> 8<> 15B1<	PROGRAM_B RCLK07Ø RCLK0_FPGA	8A8<> 8B1< 2A2> 4A7< 4A6<> 9D6<		VDD_DUT VSSSSYN WIDTH_70	
	DONE_B 8A2<> 8A8< EBØ 11C7<> 16C EB1 11C7<> 16C	2<> 19C7<>	RCON RDY_70 RD_DS	12D6<> 14B8< 2A6<> 17B3<> 18B8< 9B2<> 16C2<> 18B6<		WR_W/R XDØ XD1	
	EB2 11C7<> 16C EB3 11C7<> 16C FLASH_VPP 14A3<> 12D	2<>	REFCLK7Ø REFCLK_OUTPUT RESET	7C4<> 2D4< 7C3<> 9A4<> 11B5<> 14A5<>		×D2 ×D3 ×D4	
	FPGA_EN 14D3<> 17C GENFPGA_1 14D3<> 17D GENFPGA_2 14D3<> 17D	4<>	RESET_B RESET_MIC	8A8<> 9A2<> 9B2<> 16A2<> 13C3<> 14A7<	14B7<> 15A8<>	×D5 ×D6 ×D7	
	GPI0_2 2A4<> 5A5<	> 5C2<> 5C8< > 5C2<> 5B8< > 5B2<> 5B8<	RESET_OUT RLCLK7Ø RNEG_7Ø	11B5<> 16A6<> 4C7<> 2C2< 10CB< 4A3<> 9D6<> 2C2<		×D8 ×D9 ×D10	
A	GPI0_5 2A4<> 5A6<	> 5B2<> 5A8 > 5B2<> 5A8 > 5B2<> 5A8 > 5A5<	ROH7Ø ROHCLK7Ø ROHCLK_I_3	2B2> 6C5< 2B2> 6C5< 6C4<> 10D5<>		XD11 XD12 XD13	
	GPI0_8 2A4<> 5A2<	> 5B2<> 5C6< > 5A5<> 5B2<> 5B6< 6<> 2A3< 18B2<	ROHSOF7Ø ROHSOF_I_3 ROH_I_3	2B2> 6C5< 6C4<> 9C2<> 6C4<> 10B2<>		XD14 XD15 XTAL	
	ICOC23 11C8<> 16C INTERUPT 11A7<> 16D	2<>	RPOS_70 RSER70 RSER_I_3	4B3<> 9B7<> 2C2< 2A2> 6B5< 6B4<> 10A6<>			
	INT_BRD 9A7<> 16C2 JDE_B 11B5<> 13C JRST 2D5< 13B1<	<> 14A6< 2<>	RSOF070 RSOF0_I_3 RST_70	2A2> 6B5< 6B4<> 10B8<> 5D8<> 16A2<>			
			RST_70_OUT				
	8	7		6	5		
	=	1					i

8	7		Б	5		
**** Part Cross-Reference for C1 CAP1 20B4 C2 CAP1 20C3 C3 CAP1 15C8 C4 CAP1 2C8 C5 CAP1 2B1 C7 CAP1 20B7 C8 CAP1 20C7 C9 CAP1 20B3 C11 CAP1 20B6 C12 CAP 11C4 C13 CAP 11C3	the entire design ***	C76 D1 D2 D51 D52 D55 D56 D57 D56 D51 D51	DIODE 20C5 DIODE 20B5 1 LED 14C2 2 LED 15A1 3 LED 14B2 5 LED 14B2 5 LED 18B4 3 LED 18B4 4 LED 18B5 5 LED 18B5 6 LED 18B5 11 LED SC7 12 LED SB7		R32 RES R33 RES R34 RES R35 RES R36 RES R37 RES R38 RES R39 RES R40 RES R41 RES R43 RES R44 RES R45 RES R46 RES	51 51 51 51 51 51 51 51 51 51 51 51
C C C C C C C C C C C C C C C C C C C		DS1 DS1 DS1 DS1 DS1 DS1 DS1 DS1 H1 H2 H3 H4 J1 J2 J3 J4 J5 J6 J7 J8 J9	14 LED 5B7 15 LED 5C7 16 LED SA7 17 LED SA7 18 LED SC5		R47 RES R48 RES R49 RES R50 RES R51 RES R52 RES R53 RES R54 RES R55 RES R56 RES R57 RES R58 RES R61 RES R63 RES R64 RES R65 RES R66 RES	51 51 51 51 51 51 51 51 51 51 51 51 51 5
B C34 CAP1 15D6 C35 CAP 20D4 C36 CAP1 20D5 C37 CAP1 20D5 C38 CAP1 20B3 C40 CAP1 20B3 C40 CAP1 20B3 C40 CAP1 20B3 C40 CAP1 20B4 C42 CAP1 8D6 C43 CAP1 8D6 C44 CAP1 8B8 C45 CAP1 8B7 C47 CAP1 8D7 C47 CAP1 8D7 C49 CAP1 C49 CAP1 8D7 C49 CAP1 C49 CAP1 C49 CAP1 C49 CAP1 C49 CAP1 C49		JP1 JP2 JP2 JP2 JP2 JP2 JP2 JP2 JP2 JP2 L1 PWF R1 R2 R3 R4 R5 R6 R7	I JMP 2085 2 JMP 2087 3 JMP 2087 4 CON14P 13C3 5 JMP 13B4 5 JMP 3B4 5 JMP 3A5 3 JMP 3C5 COIL_2P 12C5 CONNBANIC CONN_BANANA_2P 2008 RES1 7D2 RES1 7C2 RES1 4A4 RES1 4C3 RES1 6B4 RES1 6B5		R67 RES R68 RES R69 RES R70 RES R71 RES R72 RES R73 RES R74 RES R75 RES R76 RES R77 RES R78 RES R80 RES R81 RES R83 RES R84 RES	51 51 51 51 51 51 51 51 51 51 51 51 51 5
A C52 CAP1 7B5 C53 CAP1 7B5 C54 CAP1 7B3 C55 CAP1 7B4 C57 CAP1 20B3 C59 CAP1 7B3 C60 CAP1 7B3 C61 CAP1 20B3 C59 CAP1 7B3 C60 CAP1 7B3 C61 CAP1 7B3 C62 CAP1 7B3 C63 CAP1 2B8 C63 CAP1 2B1 C65 CAP1 2B1 C65 CAP1 2B7 C66 CAP1 2B7 C68 CAP1 2B7 C69 CAP1 2A3 C71 CAP1 3B5 C72 CAP1 3A5 C73 CAP1 7A2 C74 CAP1 20A3 C75 CAP1 2B2		R8 R9 R12 R12 R13 R14 R14 R14 R14 R14 R14 R14 R14 R14 R14	RES1 4A7 RES1 3A4 2 RES1 2 RES1 3 RES1 4 RES1 4 RES1 11C2 4 RES1 14C6 5 RES1 14C6 6 RES1 14C2 7 RES1 14C5 8 RES1 14C6 9 RES1 14D6 4 RES1 14D6 5 RES1 14D6 6 RES1 14D6 7 RES1 14D6 6 RES1 14D6 7 RES1 14D6 8 RES1 14D6 8 RES1 1406 9 RES1 1406 9 RES1 <		R85 RES R86 RES R87 RES R88 RES R90 RES R91 RES R92 RES R93 RES R94 RES R95 RES R96 RES R97 RES R98 RES R99 RES R100 RES R102 RES R102 RES R103 RES R104 RES R105 RES R106 RES R107 RES R108 RES R108 RES R108 RES	51 51 51 51 51 51 51 51
8	7		б	5		