

DS21448DK 3.3V E1/T1/J1 Line Interface Design Kit Daughter Card

www.maxim-ic.com

GENERAL DESCRIPTION

The DS21448DK is an easy-to-use evaluation board for the DS21448 quad E1/T1/J1 LIU. It is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. A surface-mounted DS21448 and careful layout of the analog signal traces provide maximum signal integrity to demonstrate the transmit and receive capabilities of the DS21448. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate interrupt status and receive-carrier loss for all four ports. The evaluation board provides both RJ45 and BNC connectors for the line-side transmit and receive differential pairs on all four ports.

Each DS21448DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

ORDERING INFORMATION

PART	DESCRIPTION
DS21448DK	DS21448 Design Kit Daughter Card (with included DK101 Motherboard)

FEATURES

- Demonstrates Key Functions of the DS21448
 Quad LIU
- Includes Transformers, BNC, and RJ45 Network Connectors and Termination Passives
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21448 Register Set
- Memory-Mapped FPGA Provides Flexible Clock and Signal Routing
- LEDs for Receive-Carrier Loss and Interrupt
- Easy-to-Read Silk-Screen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDs

DESIGN KIT CONTENTS

DS21448DK Design Kit Daughter Card DK101 Demo Kit Motherboard CD-ROM

> ChipView Software DS21448DK Data Sheet DS21448 Data Sheet DK101 Data Sheet DS21448 Errata Sheet

pdf.dzsc.com

of 17 PEV: 121803

COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART
1	1	3.3V E1/T1/J1 line interface, 0°C to +70°C, 144-pin BGA	Dallas Semiconductor	DS21448
C1, C2, C6, C10, C12, C22, C24	7	0.47μF, 25V, 10% ceramic capacitors (1206)	Digi-Key	PCC1891CT-ND
C3–C5, C7, C8, C11, C21, C23, C25, C26	10	0.1μF, 16V, 10% ceramic capacitors (0603)	Digi-Key	311-1088-1-ND
C9	1	10μF, 16V, 20% tantalum capacitor (B case)	Digi-Key	PCS3106CT-ND
C13-C16	4	0.1μF, 25V, 10% ceramic capacitors (1206)	Digi-Key	PCC1883CT-ND
C17-C20	4	1μF, 16V, 10% ceramic capacitors (1206)	Digi-Key	PCC1882CT-ND
DS1-DS5	5	LED, red, SMD	Digi-Key	P500CT-ND
J1, J6–J13	9	Connector BNC RA, 5-pin	Kruvand	UCBJR220
J2	1	Connector, 10-pin, dual row, vertical	Digi-Key	S2012-05-ND
J3–J5	_	8-row by 2-column pin strip, 0.1" centers, 0.025" post	NA	Lab Stock
J14	1	RA RJ45, 8-pin, 4-port jack	Molex	43223-8140
J15, J16	2	Socket, SMD, 50-pin, dual row, vertical	Samtec	TFM-125-02-S-D-LC
R1–R16, R37–R41, R54–R57	25	0Ω, 1/8W, 5% resistors (1206)	Digi-Key	P0.0ETR-ND
R17, R20, R21, R25, R28–R36, R53	14	10kΩ, 1/10W, 1% resistors (0805)	Digi-Key	P10.0KCCT-ND
R18, R19, R22–R24, R26, R27	7	51.1Ω, 1/10W, 1% resistors (0805)	Digi-Key	P51.1CCT-ND
R42, R43	2	1.0kΩ, 1/10W, 1% resistors (0805)	Digi-Key	P1.00KCCT-ND
R44-R51	8	61.9Ω, 1/8W, 1% resistors (1206)	Digi-Key	P61.9FCT-ND
T1–T4	4	XFMR, dual, 16-pin SMT	Pulse Engineering	TX1099
U1	1	Xilinx CPLD 72 macrocell, 100-pin TQFP, 3.3V	Avnet	XC95142XL-10TQ100C

BASIC OPERATIONHardware Configuration

Using the DK101 Processor Board

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the TIM 5V supply headers are unused.)
- All processor-board DIP switch settings should be in the ON position with the exception of the flashprogramming switch, which should be OFF.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If
 the default installation options were used, click the Start button on the Windows toolbar and select Programs →
 ChipView → ChipView.

Using the DK2000 Processor Board

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply can be connected to connector J2.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If
 the default installation options were used, click the Start button on the Windows toolbar and select Programs →
 ChipView → ChipView.

General

- Upon power-up, the RCL LEDs are lit, and the INT LED is off.
- After power-up, the RCL LEDs extinguish upon external loopback.
- Due to the dual winding transformer, only the 120Ω line build-out (LBO) configuration setting is needed to cover both 75Ω E1 and 120Ω E1.

Miscellaneous

- Clock frequencies are provided by a register-mapped CPLD, which is on the DS21448 daughter card.
- The definition file for this CPLD is named DS21448DK02A0_CPLD.def. See the CPLD Register Map
 definitions.

Quick Setup (Register View)

- The PC loads the program, offering a choice between DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Register View.
- The program requests a definition file. Select DS21448DK02A0 CPLD.DEF.
- The Register View Screen appears, showing the register names, acronyms, and values. Note the CPLD def file contains a link such that the def file for the DS21448 is also loaded. Selection among the def files is accomplished using the drop-down box on the right-hand side of the program window.
- From the drop-down box, select the DS21448 def file and configure register CCR3 of ports 1 through 4 with a 90h.
 - The device begins transmitting a pseudo-random bit sequence. Upon external loopback, the RCL LED extinguishes, denoting that the device has found a carrier and has successfully decoded the pseudorandom bit sequence. For more advanced configurations, please refer to the DS21448 data sheet.

ADDRESS MAP

The DK101 daughter card address space begins at 0x81000000.

The DK2000 daughter card address space begins at:

0x30000000 for slot 0

0x40000000 for slot 1

0x50000000 for slot 2

0x60000000 for slot 3

All offsets in the *Daughter Card Address Map* table are relative to the beginning of the Daughter Card address space.

Daughter Card Address Map

OFFSET	DEVICE	FUNCTION
0X0000 to 0X0015	CPLD	Board ID, clock and signal routing
0X2000 to 0X2015	LIU Port 1	
0X3000 to 0X3015	LIU Port 2	Board is populated with either the DS21Q348 or the DS21448.
0X4000 to 0X4015	LIU Port 3	Please see the factory data sheet for details.
0X5000 to 0X5015	LIU Port 4	

Registers in the CPLD can be easily modified using ChipView, a host-based user-interface software with the definition file named DS21448DK02A0_CPLD.DEF. This file is included as part of the design kit documentation download (accessed through the DS21448's quick view data sheet) or the included CD-ROM. The definition file for the LIU is named *DS21448.def*.

CPLD Register Map

OFFSET	REGISTER	TYPE	FUNCTION
0X0000	BID	Read-Only	Board ID
0X0001	_	1	Unused
0X0002	XBIDH	Read-Only	High Nibble Extended Board ID
0X0003	XBIDM	Read-Only	Middle Nibble Extended Board ID
0X0004	XBIDL	Read-Only	Low Nibble Extended Board ID
0X0005	BREV	Read-Only	Board FAB Revision
0X0006	AREV	Read-Only	Board Assembly Revision
0X0007	PREV	Read-Only	PLD Revision
0X0011	MCLK_SRC	Read-Write	MCLK Source Register
0X0012	TCLK1_SRC	Read-Write	TCLK1 Source Register
0X0013	TCLK2_SRC	Read-Write	TCLK2 Source Register
0X0014	TCLK3_SRC	Read-Write	TCLK3 Source Register
0X0015	TCLK4_SRC	Read-Write	TCLK4 Source Register

ID Registers

OFFSET	NAME	FUNCTION
0X0000	BID	Board ID. BID is read-only with a value of 0xD.
0X0002	XBIDH	High Nibble Extended Board ID. XBIDH is read-only with a value of 0x00.
0X0003	XBIDM	Middle Nibble Extended Board ID. XBIDM is read-only with a value of 0x02.
0X0004	XBIDL	Low Nibble Extended Board ID. XBIDL is read-only with a value of 0x00.
0X0005	BREV	Board FAB Revision. BREV is read-only and displays the current fab revision.
0X0006	AREV	Board Assembly Revision. AREV is read-only and displays the assembly revision.
0X0007	PREV	PLD Revision. PREV is read-only and displays the current PLD firmware revision.

Control Registers

The control registers are used set the clock frequency on the MCLK and TCLK pins. Options are 1.544MHz, 2.048MHz, external source (through AUX CLK BNC), and tri-state.

MCLK_SRC: MCLK SOURCE (OFFSET = 0x0011) INITIAL VALUE = 0x1

(MSB)							(LSB)
_	_	_	_	HI Z	EXTOSC	2048MHZ	1544MHZ

NAME	POSITION	FUNCTION
HI_Z	MCLK_SRC.3	1 = Tri-state MCLK.
EXTOSC	MCLK_SRC.2	1 = Connect MCLK to the external oscillator.
2048MHZ	MCLK_SRC.1	1 = Connect MCLK to the 2.048MHz clock.
1544MHZ	MCLK_SRC.0	1 = Connect MCLK to the 1.544MHz clock.

TCLK1_SRC: TCLK SOURCE (OFFSET = 0x0012) INITIAL VALUE = 0x1

(MSB)							(LSB)
_	_	_	_	HI_Z	EXTOSC	2048MHZ	1544MHZ

NAME	POSITION	FUNCTION
HI_Z	TCLK1_SRC.3	1 = Tri-state TCLK1.
EXTOSC	TCLK1_SRC.2	1 = Connect TCLK1 to the external oscillator.
2048MHZ	TCLK1_SRC.1	1 = Connect TCLK1 to the 2.048MHz clock.
1544MHZ	TCLK1_SRC.0	1 = Connect TCLK1 to the 1.544MHz clock.

TCLK2_SRC: TCLK SOURCE (OFFSET = 0x0013) INITIAL VALUE = 0x1

(MSB)						(LSB)
_	_	_	HI_Z	EXTOSC	2048MHZ	1544MHZ

NAME	POSITION	FUNCTION
HI_Z	TCLK2_SRC.3	1 = Tri-state TCLK2.
EXTOSC	TCLK2_SRC.2	1 = Connect TCLK2 to the external oscillator.
2048MHZ	TCLK2_SRC.1	1 = Connect TCLK2 to the 2.048MHz clock.
1544MHZ	TCLK2_SRC.0	1 = Connect TCLK2 to the 1.544MHz clock.

TCLK3_SRC: TCLK SOURCE (OFFSET = 0x0014) INITIAL VALUE = 0x1

(MSB)						(LSB)
	_	_	HI_Z	EXTOSC	2048MHZ	1544MHZ

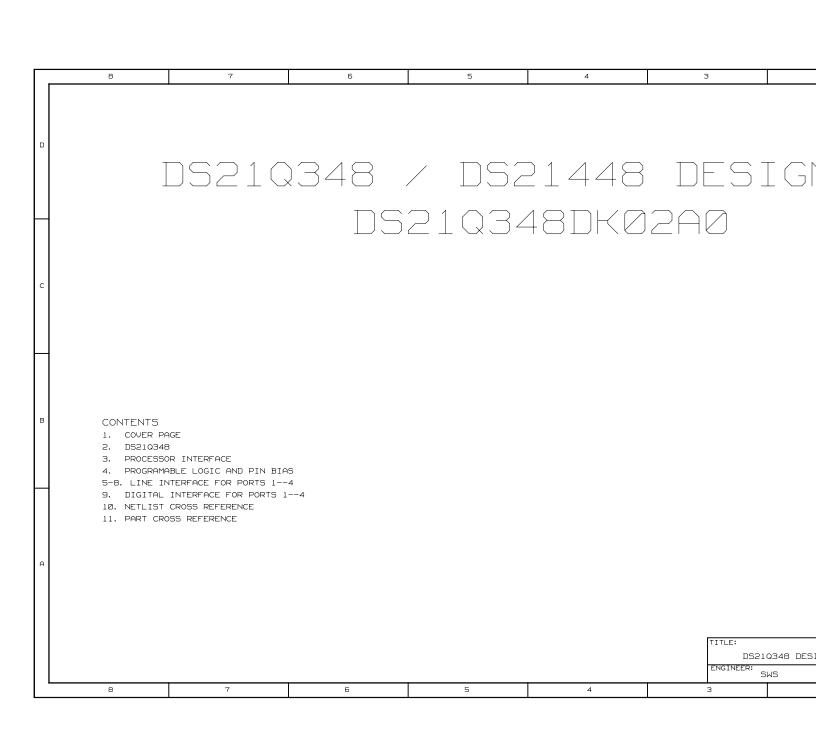
NAME	POSITION	FUNCTION
HI_Z	TCLK3_SRC.3	1 = Tri-state TCLK3.
EXTOSC	TCLK3_SRC.2	1 = Connect TCLK3 to the external oscillator.
2048MHZ	TCLK3_SRC.1	1 = Connect TCLK3 to the 2.048MHz clock.
1544MHZ	TCLK3_SRC.0	1 = Connect TCLK3 to the 1.544MHz clock.

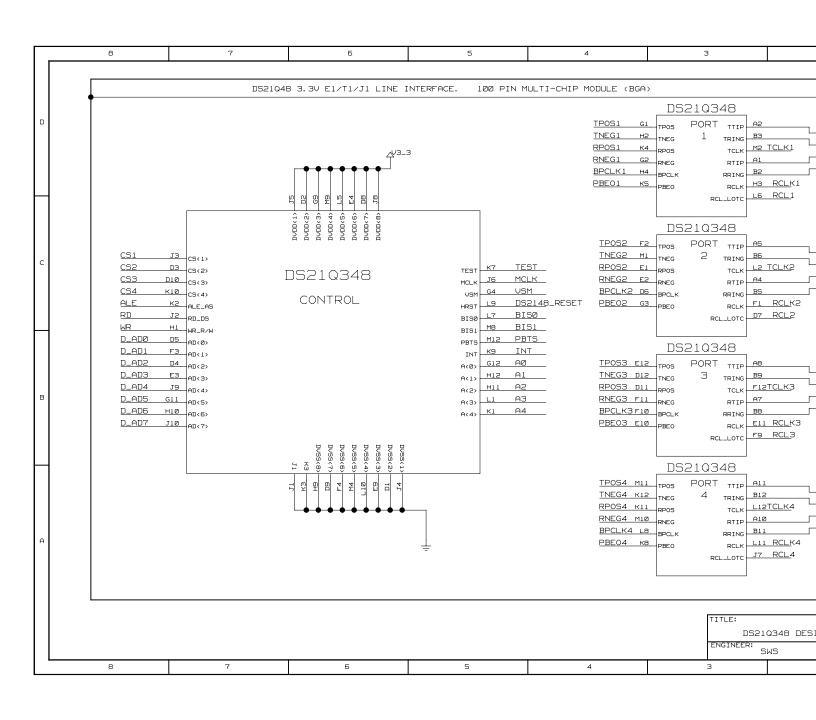
TCLK4_SRC: TCLK SOURCE (OFFSET = 0x0015) INITIAL VALUE = 0x1

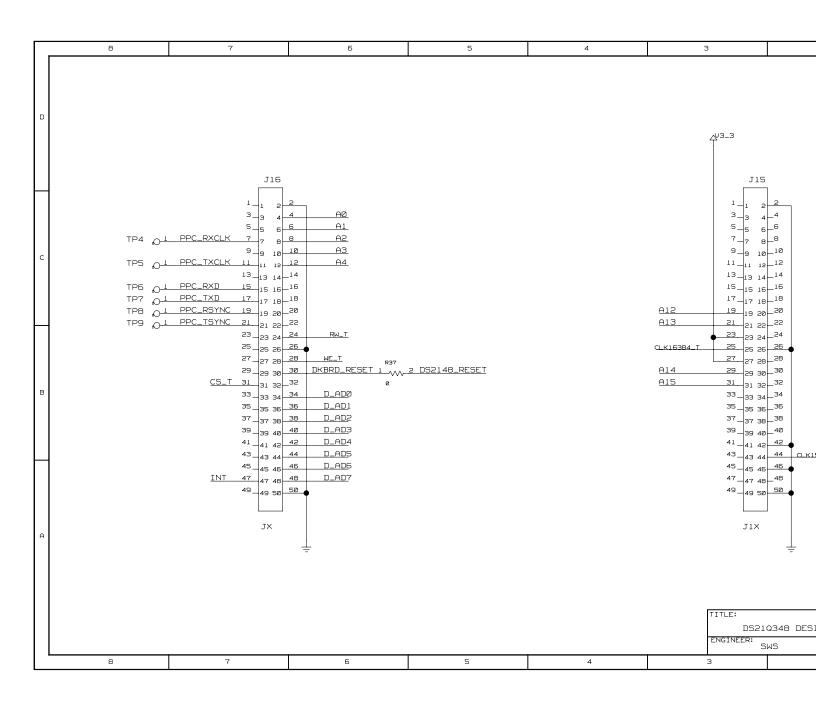
(MSB)							(LSB)
_	_	_	_	HI Z	EXTOSC	2048MHZ	1544MHZ

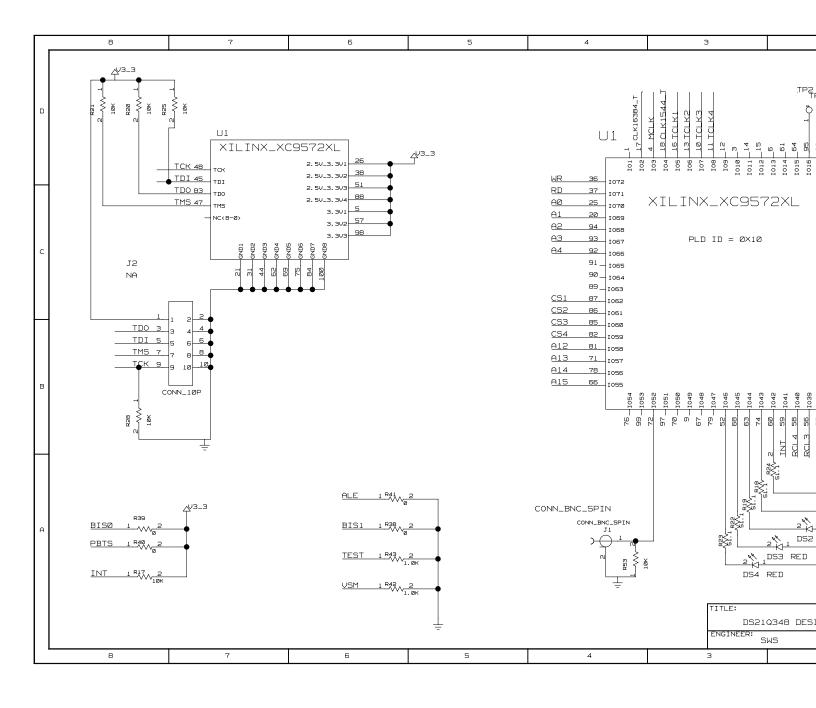
NAME	POSITION	FUNCTION
HI_Z	TCLK4_SRC.3	1 = Tri-state TCLK4.
EXTOSC	TCLK4_SRC.2	1 = Connect TCLK4 to the external oscillator.
2048MHZ	TCLK4_SRC.1	1 = Connect TCLK4 to the 2.048MHz clock.
1544MHZ	TCLK4_SRC.0	1 = Connect TCLK4 to the 1.544MHz clock.

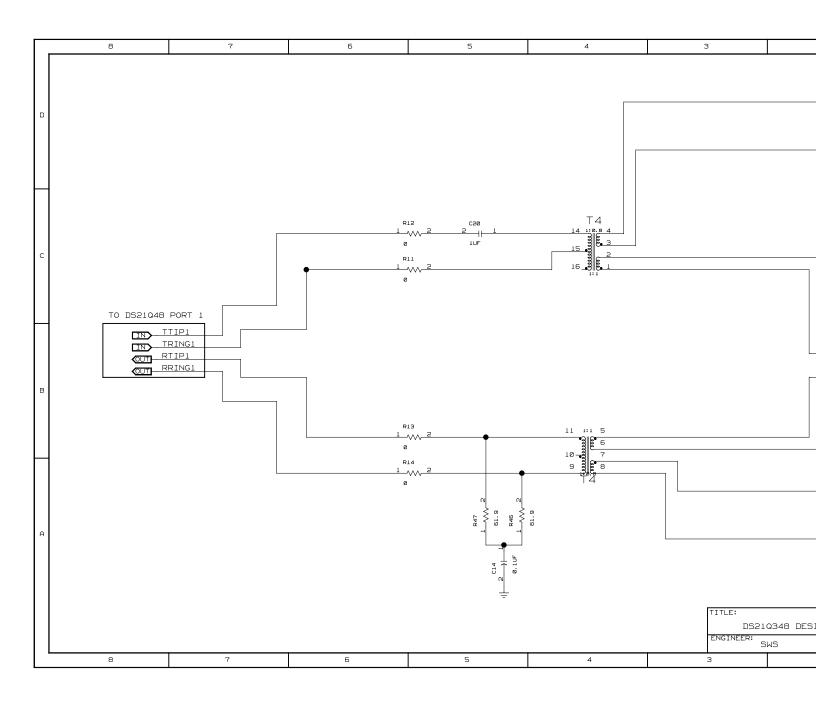
DS21448 INFORMATION

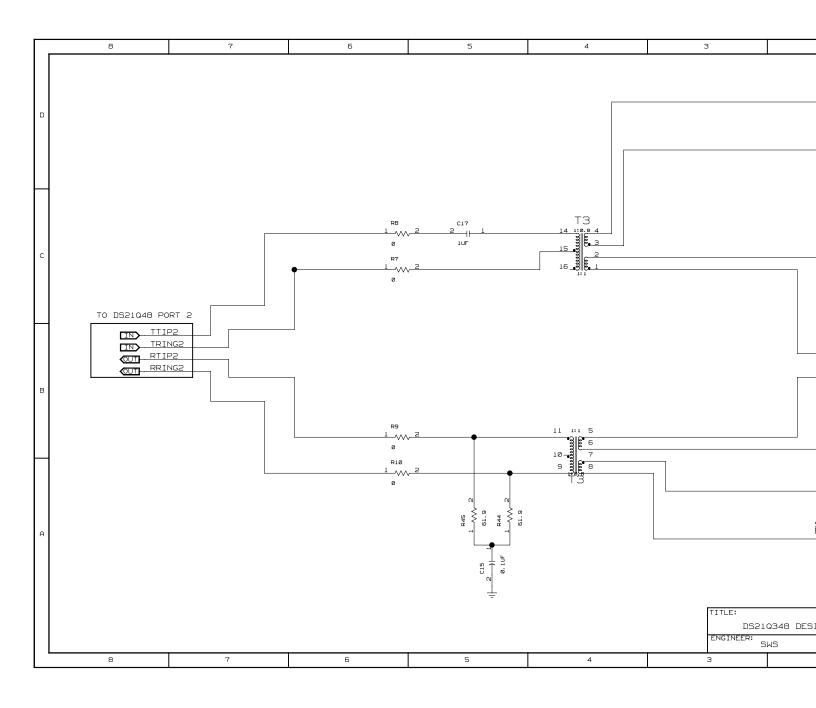

For more information about the DS21448, please consult the DS21448 data sheet available on our website, www.maxim-ic.com/telecom.

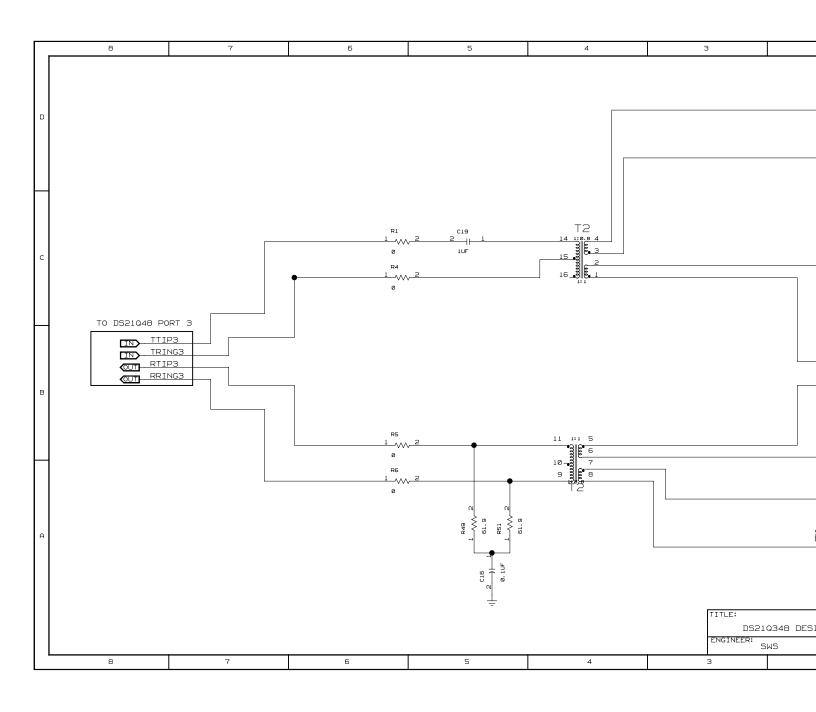

TECHNICAL SUPPORT

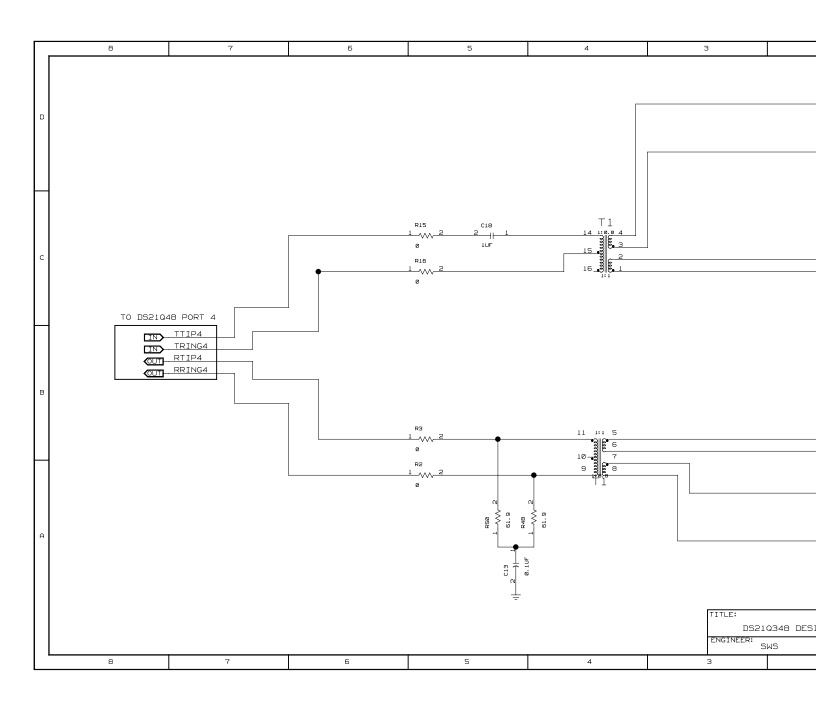

For additional technical support, please email your questions to telecom.support@dalsemi.com.

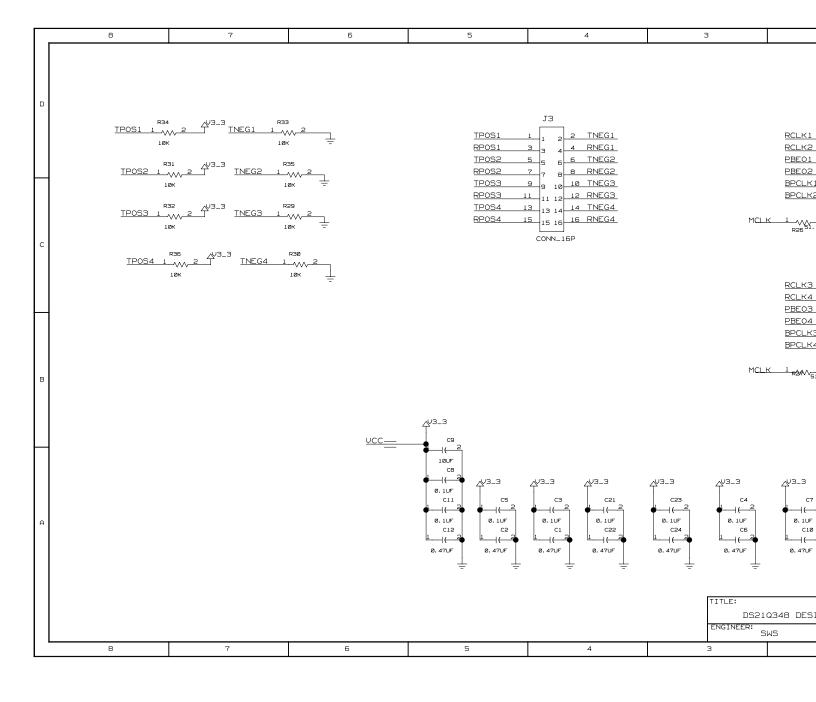

SCHEMATICS

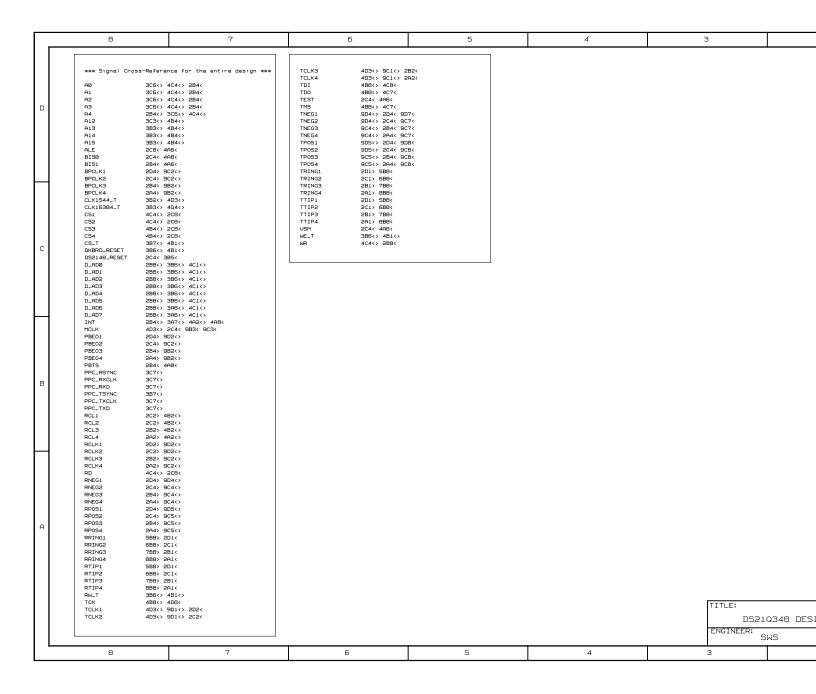

The D21448DK schematics are featured in the following pages.











Γ		8	7	6	5	4	3	
	ם	### Part Cross-Reference for 1 DS21034B 2A3 2B8 2B6 C1 CAP 9A4 C2 CAP 9A5 C3 CAP 9A6 C5 CAP 9A5 C5 CAP 9A5 C6 CAP 9A6 C7 CAP 9A2 C8 CAP 9A5 C9 CAP 9A5 C10 CAP 9A5 C11 CAP 9A5		R2B RES 4BB R29 RES 9C7 R30 RES 9C8 R31 RES 9D8 R32 RES 9D8 R33 RES 9D7 R34 RES 9D7 R35 RES 9D7 R36 RES 9D7 R36 RES 9D7 R36 RES 9C7 R37 RES 3B6 R38 RES 4A6 R40 RES 4A8				
	C	C13 CAP BAS C14 CAP SAS C15 CAP BAS C15 CAP BAS C17 CAP BCS C18 CAP BCS C19 CAP TCS C20 CAP TCS C21 CAP BCS C21 CAP BA4 C22 CAP BA4 C22 CAP BA4 C23 CAP BA3 C24 CAP BA3 C25 CAP BA2 C25 CA		R43 RES 4A6 A44 RES 6A5 A45 RES 6A5 A47 RES 5A5 R47 RES 5A5 R48 RES 5A5 R49 RES 7A5 R50 RES 8A5 R51 RES 7A5 R53 RES 4A4 R54 RES 5A1 R55 RES 6A2 R57 RES 6A2 R57 RES 6A2 R57 RES 6A1 T1 XFMR_2IN_4OUT 6A4 6C4 T4 XFMR_2IN_4OUT 6A4 5C4 T91 TSTENT_SNG 4D2				
	В	J2 CONN_16P 4C8 J3 CONN_16P 9C4 J4 CONN_16P 9C2 J5 CONN_16P 9C2 J5 CONN_16P 9C2 J6 CONN_BNC_SPIN 762 J7 CONN_BNC_SPIN 561 J9 CONN_BNC_SPIN 501 J10 CONN_BNC_SPIN 501 J11 CONN_BNC_SPIN 501 J12 CONN_BNC_SPIN 501 J12 CONN_BNC_SPIN 501 J13 CONN_BNC_SPIN 501 J14 CONN_BNC_SPIN 501 J15 CONN_BNC_SPIN 501 J16 CONN_BNC_SPIN 501 J17 CONN_BNC_SPIN 501 J18 CONN_BNC_SPIN 501 J19 CONN_BNC_SPIN 501 J10 CONN_BN	2 8C2	TP3 TSTPNT_SNG 4D2 TP4 TSTPNT_SNG 3C6 TP5 TSTPNT_SNG 3C6 TP6 TSTPNT_SNG 3C6 TP7 TSTPNT_SNG 3C6 TP8 TSTPNT_SNG 3C6 TP8 TSTPNT_SNG 3C6 US TSTPNT_SNG 3C6 US TSTPNT_SNG 3B6 US XILINX_XC9572XL 4D4 4D7				
	D	R4 RES 7CB RES RES 7BB RES 7BB RES 7BB RES 6CB RB RB RES 6CB RB RB RES 8CB 8CB RB RB RES 8CB RB						Q348 DES]
								MS
L		8	7	Б	5	4	3	