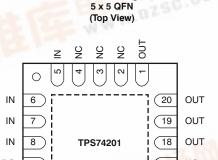
SBVS064-DECEMBER 2005

www.ti.com

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start

FEATURES

- 1.5A LDO Regulator with Programmable Soft-Start (SS)
- SS Pin Provides a Linear Startup with Ramp Time Set by External Capacitor
- Supports Input Voltages as Low as 0.9V
- Adjustable Output (0.8V to 3.3V)
- Ultra-Low Dropout: 50mV at 1.5A (typ)
- 1% Accuracy Over Line, Load, and **Temperature**
- Stable with Any or No Output Capacitor
- **Active High Enable**
- Open-Drain Power-Good (5×5 QFN)
- Available in 5mm × 5mm × 1mm QFN and **DDPAK-7 Packages**
- External BIAS Permits Low V_{IN} Operation with **Excellent Transient Response**


APPLICATIONS

- **FPGA Applications**
- **DSP Core and I/O Voltages**
- **Post-Regulation Applications**
- Applications with Special Start-up time Requirements

DESCRIPTION

The TPS74201 low dropout (LDO) linear regulator provides an easy-to-use power management solution for many high-current applications. The userprogrammed soft-start (SS) input limits inrush current in FPGAs and DSPs. The enable input (EN) and power-good (PG) outputs allow easy sequencing with external regulators. This complete flexibility permits the user to configure a solution that will meet the sequencing requirements of FPGAs, DSPs, and other applications with special startup requirements.

A precision reference and error amplifier deliver 1% accuracy over load, line, temperature, and process. The LDO regulator is stable with any or no output capacitor and is fully specified from -40°C to +125°C. The TPS74201 is offered in a small 5mm \times 5mm QFN package, yielding a highly compact total solution size. For applications that require additional power dissipation, the DDPAK (KTW) package is also available.

RGW Package

NC PG 17 9 ` FB/OUT S BIAS 10 16

> 9 9 NC = No Connection

Actual Size

FB/OUT_S OUT GND GND IN BIAS EN

KTW Package

DDPAK-7

(Top View)

Rease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Altrademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	ODUCT V _{OUT} ⁽²⁾ PACKAGE-LEAD		ORDERING NUMBER
TDC74204	Adiustoble	5 × 5 QFN ⁽³⁾	TPS74201RGWT
TPS74201	Adjustable	5 × 5 QFN (*)	TPS74201RGWR
TPS74201	Adjustable	DDPAK-7 ⁽⁴⁾	TPS74201KTWT
		DDPAK-7(*)	TPS74201KTWR

- (1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Other output voltages are available, minimum order quantities may apply. See available output voltage options table for details; contact factory for availability.
- (3) The T suffix indicates 250-piece tape and reel; the R suffix indicates 3000-piece tape and reel quantities.
- (4) The **T** suffix indicates 50-piece tape and reel; the **R** suffix indicates 500-piece tape and reel quantities.

ABSOLUTE MAXIMUM RATINGS(1)

Specified at $T_A = -40$ °C to +125°C unless otherwise noted. All voltages are with respect to GND.

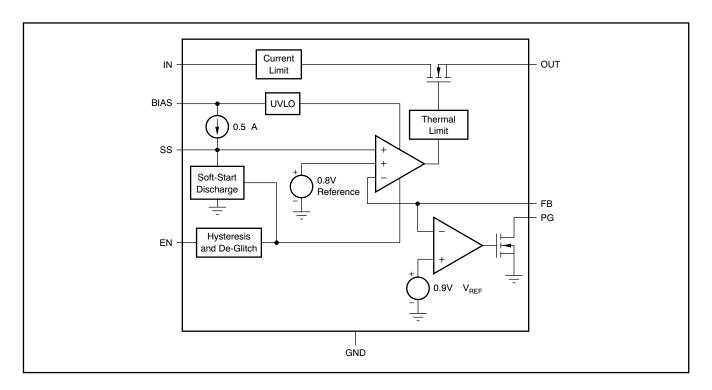
		TPS74201	UNIT			
V _{IN} , V _{BIAS}	Input voltage range	-0.3 to +6	V			
V _{EN}	Enable voltage range	-0.3 to +6 or V _{IN} + 0.3, whichever is greater	V			
V_{PG}	Power-good voltage range	-0.3 to +6	V			
V _{OUT}	Output voltage range	–0.3 to V _{IN}	V			
I _{OUT}	Maximum output current	Internally limited				
Output short circuit duration		Indefinite				
P _{DISS}	Continuous total power dissipation	See Dissipation Rating Table				
T_J	Operating junction temperature range	-40 to +150	°C			
T _{STG}	Storage junction temperature range	−55 to +150	°C			
ESD rating, HBM		2	kV			
ESD rating, CDM		500	V			

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	$\theta_{\sf JA}$	θЈС	T _A < +25°C POWER RATING	DERATING FACTOR ABOVE T _A = +25°C
RGW (QFN)	31.4°C/W	1.25°C/W	3.183W	0.0318W/°C
KTW (DDPAK)	TBD	TBD	TBD	TBD

ELECTRICAL CHARACTERISTICS


At T_A = +25°C, V_{EN} = 1.1V, V_{IN} = V_{OUT} + 0.3V, C_{IN} = C_{BIAS} = 0.1 μ F, C_{OUT} = 10 μ F, I_{OUT} = 50mA, V_{BIAS} = 3.3V, and T_J = -40°C to +125°C, unless otherwise noted.

			TPS74201				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{IN}	Input Voltage Range		V _{OUT (NOM)} + V _{DO (MAX)}		5.5	V	
V_{REF}	Internal Reference (Adj.)		0.796	0.8	0.804	V	
V _{BIAS}	Bias Pin Voltage Range ⁽¹⁾		2.375		5.5	V	
	Output Voltage Range	$V_{IN} = V_{OUT} + 1V$, $I_{OUT} = 1.5A$, $V_{BIAS} = 5V$	V_{REF}		3.3	V	
V_{OUT}	Accuracy	Nominal, $T_J = +25^{\circ}C$	-0.5		+0.5	%	
	Accuracy	$2.97V \le V_{BIAS} \le 5.5V$, $50mA \le I_{OUT} \le 1.5A$	-1	±0.5	1		
V_{OUT}/V_{IN}	Line Regulation	$V_{OUT\ (NOM)} + 0.3 < V_{IN} < 5.5V$		TBD	TBD	%/\	
V _{OUT} /I _{OUT}	Load Regulation	50mA ≤ I _{OUT} ≤ 1.5A		TBD	TBD	%/A	
	Drangut Voltage (External Bigs)	$I_{OUT} = 1.5A$, $V_{BIAS} - V_{OUT (NOM)} \ge 1.62V$, QFN		60	110	mV	
V_{DO}	Dropout Voltage (External Bias)	$I_{OUT} = 1.5A$, $V_{BIAS} - V_{OUT (NOM)} \ge 1.62V$, DDPAK		60	160	mV	
	Dropout Voltage (V _{IN} = V _{BIAS})	I _{OUT} = 1.5A			1.4	V	
I _{BIAS}	Bias Pin Current	I _{OUT} = 0mA to 1.5A		3	5	mA	
I _{SHDN}	Shutdown Supply Current (IN)	$V_{EN} \le 0.4V$, $T_J = -40^{\circ}C$ to $+85^{\circ}C$		50	100	μΑ	
I _{CL1}	Current Limit	V _{OUT} = 90% × V _{OUT} (NOM)	2.1		3.5	А	
I _{FB}	Feedback Pin Current			10	200	nA	
	Power-Supply Rejection	1kHz, I_{OUT} = 1.5A, V_{IN} = 1.8V, V_{OUT} = 1.5V, V_{BIAS} = 3.3V, C_{OUT} = 10 μ F		60		dB	
	(V _{IN} to V _{OUT})	300kHz, $I_{OUT} = 1.5A$, $V_{IN} = 1.8V$, $V_{OUT} = 1.5V$, $V_{BIAS} = 3.3V$, $C_{OUT} = 10\mu F$		30		ub	
PSRR	Power-Supply Rejection	1kHz, I_{OUT} = 1.5A, V_{IN} = 1.8V, V_{OUT} = 1.5V, V_{BIAS} = 3.3V, C_{OUT} = 10 μ F		50		dР	
	(V _{BIAS} to V _{OUT})	300kHz, $I_{OUT} = 1.5A$, $V_{IN} = 1.8V$, $V_{OUT} = 1.5V$, $V_{BIAS} = 3.3V$, $C_{OUT} = 10\mu F$		30		dB	
Noise	Output Noise Voltage	100Hz to 100kHz, $I_{OUT} = 1.5A$, $C_{SS} = 0.001 \mu F$		$25 \times V_{OUT}$		μV_{RN}	
t _{STR}	Minimum Startup Time	I _{OUT} = 1.5A, C _{SS} = Open		100		μѕ	
I _{SS}	Soft-Start Charging Current	V _{SS} = 0.4V	0.3	0.5	1	μΑ	
V _{EN, HI}	Enable Input High Level		1.1		V _{BIAS}	V	
V _{EN, LO}	Enable Input Low Level		0		0.4	V	
V _{ENHYS}	Enable Pin Hysteresis			50		mV	
V_{ENDG}	Enable Pin De-Glitch Time			20		μs	
I _{EN}	Enable Pin Current	V _{EN} = 5V		0.1	1.0	μΑ	
V _{IT}	PG Trip Threshold	V _{OUT} Decreasing	88	90	92	%V _O	
V _{HYS}	PG Trip Hysteresis			3		%Vo	
V _{PG, LO}	PG Output Low Voltage	I_{PG} = 1mA (sinking), $V_{OUT} < V_{IT}$, 2.375V $\le V_{BIAS} \le 5.5V$			0.3	V	
I _{PG, LKG}	PG Leakage Current	$V_{PG} = 5V$, $V_{OUT} > V_{IT}$		0.1	1.0	μΑ	
TJ	Operating Junction Temperature		-40		+125	°C	
T _{SD}	Thermal Shutdown Temperature	Shutdown, Temperature Increasing		+165		∘c	
. 20		Reset, Temperature Decreasing		+140			

⁽¹⁾ Minimum V_{BIAS} = 2.375V or V_{OUT} + V_{DO} , whichever is greater.

BLOCK DIAGRAM

PIN DESCRIPTIONS

NAME	KTW (DDPAK)	RGW(QFN)	DESCRIPTION
IN	5	5-8	Unregulated input to the device.
EN	7	11	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode.
SS	1	15	Soft-Start pin. A capacitor connected on this pin to ground will set the startup time.
BIAS	6	10	Bias voltage for error amplifier, reference, and internal control circuits.
PG	NA	9	Power-Good (PG) is an open-drain, active-high output that indicates the status of $V_{OUT}.$ When V_{OUT} exceeds the PG trip threshold, the PG pin goes into a high-impedance state. When V_{OUT} is below this threshold the pin is driven to a low-impedance state. A pull-up resistor from $10k\Omega$ to $1M\Omega$ should be used on this pin, which would allow the PG output to attain voltages higher than $V_{\text{IN}}.$
FB	2	16	This pin is the feedback connection to an external resistor divider network that sets the output voltage.
OUT	3	1, 18-20	Regulated output voltage.
NC	NA	2-4, 13, 14, 17	No connection. This pin can be left floating or connected to GND to allow better thermal contact to the top-side plane.
PAD/TAB			Electrically isolated. Should be soldered to ground plane for heat sinking.

PACKAGE OPTION ADDENDUM

27-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS74201KTWR	PREVIEW	DDPAK	KTW	7	1000	TBD	Call TI	Call TI
TPS74201KTWT	PREVIEW	DDPAK	KTW	7	50	TBD	Call TI	Call TI
TPS74201RGWR	PREVIEW	QFN	RGW	20	3000	TBD	Call TI	Call TI
TPS74201RGWT	PREVIEW	QFN	RGW	20	250	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

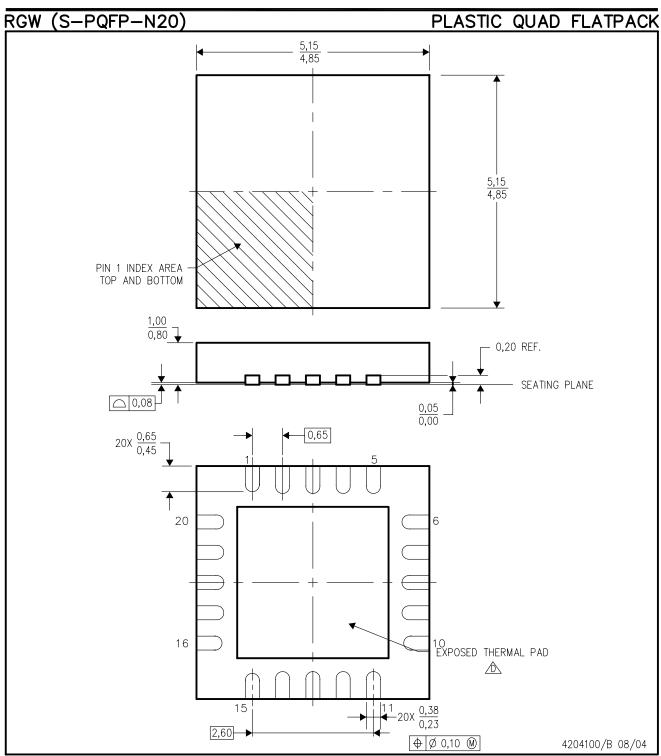
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

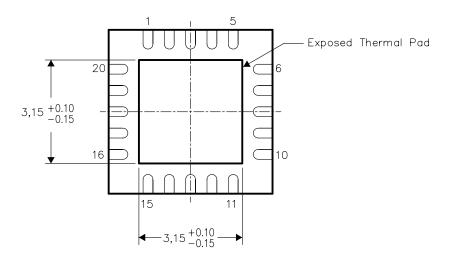
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flat pack, No-leads (QFN) package configuration
- The package thermal pad must be soldered to the board for thermal and mechanical performance..

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

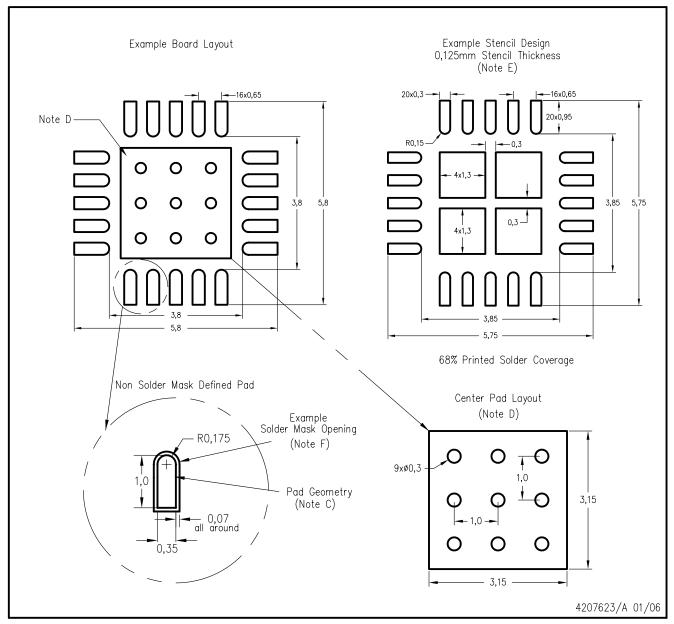

THERMAL PAD MECHANICAL DATA RGW (S-PQFP-N20)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

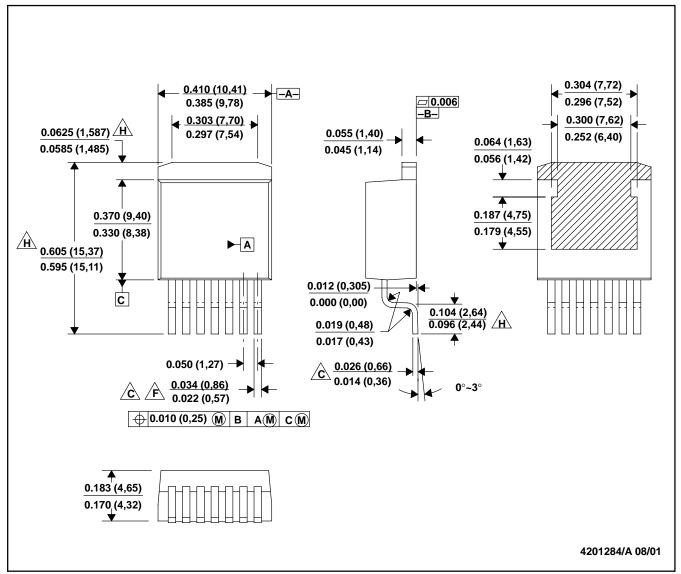


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGW (S-PQFP-N20)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

KTW (R-PSFM-G7)

PLASTIC FLANGE-MOUNT

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Lead width and height dimensions apply to the plated lead.

- D. Leads are not allowed above the Datum B.
- E. Stand-off height is measured from lead tip with reference to Datum B.

Lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum dimension by more than 0.003".

G. Cross-hatch indicates exposed metal surface.

Falls within JEDEC MO–169 with the exception of the dimensions indicated.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265