－Fully Integrated $V_{C C}$ and $V_{p p}$ Switching for Single－Slot PC Card ${ }^{\text {M }}$ Interface
－Low $\mathrm{r}_{\mathrm{DS}(o n)}\left(70-\mathrm{m} \Omega 5-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}\right.$ Switch and $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Switch）
－Compatible With Industry－Standard Controllers
－3．3－V Low－Voltage Mode
－Meets PC Card Standards
－12－V Supply Can Be Disabled Except During 12－V Flash Programming
－Short－Circuit and Thermal Protection
－Space－Saving 16－Pin SSOP（DB）and 20－Pin HTSSOP（PWP）
－Compatible With 3．3－V，5－V，and 12－V PC Cards
－Break－Before－Make Switching

description

The TPS2211A PC Card power－interface switch provides an integrated power－management solu－ tion for a single PC Card．All of the discrete power MOSFETs，a logic section，current limiting，and thermal protection for PC Card control are combined on a single integrated circuit，using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process．The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$ ，and／or $12-\mathrm{V}$ card power，and is compatible with many PCMCIA controllers．
The current－limiting feature eliminates the need for fuses，which reduces component count and improves reliability．Current－limit reporting can help the user isolate a system fault to the PC Card．controllers． The current－limiting feature eliminates the need for fuses，which reduces component count and improves reliability．Current－limit reporting can help the user isolate a system fault to the PC Card．
The TPS2211A features a 3．3－V low－voltage mode that allows for 3．3－V switching without the need for 5 V ．Bias power can be derived from either the 3．3－V or 5－V inputs．This facilitates low－power system designs such as sleep mode and pager mode where only 3.3 V is available．
End equipment for the TPS2211A includes notebook computers，desktop computers，personal digital assistants （PDAs），digital cameras，and bar－code scanners．

AVAILABLE OPTIONS

TA *	PACKAGED DEVICE		
	PLASTIC SMALL OUTLINE （DB）	PLASTIC SMALL OUTLINE （PW）	PowerPADTM PLASTIC SMALL OUTLINE （PWP）
	TPS2211AIDB	TPS2211APW	TPS2211APWP

The DB，PW，and PWP packages are only available left－end taped and reeled（indicated by the R suffix on the device type， e．g．TPS2211AIDBR）．

Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

PC Card is a trademark of PCMCIA（Personal Computer Memory Card International Association）． tinBiCMOS，PowerPAD are trademarks of Texas Instruments．

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH

FOR PARALLEL PCMCIA CONTROLLERS
SLVS282B - SEPTEMBER 2000 - REVISED JULY 2005

SELECTION GUIDE

DEVICE	V_{CC}			V_{pp}		
	3.3-V TYPICAL rDS(on) (Ω)	5-V TYPICAL rDS(on) (Ω)	RECOMMENDED MAXIMUM OUTPUT CURRENT (A)	3.3-V OR 5-V TYPICAL rDS(on) (Ω)	12-V MAXIMUM rDS(on) (Ω)	RECOMMENDED MAXIMUM OUTPUT CURRENT (A)
TPS2211AIDB	0.07	0.07	1	4	2	0.15
TPS2211APW	0.07	0.07	1	4	2	0.15
TPS2211APWP	0.07	0.07	1	4	2	0.15
TPS2211IDB	0.048	0.05	1	4	1	0.15
TPS2212IDB	0.16	0.16	0.25	4	1	0.15

typical PC-card power-distribution application

\dagger Refer to power-supply considerations in application information for selection of appropiate capacitors on supply inputs.
\mp The diagram refers to the 16 -pin DB package. It is recommended that the 3 AVCC pins be tied together externally to minimize power loss. For the 20 -pin package, the 4 AVCC pins ($13,14,15$, and 16) must be tied together externally as close as possible to the device.

TPS2211A

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	PW, PWP	DB		
3.3 V	3, 4	3, 4	1	3.3-V V_{CC} input for card power and/or chip power if 5 V is not present
5 V	5, 6	5, 6	1	$5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ input for card power and/or chip power
12V	10	9	1	$12-\mathrm{V} \mathrm{V}_{\mathrm{pp}}$ input card power
AVCC	13, 14, 15, 16	11, 12, 13	O	Switched output that delivers $0 \mathrm{~V}, 3.3-\mathrm{V}, 5-\mathrm{V}$, or high impedance to card; must be tied together externally for the 20-pin PWP package.
AVPP	11	10	0	Switched output that delivers $0 \mathrm{~V}, 3.3-\mathrm{V}, 5-\mathrm{V}, 12-\mathrm{V}$, or high impedance to card
GND	8	7		Ground
NC	7, 12, 17	-		No internal connection
$\overline{\mathrm{OC}}$	9	8	0	Logic-level overcurrent reporting output that goes low when an overcurrent conditions exists
$\overline{\text { SHDN }}$	20	16	1	Logic input that shuts down the device and sets all power outputs to high-impedance state
$\overline{\text { VCCD0 }}$	1	1	1	Logic input that controls voltage of AVCC (see control-logic table)
$\overline{\text { VCCD1 }}$	2	2	1	Logic input that controls voltage of AVCC (see control-logic table)
VPPD0	19	15	1	Logic input that controls voltage of AVPP (see control-logic table)
VPPD1	18	14	1	Logic input that controls voltage of AVPP (see control-logic table)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE TA	$\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}=85^{\circ} \mathbf{C}$ POWER RATING POWER RATING
DB-16	800 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	440 mW	320 mW
PW-20	741.3 mW	$7.41 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	407.7 mW	296.5 mW
PWP-20	2740 mW	$27.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1507 mW	1096 mW

These devices are mounted on a Low-K PCB with 0 LFM.

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH

FOR PARALLEL PCMCIA CONTROLLERS
SLVS282B - SEPTEMBER 2000 - REVISED JULY 2005
recommended operating conditions

		MIN	MAX	UNIT
	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
Input voltage, V_{l}	$\mathrm{V}_{\mathrm{I}(3.3 \mathrm{~V})}$	0	5.25	V
	$\mathrm{V}_{1(12 \mathrm{~V})}$	0	13.5	V
Output current	$\mathrm{IO}($ AVCC)		1	A
utp	IO(AVPP)		150	mA
Operating virtual	ure, T_{J}	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)
power switch

PARAMETER			TEST CONDITIONS \dagger	MIN	TYP	MAX	UNIT
	Switch resistance	5 V to AVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$		70	120	$\mathrm{m} \Omega$
		3.3 V to AVCC	$\mathrm{V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$		70	120	
		5 V to AVPP	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6	Ω
		3.3 V to AVPP	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6	
		12 V to AVPP	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2	
$\mathrm{V}_{\text {O }}$ (AVPP)	Clamp low voltage		I_{pp} at 10 mA		0.3	0.8	V
V_{O} (AVCC)	Clamp low voltage		$\mathrm{I}^{\prime} \mathrm{CC}$ at 10 mA		0.1	0.8	V
IIkg	Leakage current	Ipp high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50	
		Icc high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50	
1	Input current	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{AVCC})=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}(\mathrm{AVPP})=12 \mathrm{~V}$		40	75	$\mu \mathrm{A}$
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{l}(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{AVCC})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\text { (AVPP) }}=12 \mathrm{~V}$		50	90	
		Shutdown mode	$\mathrm{V}_{\mathrm{O}}(\mathrm{AVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{AVPP})=\mathrm{Hi}-\mathrm{Z}$			1	
Ios	Short-circuit output-current limit	IO(AVCC)	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, output powered into a short to GND	1		2.5	A
		IO(AVPP)		180		400	mA
	Thermal shutdown \ddagger	Trip point, T			140		${ }^{\circ} \mathrm{C}$
		Hysteresis			10		${ }^{\circ} \mathrm{C}$

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. \ddagger Specified by design, not tested in production.

logic section

PARAMETER	TEST CONDITIONS \dagger	MIN MAX	UNIT
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
Logic output high level, $\overline{\mathrm{OC}}$	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad \mathrm{I}=0.2 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$	V
	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=0.2 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{l}(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	$\mathrm{V}_{1(3.3 \mathrm{~V})}-0.4$	
Logic output low level, $\overline{\mathrm{OC}}$	$\mathrm{I}=1 \mathrm{~mA}$	0.4	V

[^0]switching characteristics \ddagger

PARAMETER	TEST CONDITIONS§		MIN TYP	MAX	UNIT
Rise times, output	$\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}(5 \mathrm{~V})$		2.8		ms
	$\mathrm{V}_{\text {O(AVPP) }}(12 \mathrm{~V}$)		6		
Fall times, output	$\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}(5 \mathrm{~V})$		5		
	$\mathrm{V}_{\mathrm{O}}(\mathrm{AVPP})(12 \mathrm{~V})$		19		
${ }^{\text {tpd }}$ Propagation delay (see Figure1)	$\mathrm{V}_{\mathrm{I} \text { (VPPD }}$) to $\mathrm{V}_{\mathrm{O}(\mathrm{AVPP})}(12 \mathrm{~V})$	$\mathrm{t}_{\text {on }}$	7		ms
		$\mathrm{t}_{\text {off }}$	23		
	$\mathrm{V}_{\mathrm{I}}(\mathrm{VCCD} 1)$ to $\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}(3.3 \mathrm{~V})$	ton	2.8		
		$\mathrm{t}_{\text {off }}$	12		
	$\mathrm{V}_{\text {(VCCDO }}$) to $\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}(5 \mathrm{~V})$	$\mathrm{t}_{\text {on }}$	3.7		
		$t_{\text {off }}$	13		

\ddagger Switching characteristics are with $C_{L}=150 \mu \mathrm{~F}$.
§Refer to Parameter Measurement Information

Figure 1. Test Circuits and Voltage Waveforms
Table of Timing Diagrams

	FIGURE
AVCC Propagation Delay and Rise Time With $1-\mu$ F Load, 3.3-V Switch	2
AVCC Propagation Delay and Fall Time With $1-\mu$ F Load, 3.3-V Switch	3
AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch	4
AVCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch	5
AVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	6
AVCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	7
AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	8
AVCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	9
AVPP Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, 12-V Switch	10
AVPP Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 12-V Switch	11
AVPP Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch	12
AVPP Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 12-V Switch	13

PARAMETER MEASUREMENT INFORMATION

Figure 2. AVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch

Figure 4. AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

Figure 3. AVCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

Figure 5. AVCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 6. AVCC Propagation Delay and Rise Time With 1- μ F Load, $5-\mathrm{V}$ Switch

Figure 8. AVCC Propagation Delay and Rise Time With $150-\mu$ F Load, $5-\mathrm{V}$ Switch

Figure 7. AVCC Propagation Delay and Fall Time With 1- μ F Load, 5-V Switch

Figure 9. AVCC Propagation Delay and Fall Time With $150-\mu$ F Load, $5-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 10. AVPP Propagation Delay and Rise Time With $1-\mu$ F Load, $12-\mathrm{V}$ Switch

Figure 12. AVPP Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch

Figure 11. AVPP Propagation Delay and Fall Time With 1- μ F Load, 12-V Switch

Figure 13. AVPP Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
$\mathrm{ICC}(5 \mathrm{~V})$	Supply current	vs Junction temperature	14
$\mathrm{ICC}(3.3 \mathrm{~V})$	Supply current	vs Junction temperature	15
rDS(on)	Static drain-source on-state resistance, 5-V VCC switch	vs Junction temperature	16
rDS(on)	Static drain-source on-state resistance, 3.3-V VCC switch	vs Junction temperature	17
rDS(on)	Static drain-source on-state resistance, 12-V VPP switch	vs Junction temperature	18
V ((AVCC)	Output voltage, 5-V VCC switch	vs Output current	19
V_{O} (AVCC)	Output voltage, 3.3-V VCC switch	vs Output current	20
V_{O} (AVPP)	Output voltage, 12-V VPP switch	vs Output current	21
IOS(AVCC)	Short-circuit current, 5-V VCC switch	vs Junction temperature	22
IOS(AVCC)	Short-circuit current, 3.3-V VCC switch	vs Junction temperature	23
IOS(AVPP)	Short-circuit current, 12-V VPP switch	vs Junction temperature	24

Figure 14
3.3-V SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 15

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH

TYPICAL CHARACTERISTICS

Figure 16

12-V AVCC SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE
VS

Figure 18
3.3-V AVCC SWITCH STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 17

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

5-V AVCC SWITCH SHORT-CIRCUIT OUTPUT CURRENT
vs
JUNCTION TEMPERATURE

Figure 22

Figure 21
3.3-V AVCC SWITCH SHORT-CIRCUIT OUTPUT CURRENT vs JUNCTION TEMPERATURE

Figure 23

TYPICAL CHARACTERISTICS

SHORT-CIRCUIT OUTPUT CURRENT

VS
JUNCTION TEMPERATURE

Figure 24

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, GPS systems, multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association) was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the plug and play concept, i.e. cards and hosts from different vendors should be compatible.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connectors. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply has an output voltage regulation ($\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$) of $2 \%(100 \mathrm{mV})$. Also, a voltage drop from the power supply to the PC Card results from resistive losses (VPCB) in the PCB traces and the PCMCIA connector. A typical design limits the total of these resistive losses to less than $1 \%(50 \mathrm{mV}$) of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2211 is the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
V_{D S}=V_{O(\text { reg })}-V_{P S(\text { reg })}-V_{P C B}
$$

Typically, this leaves 100 mV for the allowable voltage drop across the TPS2211A. The voltage drop is the output current multiplied by the switch resistance of the TPS2211. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2211A divided by the output switch resistance.

$$
I_{0} \max =\frac{V_{D S}}{r_{\text {DS(on) }}}
$$

The AVCC outputs deliver 1 A continuous at 5 V and 3.3 V within regulation over the operating temperature range. Using the same equations, the PCMCIA specification for output voltage regulation of the 3.3 V output is 300 mV . Using the voltage drop percentages for power supply regulation (2\%) and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV . The 12-V outputs (AVPP) of the TPS2211A can deliver 150 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in a sudden loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor and requires troubleshooting and repair, usually by the manufacturer, when fuses are blown.
The TPS2211A uses sense FETs to check for overcurrent conditions in each of the AVCC and AVPP outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{\mathrm{OC}}$ indicator, normally a logic high, is a logic low when an overcurrent condition is detected providing for initiation of system diagnostics and/or sending a warning message to the user.
During power up, the TPS2211A controls the rise time of the AVCC and AVPP outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2211A engages. If the AVCC or AVPP outputs are driven below ground, the TPS2211A may latch nondestructively in an off state. Cycling power reestablishes normal operation.
Overcurrent limiting for the AVCC outputs is designed to activate if powered up into a short in the range of 1 A to 2.5 A, typically at about 1.6 A. The AVPP outputs limit from 180 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.
Thermal limiting prevents destruction of the IC from overheating if the package power dissipation ratings are exceeded. Thermal limiting disables power output until the device has cooled.

APPLICATION INFORMATION

12-V supply not required

Most PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which require that power be present at all times. The TPS2211A offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ input. Therefore, the external $12-\mathrm{V}$ supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the $12-\mathrm{V}$ switch inputs when the $12-\mathrm{V}$ input is not used. Additional power savings are realized by the TPS2211A during a software shutdown, in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

3.3-V low-voltage mode

The TPS2211A operates in a 3.3-V low-voltage mode when 3.3 V is the only available input voltage $\left(\mathrm{V}_{1(5 \mathrm{~V})}=0\right)$. This allows host and PC Cards to be operated in low-power 3.3-volts-only modes such as sleep or pager modes. Note that in these operation modes, the TPS2211A derives its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2211A meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on $3.3-\mathrm{V}$ compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This functions as a power reset and ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge. The TPS2211A offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications.

output ground switches

PC Card specification requires that V_{CC} be discharged within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes.

power-supply considerations

The TPS2211A has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched AVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. It is recommended that all input and output power pins be paralleled for optimum operation.
To increase the noise immunity of the TPS2211A, the power supply inputs should be bypassed with a $4.7-\mu \mathrm{F}$, or larger, electrolytic or tantalum capacitor paralleled by a $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu \mathrm{F}$, or larger, ceramic capacitor; doing so improves the immunity of the TPS2211A to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2211A and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below -0.3 V .

APPLICATION INFORMATION

calculating junction temperature

The switch resistance, $r_{D S(o n)}$, is dependent on the junction temperature, T_{J}, of the die and the current through the switch. To calculate T_{J}, first find $r_{\text {DS(on) }}$ from Figures 16 through 18 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(o n)} \times \mathrm{I}^{2}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
T_{J}=\left(\sum P_{D} \times R_{\theta J A}\right)+T_{A}, R_{\theta J A}=108^{\circ} \mathrm{C} / \mathrm{W}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

ESD protection

All TPS2211A inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-bodymodel discharge as defined in MIL-STD-883C, Method 3015. The AVCC and AVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

NOTE A: MOSFET switch S6 has a back-gate diode from the source to the drain. Unused switch inputs should never be grounded. NOTE B: The diagram refers to the 16-pin DB package.

Figure 25. Internal Switching Matrix, TPS2211A Control Logic

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH

 FOR PARALLEL PCMCIA CONTROLLERS
APPLICATION INFORMATION

TPS2211A control logic

AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
$\overline{\text { SHDN }}$	VPPD0	VPPD1	S4	S5	S6	AVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	AVCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPP $(12 \mathrm{~V})$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

\dagger Output depends on AVCC
AVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
$\overline{\text { SHDN }}$	$\overline{\text { VCCD1 }}$	$\overline{\text { VCCD0 }}$	$\mathbf{S 1}$	$\mathbf{\text { S2 }}$	$\mathbf{\text { S3 }}$	AVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	$\mathrm{Hi}-2$

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V . The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than $0.7 \mathrm{in}^{2}$ of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the $12-\mathrm{V}$ output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

APPLICATION INFORMATION

NOTE A: The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.
Figure 26. TPS2211A With TPS6734 12-V, 120-mA Supply
www.ti.com

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPS2211AIDB | ACTIVE | SSOP | DB | 16 | 80 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TPS2211AIDBR | ACTIVE | SSOP | DB | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TPS2211AIDBRG4 | ACTIVE | SSOP | DB | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TPS2211APW | ACTIVE | TSSOP | PW | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TPS2211APWG4 | ACTIVE | TSSOP | PW | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TPS2211APWP | ACTIVE | HTSSOP | PWP | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| TPS2211APWPG4 | ACTIVE | HTSSOP | PWP | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| TPS2211APWPR | ACTIVE | HTSSOP | PWP | 20 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| TPS2211APWPRG4 | ACTIVE | HTSSOP | PWP | 20 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| TPS2211APWR | PREVIEW | TSSOP | PW | 20 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PWP (R-PDSO-G**)
PowerPAD ${ }^{\text {TM }}$ PLASTIC SMALL-OUTLINE PACKAGE
20 PIN SHOWN

PIM ${ }^{* *}$	14	16	20	24	28
A MAX	5,10	5,10	6,60	7,90	9,80
A MIN	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
E. Falls within JEDEC MO-153

DB (R-PDSO-G**)
28 PINS SHOWN

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-150

PIM PINS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: \dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

