－3－State Buffer－Type Outputs Drive Bus Lines Directly
－Bus－Structured Pinout
－Choice of True or Inverting Logic
－SN54ALS874B，SN74ALS874B， SN74AS874 Have True Outputs
－SN74ALS876A，SN74AS876 Have Inverting Outputs
－Asynchronous Clear
－Package Options Include Plastic Small－Outline（DW）Packages，Plastic（FN） and Ceramic（FK）Chip Carriers，and Standard Plastic（NT）and Ceramic（JT） 300－mil DIPs

description

These dual 4－bit D－type edge－triggered flip－flops feature 3 －state outputs designed specifically as bus drivers．They are particularly suitable for implementing buffer registers，I／O ports， bidirectional bus drivers，and working registers．
The edge－triggered flip－flops enter data on the low－to－high transition of the clock（CLK）input． The SN54ALS874B，SN74ALS874B，and SN74AS874 have clear（ $\overline{\mathrm{CLR} \text { ）inputs and }}$ noninverting Q outputs．The SN74ALS876A and SN74AS876 have preset（ $\overline{\mathrm{PRE}})$ inputs and inverting $\overline{\mathrm{Q}}$ outputs；taking $\overline{\mathrm{PRE}}$ low causes the four Q or \bar{Q} outputs to go low independently of the clock．

The SN54ALS874B is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74ALS874B，SN74ALS876A， SN74AS874，and SN74AS876 devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．

```
    SN54ALS874B ... JT PACKAGE
SN74ALS874B, SN74AS874 ... DW OR NT PACKAGE
                                    (TOP VIEW)
\begin{tabular}{|c|c|c|c|}
\hline 1－CLR & & \[
24
\] & VC \\
\hline \(1 \overline{O E}\) & 2 & 23 & 1CLK \\
\hline 1D1 & 3 & 22 & 1Q1 \\
\hline 1D2 & 4 & 21 & 1Q2 \\
\hline 1D3 & 5 & 20 & 1Q3 \\
\hline 1D4 & 6 & 19 & 1Q4 \\
\hline 2D1 & 7 & 18 & 2Q1 \\
\hline 2D2 & 8 & 17 & 2Q2 \\
\hline 2D3 & 9 & 16 & 2Q3 \\
\hline 2D4 & 10 & 15 & 2Q4 \\
\hline \(2 \overline{O E}\) & 11 & 14 & 2CLK \\
\hline GND & 12 & 13 & \(2 \overline{C L R}\) \\
\hline
\end{tabular}
``` SN54ALS874B ．．．FK PACKAGE （TOP VIEW）


NC－No internal connection

SN74ALS876A，SN74AS876 ．．．DW OR NT PACKAGE （TOP VIEW）

\section*{Function Tables}

SN54ALS874B, SN74ALS874B, SN74AS874
(each flip-flop)
\begin{tabular}{|cccc|c|}
\hline \multicolumn{4}{|c|}{ INPUTS } & OUTPUT \\
\cline { 1 - 4 }\(\overline{\text { OE }}\) & \(\overline{\text { CLR }}\) & CLK & D & Q \\
\hline L & L & X & X & L \\
L & \(H\) & \(\uparrow\) & \(H\) & \(H\) \\
L & \(H\) & \(\uparrow\) & L & L \\
L & \(H\) & L & \(X\) & \(Q_{0}\) \\
\(H\) & \(X\) & \(X\) & \(X\) & \(Z\) \\
\hline
\end{tabular}

SN74ALS876A, SN74AS876
(each flip-flop)
\begin{tabular}{|cccc|c|}
\hline \multicolumn{4}{|c|}{ INPUTS } & \multirow{2}{*}{ OUTPUT } \\
\cline { 1 - 4 }\(\overline{\mathbf{O}}\) & \(\overline{\text { PRE }}\) & CLK & D & \\
\hline L & L & X & X & L \\
L & \(H\) & \(\uparrow\) & \(H\) & L \\
L & \(H\) & \(\uparrow\) & L & H \\
L & \(H\) & L & \(X\) & \(\bar{Q}_{0}\) \\
\(H\) & \(X\) & \(X\) & \(X\) & \(Z\) \\
\hline
\end{tabular}

\section*{logic symbols \(\dagger\)}

SN54ALS874B, SN74ALS874B, SN74AS874

SN74ALS876A, SN74AS876

\(\dagger\) These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, JT, and NT packages.
logic diagrams (positive logic)

SN54ALS874B, SN74ALS874B, SN74AS874
(each quad flip-flop)

SN74ALS876A, SN74AS876
(each quad flip-flop)

Pin numbers shown are for the DW, JT, and NT packages.

\section*{absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \(\dagger\)}
\(\qquad\)
\(\qquad\)

Operating free-air temperature range, \(\mathrm{T}_{\mathrm{A}}\) : SN54ALS874B \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
 SN74ALS874B, SN74ALS876A \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
 Storage temperature range ... \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
\(\dagger\) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 4ALS87 & & & \[
\begin{aligned}
& \text { 4ALS8 } \\
& \text { 4ALS }
\end{aligned}
\] & & UNIT \\
\hline & & & MIN & NOM & MAX & MIN & NOM & MAX & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High-level input voltage & & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low-level input voltage & & & & 0.7 & & & 0.8 & V \\
\hline \({ }^{\text {IOH }}\) & High-level output current & & & & -1 & & & -2.6 & mA \\
\hline IOL & Low-level output current & & & & 12 & & & 24 & mA \\
\hline \({ }^{\text {f clock }}\) & Clock frequency & & 0 & & 25 & 0 & & 30 & MHz \\
\hline & & \(\overline{\text { PRE }}\) or \(\overline{\mathrm{CLR}}\) low & 15 & & & 10 & & & \\
\hline \(\mathrm{t}_{\mathrm{w}}\) & Pulse duration & CLK high & 20 & & & 16.5 & & & ns \\
\hline & & CLK low & 20 & & & 16.5 & & & \\
\hline & & Data & 15 & & & 15 & & & \\
\hline tsu & Setup time before CLK \(\uparrow\) & \(\overline{\text { PRE }}\) or \(\overline{\mathrm{CLR}}\) inactive & 15 & & & 10 & & & ns \\
\hline \(\mathrm{th}^{\text {r }}\) & Hold time, data after CLK \(\uparrow\) & & 4 & & & 0 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & Operating free-air temperature & & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\footnotetext{
\(\dagger\) All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
\(\ddagger\) The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
}
switching characteristics (see Figure 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{PARAMETER} & \multirow[t]{3}{*}{FROM (INPUT)} & \multirow[t]{3}{*}{TO (OUTPUT)} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\
& \mathrm{R} 1=500 \Omega, \\
& \mathrm{R} 2=500 \Omega, \\
& \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt }
\end{aligned}
\]} & \multirow[t]{3}{*}{UNIT} \\
\hline & & & \multicolumn{2}{|l|}{SN54ALS874B} & \multicolumn{2}{|l|}{SN74ALS874B} & \\
\hline & & & MIN & MAX & MIN & MAX & \\
\hline \(\mathrm{f}_{\text {max }}\) & & & 25 & & 30 & & MHz \\
\hline tPLH & \multirow[t]{2}{*}{CLK} & \multirow[b]{2}{*}{Any Q} & 4 & 18 & 4 & 14 & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & 4 & 16 & 4 & 14 & \\
\hline tPHL & \(\overline{\mathrm{CLR}}\) & Any Q & 5 & 23 & 5 & 17 & ns \\
\hline tPZH & \multirow[b]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[b]{2}{*}{Any Q} & 4 & 24 & 4 & 18 & \multirow[b]{2}{*}{ns} \\
\hline tPZL & & & 4 & 21 & 4 & 18 & \\
\hline tPHZ & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[b]{2}{*}{Any Q} & 2 & 15 & 2 & 10 & \multirow[t]{2}{*}{ns} \\
\hline tplZ & & & 3 & 22 & 3 & 12 & \\
\hline
\end{tabular}
\(\dagger\) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\section*{switching characteristics (see Figure 1)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{PARAMETER} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { FROM } \\
& \text { (INPUT) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TO } \\
\text { (OUTPUT) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\
& \mathrm{R} 1=500 \Omega, \\
& \mathrm{R} 2=500 \Omega, \\
& \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt }
\end{aligned}
\]} & \multirow[t]{3}{*}{UNIT} \\
\hline & & & \multicolumn{2}{|l|}{SN74ALS876A} & \\
\hline & & & MIN & MAX & \\
\hline \({ }_{\text {fmax }}\) & & & 30 & & MHz \\
\hline tPLH & \multirow[t]{2}{*}{CLK} & \multirow[b]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 4 & 14 & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & 4 & 14 & \\
\hline tPHL & \(\overline{\text { PRE }}\) & Any \(\overline{\mathrm{Q}}\) & 6 & 19 & ns \\
\hline tPZH & \multirow[t]{2}{*}{\(\overline{O E}\)} & \multirow[t]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 4 & 18 & \multirow[t]{2}{*}{ns} \\
\hline tPZL & & & 4 & 18 & \\
\hline tPHZ & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[t]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 2 & 10 & \multirow[t]{2}{*}{ns} \\
\hline tplZ & & & 3 & 13 & \\
\hline
\end{tabular}
\(\dagger\) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\section*{absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \(\ddagger\)}

Supply voltage, \(\mathrm{V}_{\mathrm{CC}}\)
\(\qquad\)
Operating free-air temperature range, \(\mathrm{T}_{\mathrm{A}}\) : SN74AS874, SN74AS876 \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage temperature range
\(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

\footnotetext{
\(\ddagger\) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
}
recommended operating conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 74AS8 & & & 74AS8 & & \\
\hline & & & MIN & NOM & MAX & MIN & NOM & MAX & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High-level input voltage & & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low-level input voltage & & & & 0.8 & & & 0.8 & V \\
\hline \({ }^{\text {IOH }}\) & High-level output current & & & & -15 & & & -15 & mA \\
\hline IOL & Low-level output current & & & & 48 & & & 48 & mA \\
\hline \(\mathrm{f}_{\text {clock }}\) & Clock frequency & & 0 & & 125 & 0 & & 80 & MHz \\
\hline & & \(\overline{\text { PRE }}\) or \(\overline{C L R}\) low & 2 & & & 4.5 & & & \\
\hline \(\mathrm{t}_{\mathrm{w}}\) & Pulse duration & CLK high & 3 & & & 6.2 & & & ns \\
\hline & & CLK Iow & 4 & & & 6.2 & & & \\
\hline & & Data & 2 & & & 4.5 & & & \\
\hline & Setup time before CLK \(\uparrow\) & \(\overline{\text { PRE }}\) or \(\overline{\mathrm{CLR}}\) inactive & 4 & & & 5 & & & ns \\
\hline th & Hold time, data after CLK \(\uparrow\) & & 1 & & & 2 & & & ns \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating free-air temperature & & 0 & & 70 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{\begin{tabular}{l}
SN74AS874 \\
SN74AS876
\end{tabular}} & \multirow[t]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP卉 & MAX & \\
\hline \multicolumn{2}{|l|}{VIK} & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), & \(\boldsymbol{I}=-18 \mathrm{~mA}\) & & & -1.2 & V \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{V OH}} & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) to 5.5 V , & \(\mathrm{I} \mathrm{OH}=-2 \mathrm{~mA}\) & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{CC}}-2\)} & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), & \(\mathrm{I} \mathrm{OH}=-15 \mathrm{~mA}\) & 2.4 & 3.3 & & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{OL}}\)} & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), & \(\mathrm{IOL}=48 \mathrm{~mA}\) & & 0.35 & 0.5 & V \\
\hline \multicolumn{2}{|l|}{IOZH} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}\) & & & 50 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{IOZL} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & & & -50 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{I} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}\) & & & 0.1 & mA \\
\hline \multicolumn{2}{|l|}{IIH} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}\) & & & 20 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{IIL} & D & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\),} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}\)} & & & -2 & \multirow[t]{2}{*}{mA} \\
\hline & All others & & & & & -0.5 & \\
\hline \multicolumn{2}{|l|}{\(10^{\ddagger}\)} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}\) & -30 & & -112 & mA \\
\hline \multirow{6}{*}{ICC} & \multirow{3}{*}{SN74AS874} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\)} & Outputs high & & 82 & 133 & \multirow{6}{*}{mA} \\
\hline & & & Outputs low & & 92 & 149 & \\
\hline & & & Outputs disabled & & 100 & 160 & \\
\hline & \multirow{3}{*}{SN74AS876} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\)} & Outputs high & & 88 & 142 & \\
\hline & & & Outputs low & & 94 & 150 & \\
\hline & & & Outputs disabled & & 100 & 160 & \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
\(\ddagger\) The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
}
switching characteristics (see Figure 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{PARAMETER} & \multirow[t]{3}{*}{FROM (INPUT)} & \multirow[t]{3}{*}{TO (OUTPUT)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\
& \mathrm{R} 1=500 \Omega, \\
& \mathrm{R} 2=500 \Omega, \\
& \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt }
\end{aligned}
\]} & \multirow[t]{3}{*}{UNIT} \\
\hline & & & SN7 & 874 & \\
\hline & & & MIN & MAX & \\
\hline \({ }_{\text {f max }}\) & & & 125 & & MHz \\
\hline tPLH & \multirow[b]{2}{*}{CLK} & \multirow[b]{2}{*}{Any Q} & 3 & 8.5 & \multirow[b]{2}{*}{ns} \\
\hline tPHL & & & 4 & 10.5 & \\
\hline tPHL & \(\overline{\mathrm{CLR}}\) & Any Q & 4 & 9.5 & ns \\
\hline tPZH & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[b]{2}{*}{Any Q} & 2 & 7 & \multirow[t]{2}{*}{ns} \\
\hline tpZL & & & 3 & 10.5 & \\
\hline tPHZ & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[b]{2}{*}{Any Q} & 2 & 6 & \multirow[t]{2}{*}{ns} \\
\hline tplZ & & & 2 & 7.5 & \\
\hline
\end{tabular}
\(\dagger\) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
switching characteristics (see Figure 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{PARAMETER} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { FROM } \\
& \text { (INPUT) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TO } \\
\text { (OUTPUT) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\
& \mathrm{R} 1=500 \Omega, \\
& \mathrm{R} 2=500 \Omega, \\
& \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt }
\end{aligned}
\]} & \multirow[t]{3}{*}{UNIT} \\
\hline & & & \multicolumn{2}{|r|}{SN74AS876} & \\
\hline & & & MIN & MAX & \\
\hline \({ }_{\text {fmax }}\) & & & 80 & & MHz \\
\hline tPLH & \multirow[t]{2}{*}{CLK} & \multirow[b]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 3 & 8.5 & \multirow[t]{2}{*}{ns} \\
\hline tPHL & & & 4 & 10.5 & \\
\hline tPHL & \(\overline{\text { PRE }}\) & Any \(\overline{\mathrm{Q}}\) & 4 & 9.5 & ns \\
\hline tPZH & \multirow[t]{2}{*}{\(\overline{O E}\)} & \multirow[t]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 2 & 7 & \multirow[t]{2}{*}{ns} \\
\hline tPZL & & & 3 & 11 & \\
\hline tPHZ & \multirow[t]{2}{*}{\(\overline{\mathrm{OE}}\)} & \multirow[t]{2}{*}{Any \(\overline{\mathrm{Q}}\)} & 2 & 7 & \multirow[t]{2}{*}{ns} \\
\hline tplZ & & & 2 & 7 & \\
\hline
\end{tabular}
\(\dagger\) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\section*{PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES}

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. \(\mathrm{C}_{\mathrm{L}}\) includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
D. All input pulses have the following characteristics: \(\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}\), duty cycle \(=50 \%\).
E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM
www.ti.com
16-Jan-2006

PACKAGING INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Orderable Device & Status \({ }^{(1)}\) & Package Type & Package Drawing & & Package Qty & \[
\text { Eco Plan }{ }^{(2)}
\] & Lead/Ball Finish & MSL Peak Temp \({ }^{(3)}\) \\
\hline 84010013A & ACTIVE & LCCC & FK & 28 & 1 & TBD & Call TI & N / A for Pkg Type \\
\hline 8401001KA & OBSOLETE & CFP & W & 24 & & TBD & Call TI & Call TI \\
\hline 8401001LA & ACTIVE & CDIP & JT & 24 & 1 & TBD & Call TI & N/A for Pkg Type \\
\hline SN54ALS874BJT & ACTIVE & CDIP & JT & 24 & 1 & TBD & Call TI & N / A for Pkg Type \\
\hline SN74ALS874BDW & ACTIVE & SOIC & DW & 24 & 25 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BDWE4 & ACTIVE & SOIC & DW & 24 & 25 & \[
\begin{gathered}
\hline \text { Green (RoHS \& } \\
\text { no Sb/Br) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BDWG4 & ACTIVE & SOIC & DW & 24 & 25 & \[
\begin{gathered}
\text { Green (RoHS \& } \\
\text { no } \mathrm{Sb} / \mathrm{Br})
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BDWR & ACTIVE & SOIC & DW & 24 & 2000 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BDWRE4 & ACTIVE & SOIC & DW & 24 & 2000 & \[
\begin{gathered}
\text { Green (RoHS \& } \\
\text { no } \mathrm{Sb} / \mathrm{Br})
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BDWRG4 & ACTIVE & SOIC & DW & 24 & 2000 & \[
\begin{gathered}
\text { Green (RoHS \& } \\
\text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BNSR & ACTIVE & SO & NS & 24 & 2000 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BNSRE4 & ACTIVE & SO & NS & 24 & 2000 & \[
\begin{gathered}
\hline \text { Green (RoHS \& } \\
\text { no Sb/Br) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS874BNT & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74ALS874BNTE4 & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74ALS876ADW & ACTIVE & SOIC & DW & 24 & 25 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS876ADWE4 & ACTIVE & SOIC & DW & 24 & 25 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS876ADWR & ACTIVE & SOIC & DW & 24 & 2000 & \[
\begin{gathered}
\text { Green (RoHS \& } \\
\text { no Sb/Br) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS876ADWRE4 & ACTIVE & SOIC & DW & 24 & 2000 & \[
\begin{gathered}
\hline \text { Green (RoHS \& } \\
\text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74ALS876ANT & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74ALS876ANTE4 & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74AS874DW & ACTIVE & SOIC & DW & 24 & 25 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS874DWE4 & ACTIVE & SOIC & DW & 24 & 25 & \[
\begin{gathered}
\hline \text { Green (RoHS \& } \\
\text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\
\hline
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS874DWR & ACTIVE & SOIC & DW & 24 & 2000 & Green (RoHS \& no \(\mathrm{Sb} / \mathrm{Br}\)) & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS874DWRE4 & ACTIVE & SOIC & DW & 24 & 2000 & \[
\begin{gathered}
\text { Green (RoHS \& } \\
\text { no Sb/Br) }
\end{gathered}
\] & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS874NT & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74AS874NTE4 & ACTIVE & PDIP & NT & 24 & 15 & Pb-Free (RoHS) & CU NIPDAU & N/ A for Pkg Type \\
\hline SN74AS876DW & ACTIVE & SOIC & DW & 24 & 25 & Green (RoHS \& & CU NIPDAU & Level-1-260C-UNLIM \\
\hline
\end{tabular}

PACKAGE OPTION ADDENDUM
\begin{tabular}{|ccccccccccc|}
\hline Orderable Device & Status \({ }^{(1)}\)\begin{tabular}{c}
Package \\
Type
\end{tabular} & \begin{tabular}{c}
Package \\
Drawing
\end{tabular} & \begin{tabular}{c}
Pins Package \\
Qty
\end{tabular} & Eco Plan \({ }^{(2)}\) & Lead/Ball Finish & MSL Peak Temp \({ }^{(3)}\) \\
\hline & & & & & & & no Sb/Br) & & \\
\hline SN74AS876DWE4 & ACTIVE & SOIC & DW & 24 & 25 & \begin{tabular}{c}
Green (RoHS \& \\
no Sb/Br)
\end{tabular} & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS876DWR & ACTIVE & SOIC & DW & 24 & 2000 & \begin{tabular}{c}
Green (RoHS \& \\
no Sb/Br)
\end{tabular} & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS876DWRE4 & ACTIVE & SOIC & DW & 24 & 2000 & \begin{tabular}{c}
Green (RoHS \& \\
no Sb/Br)
\end{tabular} & CU NIPDAU & Level-1-260C-UNLIM \\
\hline SN74AS876NT & ACTIVE & PDIP & NT & 24 & 15 & \begin{tabular}{c}
Pb-Free \\
(RoHS)
\end{tabular} & CU NIPDAU & N/A for Pkg Type \\
\hline SN74AS876NTE4 & ACTIVE & PDIP & NT & 24 & 15 & \begin{tabular}{c}
Pb-Free \\
(RoHS)
\end{tabular} & CU NIPDAU & N/A for Pkg Type \\
\hline SNJ54ALS874BFK & ACTIVE & LCCC & FK & 28 & 1 & TBD & Call TI & N/A for Pkg Type \\
\hline SNJ54ALS874BJT & ACTIVE & CDIP & JT & 24 & 1 & TBD & Call TI & N/A for Pkg Type \\
\hline
\end{tabular}
\({ }^{(1)}\) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
\({ }^{(2)}\) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed \(0.1 \%\) by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered \(\mathrm{Pb}-\mathrm{Free}\) (RoHS compatible) as defined above.
Green (RoHS \& no \(\mathbf{S b} / \mathrm{Br}\)): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed \(0.1 \%\) by weight in homogeneous material)
\({ }^{(3)}\) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

JT (R-GDIP-T**)
CERAMIC DUAL-IN-LINE
24 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

W (R-GDFP-F24)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
E. Index point is provided on cap for terminal identification only.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NT (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
24 PINS SHOWN

4040050/B 04/95

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

DW (R-PDSO-G24)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed \(0.006(0,15)\).
D. Falls within JEDEC MS-013 variation AD.

\section*{MECHANICAL DATA}

NS (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14-PINS SHOWN

\begin{tabular}{|c|c|c|c|c|}
\hline DIM PINS ** & 14 & 16 & 20 & 24 \\
\hline A MAX & 10,50 & 10,50 & 12,90 & 15,30 \\
\hline A MIN & 9,90 & 9,90 & 12,30 & 14,70 \\
\hline
\end{tabular}

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

\section*{IMPORTANT NOTICE}

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

\section*{Products}
\begin{tabular}{ll}
Amplifiers & amplifier.ti.com \\
Data Converters & dataconverter.ti.com \\
DSP & dsp.ti.com \\
Interface & interface.ti.com \\
Logic & logic.ti.com \\
Power Mgmt & power.ti.com \\
Microcontrollers & microcontroller.ti.com
\end{tabular}

\section*{Applications}
\begin{tabular}{ll}
Audio & www.ti.com/audio \\
Automotive & www.ti.com/automotive \\
Broadband & www.ti.com/broadband \\
Digital Control & www.ti.com/digitalcontrol \\
Military & www.ti.com/military \\
Optical Networking & www.ti.com/opticalnetwork \\
Security & www.ti.com/security \\
Telephony & www.ti.com/telephony \\
Video \& Imaging & www.ti.com/video \\
Wireless & www.ti.com/wireless
\end{tabular}

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265```

