Burr－Brown Products
from Texas Instruments
DCP02 Series

Miniature，2W，Isolated UNREGULATED DC／DC CONVERTERS

FEATURES

－Up To 89\％Efficiency
－Thermal Protection
－Device－to－Device Synchronization
－SO－28 Power Density of $106 \mathrm{~W} / \mathrm{in}^{3}\left(6.5 \mathrm{~W} / \mathrm{cm}^{3}\right)$
－EN55022 Class B EMC Performance
－UL1950 Recognized Component
－JEDEC 14－Pin and SO－28 Packages

APPLICATIONS

－Point－of－Use Power Conversion
－Ground Loop Elimination
－Data Acquisition
－Industrial Control and Instrumentation
－Test Equipment

DESCRIPTION

The DCP02 series is a family of 2 W ，isolated， unregulated DC／DC converters．Requiring a minimum of external components and including on－chip device protection，the DCP02 series provides extra features such as output disable and synchronization of switching frequencies．

The use of a highly integrated package design results in highly reliable products with power densities of $79 \mathrm{~W} / \mathrm{in}^{3}\left(4.8 \mathrm{~W} / \mathrm{cm}^{3}\right)$ for DIP－14，and $106 \mathrm{~W} / \mathrm{in}^{3}$ $\left(6.5 \mathrm{~W} / \mathrm{cm}^{3}\right)$ for SO－28．This combination of features and small size makes the DCP02 suitable for a wide range of applications．

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI website at www.ti.com.

Supplemental Ordering Information

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		DCP02 Series	UNIT
Input Voltage	5 V input models	7	V
	12 V input models	15	V
	15 V input models	18	V
	24 V input models	29	V
Storage temperature range	-60 to +125	${ }^{\circ} \mathrm{C}$	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
Power	100\% full load		2		W
Ripple	O / P capacitor $=1 \mu \mathrm{~F}, 50 \%$ load		20		mV PPP
INPUT					
Voltage range on V_{S}		-10		10	\%
ISOLATION					
Voltage	1s Flash test	1			kVrms
	60s test, UL1950 ${ }^{(1)}$	1			kVrms
LINE					
Regulation			1		\%/1\% of V_{S}
SWITCHING/SYNCHRONIZATION					
Oscillator frequency (fosc)	Switching frequency $=\mathrm{f}_{\text {OSC }} / 2$		800		kHz
Sync input low		0		0.4	V
Sync input current	$\mathrm{V}_{\text {SYNC }}=+2 \mathrm{~V}$		75		$\mu \mathrm{A}$
Disable time			2		$\mu \mathrm{s}$
Capacitance loading on SYNC pin	External			10	pF
RELIABILITY					
Demonstrated	$\mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C}$	75			FITS
THERMAL SHUTDOWN					
IC temperature at shutdown			+150		${ }^{\circ} \mathrm{C}$
Shutdown current			3		mA
TEMPERATURE RANGE					
Operating		-40		+85	${ }^{\circ} \mathrm{C}$

(1) During UL1950 recognition tests only.

ELECTRICAL CHARACTERISTICS PER DEVICE

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PRODUCT	$\begin{aligned} & \text { INPUT } \\ & \text { VOLTAGE } \\ & \text { (V) } \end{aligned}$			OUTPUT VOLTAGE (V)			LOADREGULATION$(\%)$		NO LOAD CURRENT (mA) I_{Q}	EFFICIENCY (\%)	BARRIER CAPACITANCE (pF) $\mathrm{C}_{\text {ISO }}$
	$\mathrm{V}_{\text {S }}$			$\mathrm{V}_{\text {NOM }}$							
				75\% LOAD ${ }^{(1)}$			10\% TO 100\% LOAD		0\% LOAD	100\% LOAD	$\mathrm{V}_{\text {ISO }}=750 \mathrm{Vrms}$
	MIN	TYP	MAX	MIN	TYP	MAX	TYP	MAX	TYP	TYP	TYP
DCP020503P, U	4.5	5	5.5	3.13	3.3	3.46	19	30	18	74	26
DCP020505P, U	4.5	5	5.5	4.75	5	5.25	14	20	18	80	22
DCP020507P, U	4.5	5	5.5	6.65	7	7.35	14	25	20	81	30
DCP020509P, U	4.5	5	5.5	8.55	9	9.45	12	20	23	82	31
DCP020515DP, U	4.5	5	5.5	± 14.25	± 15	± 15.75	11	20	27	85	24
DCP021205P, U	10.8	12	13.2	4.75	5	5.25	7	15	14	83	33
DCP021212P, U	10.8	12	13.2	11.4	12	12.6	7	20	15	87	47
DCP021212DP, U	10.8	12	13.2	± 11.4	± 12	± 12.6	6	20	16	88	35
DCP021215DP, U	10.8	12	13.2	± 14.25	± 15	± 15.75	6	20	21	87	33
DCP021515P, U	13.5	15	16.5	14.25	15	15.75	6	20	15	88	42
DCP022405P	21.6	24	26.4	4.85	5	5.35	6	10	13	81	33
DCP022405U	21.6	24	26.4	4.75	5	5.25	10	15	13	81	33
DCP022405DP, U	21.6	24	26.4	± 4.75	± 5	+5.25	6	15	12	80	22
DCP022412DP, U	21.6	24	26.4	± 11.4	± 12	± 12.6	4	16	19	83	29
DCP022415DP, U	21.6	24	26.4	± 14.25	± 15	± 15.75	6	25	16	79	44
DCP022418DP, U	21.6	24	26.4	± 17.1	± 18	± 18.9	9	25	20	84	32

(1) 100% load current $=2 W / V_{\text {NOM }}$ typ.

DEVICE INFORMATION

Table 1. Pin Description (Single-DIP)

TERMINAL		
NAME	NO.	DESCRIPTION
V_{S}	1	Voltage input
OV	2	Input side common
OV	5	Output side common
$+V_{\text {OUT }}$	6	+Voltage out
NC	7,8	Not connected
SYNC	14	Synchronization pin

Table 2. TERMINAL FUNCTIONS (Single-SO)

TERMINAL		
NAME	NO.	DESCRIPTION
V_{S}	1	Voltage input
OV	2	Input side common
OV	3	Input side common
OV	12	Output side common
$+V_{\text {OUT }}$	13	+ Voltage out
NC	$14,15,16$,	Not connected
SYNC	$17,26,27$	28

NVA PACKAGE
DIP-14 (Dual-DIP) (Top View)

Table 3. TERMINAL FUNCTIONS (Dual-DIP)

TERMINAL		
NAME	NO.	DESCRIPTION
$V_{\text {S }}$	1	Voltage input
OV	2	Input side common
OV	5	Output side common
$+V_{\text {OUT }}$	6	+Voltage out
$-V_{\text {OUT }}$	7	-Voltage out
NC	8	Not connected
SYNC	14	Synchronization pin

DVB PACKAGE
SO-28 (Dual-SO)
(Top View)

Table 4. TERMINAL FUNCTIONS (Dual-SO)

TERMINAL		
NAME	NO.	DESCRIPTION
$V_{\text {S }}$	1	Voltage input
OV	2	Input side common
OV	3	Input side common
OV	12	Output side common
$+V_{\text {OUT }}$	13	+ Voltage out
$-V_{\text {OUT }}$	14	-Voltage out
NC	$15,16,17$, 26,27	Not connected
SYNC	28	Synchronization pin

TYPICAL CHARACTERISTICS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 1.

Figure 3.
DCP0212
EFFICIENCY vs LOAD

Figure 5.

Figure 2.

Figure 4.

DCP020505P
OUTPUT AC RIPPLE (20MHz Band)

Figure 6.

Texas
 INSTRUMENTS
 www.ti.com

FUNCTIONAL DESCRIPTION

OVERVIEW

The DCP02 offers up to 2 W of unregulated output power from a $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, or 24 V input source with a typical efficiency of up to 89%. This is achieved through highly integrated packaging technology and the implementation of a custom power stage and control IC. The circuit design uses an advanced BiCMOS/DMOS process.

POWER STAGE

The DCP02 uses a push-pull, center-tapped topology switching at 400 kHz (divide-by-2 from an 800 kHz oscillator).

OSCILLATOR AND WATCHDOG

The onboard 800 kHz oscillator generates the switching frequency via a divide-by-2 circuit. The oscillator can be synchronized to other DCP02 circuits or an external source, and is used to minimize system noise.
A watchdog circuit checks the operation of the oscillator circuit. The oscillator can be stopped by pulling the SYNC pin low. The output pins will be tri-stated. This will occur in 2μ s.

THERMAL SHUTDOWN

The DCP02 is protected by a thermal-shutdown circuit. If the on-chip temperature exceeds $+150^{\circ} \mathrm{C}$, the device will shut down. Once the temperature falls below $+150^{\circ} \mathrm{C}$, normal operation will resume.

SYNCHRONIZATION

In the event that more than one DC/DC converter is needed onboard, beat frequencies and other electrical interference can be generated.

This is due to the small variations in switching frequencies between the DC/DC converters.

The DCP02 overcomes this by allowing devices to be synchronized to one another. Up to eight devices can be synchronized by connecting the SYNC pins together, taking care to minimize the capacitance of tracking. Stray capacitance (> 10pF) will have the effect of reducing the switching frequency, or even stopping the oscillator circuit. It is also recommended that power and ground lines be star-connected.

It should be noted that if synchronized devices are used at start up, all devices will draw maximum current simultaneously. This can cause the input voltage to dip, and if it dips below the minimum input voltage (4.5 V), the devices may not start up. A $2.2 \mu \mathrm{~F}$ capacitor should be connected close to the input pins.
If more than eight devices are to be synchronized, it is recommended that the SYNC pins be driven by an external device. Details are contained in Application Report SBAA035, External Synchronization of the DCP01/02 Series of $D C / D C$ Converters, available for download from www.ti.com.

CONSTRUCTION

The basic construction of the DCP02 is the same as standard ICs. There is no substrate within the molded package. The DCP02 is constructed using an IC, rectifier diodes, and a wound magnetic toroid on a leadframe. Since there is no solder within the package, the DCP02 does not require any special printed circuit board (PCB) assembly processing. This results in an isolated DC/DC converter with inherently high reliability.

Figure 7. Connecting the DCP02 in Series

ADDITIONAL FUNCTIONS

DISABLE/ENABLE

The DCP02 can be disabled or enabled by driving the SYNC pin using an open drain CMOS gate. If the SYNC pin is pulled low, the DCP02 will be disabled. The disable time depends upon the external loading; the internal disable function is implemented in $2 \mu \mathrm{~s}$. Removal of the pull down will cause the DCP02 to be enabled.
Capacitive loading on the SYNC pin should be minimized in order to prevent a reduction in the oscillator frequency.

DECOUPLING

Ripple Reduction

The high switching frequency of 400 kHz allows simple filtering. To reduce ripple, it is recommended that a $1 \mu \mathrm{~F}$ capacitor be used on $\mathrm{V}_{\text {out. }}$ Dual outputs should both be decoupled to pin 5. A $2.2 \mu \mathrm{~F}$ capacitor on the input is recommended.

Connecting the DCP02 in Series

Multiple DCP02 isolated 2W DC/DC converters can be connected in series to provide nonstandard voltage rails. This is possible by using the floating outputs provided by the galvanic isolation of the DCP02.

Connect the positive $\mathrm{V}_{\text {Out }}$ from one DCP02 to the negative $\mathrm{V}_{\text {Out }}(0 \mathrm{~V})$ of another (see Figure 7). If the SYNC pins are tied together, the self-synchronization feature of the DCP02 will prevent beat frequencies on the voltage rails. The SYNC feature of the DCP02 allows easy series connection without external filtering, thus minimizing cost.
The outputs on the dual-output DCP02 versions can also be connected in series to provide two times the magnitude of $\mathrm{V}_{\text {OUT }}$, as shown in Figure 8. For example, a dual 15 V DCP022415D could be connected to provide a 30 V rail.

Connecting the DCP02 in Parallel

If the output power from one DCP02 is not sufficient, it is possible to parallel the outputs of multiple DCPO2s, as shown in Figure 9. Again, the SYNC feature allows easy synchronization to prevent power-rail beat frequencies at no additional filtering cost.

Figure 8. Connecting Dual Outputs in Series

Figure 9. Connecting Multiple DCP02s in Parallel
www.ti.com
PACKAGE OPTION ADDENDUM

6-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
DCP020503P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
DCP020503U	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP020503U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP020505P	ACTIVE	PDIP	NVA	7	25	TBD	CU SNPB	N / A for Pkg Type
DCP020505U	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP020505U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP020507P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
DCP020507U	ACTIVE	SOP	DVB	12	28	TBD	CU SNPB	Level-3-240C-168 HR
DCP020507U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU SNPB	Level-3-240C-168 HR
DCP020509P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
DCP020509U	ACTIVE	SOP	DVB	12	28	Pb-Free (RoHS)	CU NIPDAU	Level-3-260C-168 HR
DCP020515DP	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
DCP020515DU	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP020515DU/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021205P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	Call TI	N/A for Pkg Type
DCP021205PE4	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	Call TI	N/ A for Pkg Type
DCP021205U	ACTIVE	SOP	DVB	12	28	TBD	Call TI	Level-3-240C-168 HR
DCP021205U/1K	ACTIVE	SOP	DVB	12	1000	TBD	Call TI	Level-3-240C-168 HR
DCP021212DP	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N/A for Pkg Type
DCP021212DU	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021212DU/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021212P	ACTIVE	PDIP	NVA	7	25	TBD	CU NIPDAU	N / A for Pkg Type
DCP021212U	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021212U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021215DP	ACTIVE	PDIP	NVA	7	25	TBD	Call TI	Call TI
DCP021515P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	Call TI	N/A for Pkg Type
DCP021515PE4	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	Call TI	N/ A for Pkg Type
DCP021515U	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP021515U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022405DP	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
DCP022405DU	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022405DU/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022405P	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAULATE	N / A for Pkg Type
DCP022405U	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR

PACKAGE OPTION ADDENDUM

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	
DCP022405U/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022412DP	ACTIVE	PDIP	NVA	7	25	TBD	Call TI	Call TI
DCP022415DP	ACTIVE	PDIP	NVA	7	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
DCP022415DU	ACTIVE	SOP	DVB	12	28	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022415DU/1K	ACTIVE	SOP	DVB	12	1000	TBD	CU NIPDAU	Level-3-240C-168 HR
DCP022418DP	ACTIVE	PDIP	NVA	7	25	TBD	Call TI	Call TI

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NVA (R-PDIP-T7/14)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
c.

Dimensions are measured with the package seated in JEDEC seating plane gauge GS-3.
Dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed $0.010(0,25)$. Dimensions measured with the leads constrained to be perpendicular to Datum C.
Dimensions are measured at the lead tips with the leads unconstrained.
G. Pointed or rounded lead tips are preferred to ease insertion.
Lead shoulder maximum dimension does not include dambar protrusions. Dambar protrusions shall not exceed $0.010(0,25)$.
I. Distance between leads including dambar protrusions to be $0.005(0,13)$ minumum.
J. A visual index feature must be located within the cross-hatched area.
K. For automatic insertion, any raised irregularity on the top surface (step, mesa, etc.) shall be symmetrical about the lateral and longitudinal package centerlines.
L. Falls within JEDEC MS-001-AA.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C.

Body length dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, and gate burrs shall not exceed $0,15 \mathrm{~mm}$ per side.Body width dimension does not include inter-lead flash or portrusions. Inter-lead flash and protrusions shall not exceed $0,25 \mathrm{~mm}$ per side.
E. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the cross-hatched area.

Lead dimension is the length of terminal for soldering to a substrate.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

