
Technical Data

CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

Data sheet acquired from Harris Semiconductor SCHS285A – Revised November 1999

Octal Buffer/Line Drivers, 3-State

CD74AC/ACT540 - Inverting CD74AC/ACT541 - Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

FUNCTIONAL DIAGRAM

The CD54/74AC540, -541, and CD54/74ACT540, -541 octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT540 are inverting 3-state buffers having two active-LOW output enables. The CD54/74AC/ACT541 are non-inverting 3-state buffers having two active-LOW output enables.

The CD74AC540, -541, and CD74ACT540, -541 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Industrial (–40 to +85°C) and Extended Industrial/Military (–55 to +125°C).

The CD54AC540, -541, and CD54ACT540, -541, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST®/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply.
- ± 24-mA output drive current
 - Fanout to 15 FAST® ICs
 - Drives 50-ohm transmission lines

®FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLE

T WILL THE	CD54/74	AC/ACT540
INPUTS		OUTPUTS
OE1, OE2	Α	Y
L	L	Н
Ļ	Н	L
н	X	Z

H = High Voltage

L = Low Voltage

X = Immaterial

Z = High Impedance

TRUTH TABLE

	CD54/74AC/ACT541							
INPUTS		OUTPUTS						
OE1, OE2	A	Y						
Late	L	W.075						
Ł	H W	Н						
Н	X	Z						

Technical Data

CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

,	
-VOLTAGE (V _{CC}) –	0.5 to 6 V
DIODE CURRENT, $I_{ K }$ (for $V_{ K } < -0.5$ or $V_{ K } > V_{CC} + 0.5$ V)	. ±20 mA
Γ DIODE CURRENT, I_{OK} (for $V_O < -0.5$ or $V_O > V_{CC} + 0.5$ $V)$	
Γ SOURCE OR SINK CURRENT per Output Pin, IO (for V_O > -0.5 or V_O < V_{CC} + 0.5 V)	. $\pm 50~\text{mA}$
GROUND CURRENT (ICC or IGND)	±100 mA*
HERMAL IMPEDANCE, θ _{JA} (see Note 1): E package	. 69°C/W
M package	. 58°C/W

RECOMMENDED OPERATING CONDITIONS:

MAXIMUM RATINGS. Absolute-Maximum Values:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range, V _{CC} *: (For T _A = Full Package-Temperature Range)			
AC Types ACT Types	1.5 4.5	5.5 5.5	V
DC Input or Output Voltage, V _i , V _o	0	V _{CC}	V
Operating Temperature, T _A :	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0	50 20 10	ns/V ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

^{*} For up to 4 outputs per device: add ± 25 mA for each additional output.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

Technical Data	
----------------	--

STATIC ELECTRICAL CHARACTERISTICS: AC Series

			TOOT COMPLETIONS		AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		TEST CO	TEST CONDITIONS		+:	25	-40 to	o +85	-55 to	+125	UNITS
		V, (V)	l _o (mA)	V _{cc} (V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	_	1.2	_	1.2	_	
Voltage	ViH			3	2.1	_	2.1		2.1] v
				5.5	3.85	-	3.85	_	3.85	_	l
Low-Level Input				1.5	_	0.3	_	0.3		0.3	
Voltage	VIL	:	ļ	3	_	0.9	_	0.9	_	0.9] v
			1	5.5	-	1.65	_	1.65		1.65]
High-Level Output			-0.05	1.5	1.4		1.4	_	1.4	_	
Voltage	V_{OH}	ViH	-0.05	- 3	2.9		2.9		2.9	_	
		or	-0.05	4.5	4.4	_	. 4.4	_	4.4	_]
		VIL	-4	3	2.58	_	2.48		2.4	_] v
			-24	4.5	3.94	_	3.8	_	3.7]
		#, * {	-75	5.5			3.85	_	_	_	
		7, 7	-50	5.5	_				3.85	_]
Low-Level Output		<u> </u>	0.05	1.5	_	0.1	_	0.1	_	0.1	
Voltage	Vol	VIH	0.05	3	_	0.1	_	0.1		0.1]
		or	0.05	4.5	_	0.1		0.1	_	0.1]
		ViL	12	3	_	0.36	_	0.44	_	0.5	V
			24	4.5	_	0.36	_	0.44	_	0.5	
		#, * {	75	5.5	_	_	_	1.65		_	
		! "'	50	5.5			_	_	_	1.65	l
Input Leakage Current	l,	V _{cc} or GND		5.5	_	±0.1	_	±1		±1	μΑ
3-State Leakage		ViH									
Current	loz	or									
		VıL		-			}		1		
		Vo=		5.5	-	±0.5	_	±5		±10	μΑ
		Vcc	İ								
		or						1	ĺ	j 	
		GND					<u> </u>				
Quiescent Supply Current, MSI	loc	V _∞ or GND	0	5.5	_	8	_	80	_	160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissination.

power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

					AMBIEN	TEMPE	RATURE	(T _A) - °(С		
CHARACTERISTICS		TEST CO	NDITIONS	V _{cc}	+:	25	-40 t	o +85	-55 to +125		מדואט
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	_	V
Low-Level Input Voltage	ViL			4.5 to 5.5	_	0.8	_	0.8	_	0.8	v
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4		4.4		
Voltage	VoH	or V _{IL}	-24	4.5	3.94		3.8		3.7		V
		#, * {	-75	5.5	_		3.85]
			-50	5.5			_		3.85		
Low-Level Output		ViH	0.05	4.5	_	0.1		0.1		0.1	
Voltage	Vol	or V _{IL} #, * {	24	4.5	_	0.36		0.44		0.5	V
			75	5.5			_	1.65]
			50	5.5						1.65	
Input Leakage Current	l ₁	V _{CC} or GND		5.5	_	±0.1	_	±1	-	. ±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O = V _{CC} or GND		5.5	_	±0.5		±5	-	±10	μΑ
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5	_	8	_	80	_	160	μΑ
Additional Quiescent S Current per Input Pi TTL Inputs High 1 Unit Load	Supply n ΔI_{cc}	V _{cc} -2.1		4.5 to 5.5		2.4	_	2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*				
	540	541			
DATA	1.42	0.5			
OE1, OE2	1.3	1.3			

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

^{*} Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

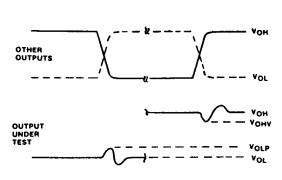
			AMBI	T			
CHARACTERISTICS	SYMBOL	(v)	-40 t	o +85	-55 to	+125	UNITS
		(*/	MIN.	MAX.	MIN.	MAX.	7
Propagation Delays: Data to Output AC540	t _{PLH}	1.5 3.3* 5†	2.4 1.8	77 8.6 6.2	2.4 1.7	85 9.5 6.8	ns
AC541	t _{PLH} t _{PHL}	1.5 3.3 5	2.8 2.1	89 9.9 7.1	 2.7 2	98 10.9 7.8	ns
Enable, to Output to Output	t _{PZL} t _{PZH}	1.5 3.3 5	4.6 3.1	136 16.4 10.9	4.5 3	150 18 12	ns
Disable to Output to Output	t _{PLZ} t _{PHZ}	1.5 3.3 5	3.9 3.1	136 13.6 10.9	— 3.8 3	150 15 12	ns
Power Dissipation Capacitance AC540 AC541	C _{PD} ‡	-		Тур. 60 Тур. Тур. 60 Тур.			pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C			٧	
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			٧	
Input Capacitance	Cı	_	_	10	-	10	рF
3-State Output Capacitance	Co	_	-	15	_	15	pF

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF

	T		AMBI	۸) - °C	T		
CHARACTERISTICS	SYMBOL	V _{cc}	-40 1	o +85	-55 to	=125	UNITS
		(V)	MIN.	MAX.	MIN.	MAX.]
Propagation Delays: Data to Output ACT540	t _{PLH} t _{PHL}	5†	1.9	6.5	1.8	7.2	ns
ACT541	t _{PLH} t _{PHL}	5†	2.1	7.5	2.1	8.2	ns
Enable to Output	t _{PZL} t _{PZH}	5	3.5	12.2	3.4	13.4	ns
Disable to Output	t _{PLZ} t _{PHZ}	5	3.5	12.2	3.4	13.4	ns
Power Dissipation Capacitance ACT540 ACT541	C _{PO} §	_	1	Тур. Тур.	60 Typ. 60 Typ.		pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C				. V
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			V	
Input Capacitance	Cı		_	10	_	10	pF
3-State Output Capacitance	Co	_	_	15	_	15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

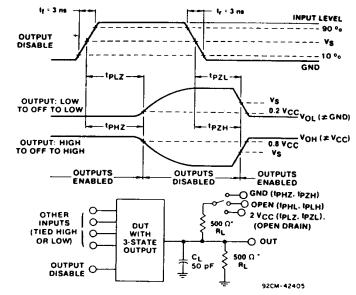
 C_{PD} is used to determine the dynamic power consumption, per channel. For AC series, $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ For ACT series, $P_D = V_{CC}^2 f_i (C_{PD} + C_L) + V_{CC} \Delta I_{CC}$ where $f_i = input free$


†5 V: min. is @ 5.5 V

 $\begin{aligned} & \textbf{f}_i = \text{input frequency} \\ & \textbf{C}_L = \text{output load capacitance} \end{aligned}$

max. is @ 4.5 V

 V_{cc} = supply voltage.


PARAMETER MEASUREMENT INFORMATION

NOTES:

- Vohy and volp are measured with respect to a ground reference near the output under test.
 Input pulses have the following characteristics:
- PRR \leq 1 MHz, t_f = 3 ne, t_f = 3 ne, SKEW 1 ne. 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 JF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

9205-42406

*FOR AC SERIES ONLY: WHEN VCC = 1.5 V, RL = 1 k Ω

Fig. 1 - Simultaneous switching transient waveforms.

Fig. 2 - Three-state propagation delay waveforms and test circuit.

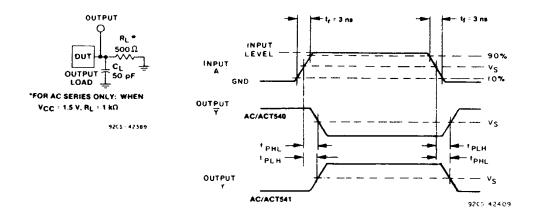


Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, V ₅	0.5 V _{cc}	0.5 V _{cc}

12-Jan-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD54AC541F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type
CD54ACT540F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type
CD54ACT541F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type
CD74AC540M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC540ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74AC541EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74AC541M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541SM	OBSOLETE	SSOP	DB	20		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC541SM96E4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT540E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74ACT540M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT540M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT540M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT540ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT541E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74ACT541EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74ACT541M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT541M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT541M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT541ME4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT541SM	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
CD74ACT541SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

12-Jan-2006

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Packa Qty	ge Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
					no Sb/Br)		
CD74ACT541SM96E4	ACTIVE	SSOP	DB	20 200	Green (RoHS & no Sb/Br)	& CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

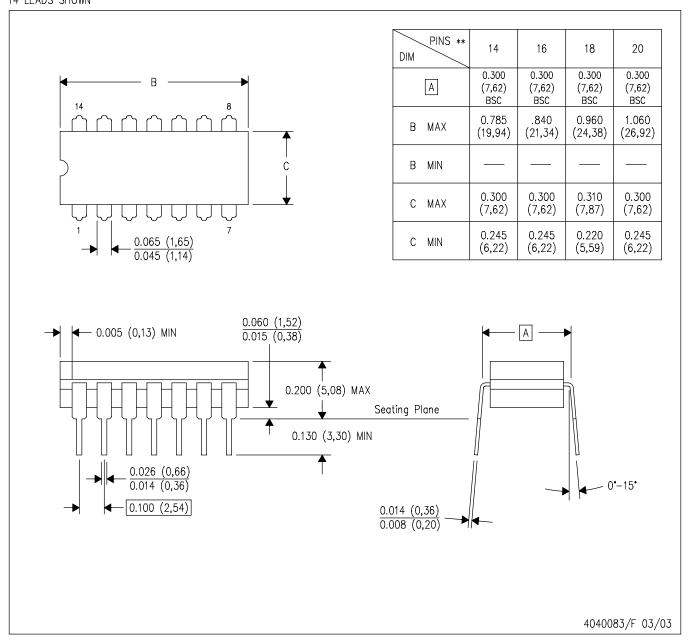
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

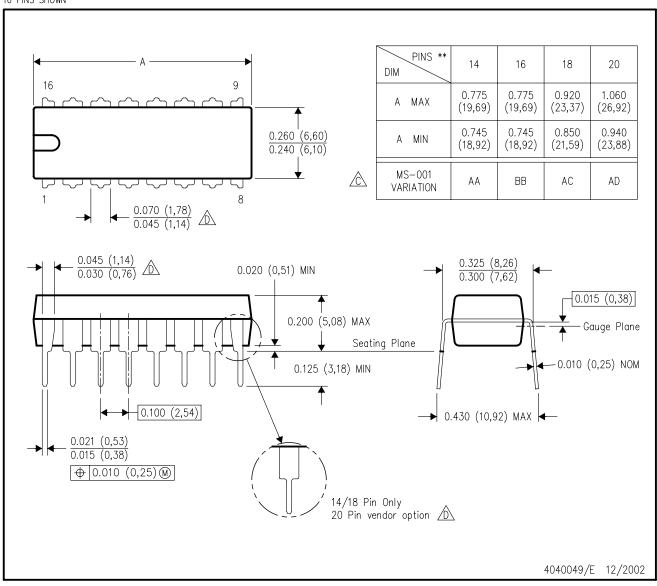

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

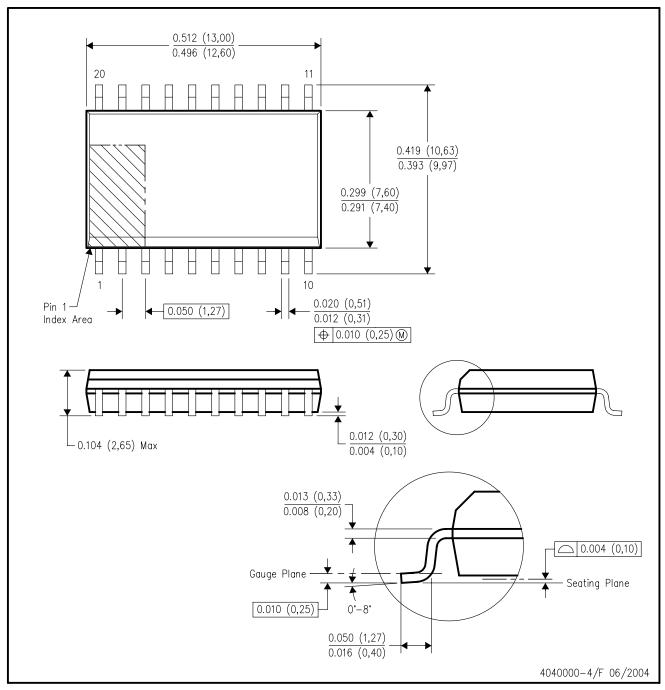

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



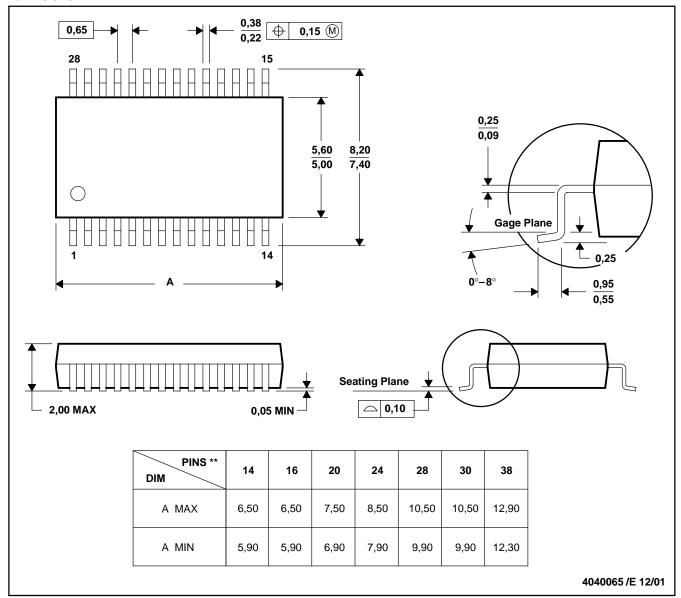
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com		Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265