Power MOSFET 95 Amps, 24 Volts

N-Channel DPAK

Features

- High Power and Current Handling Capability
- Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low Gate Charge to Minimize Switching Losses
- Pb-Free Packages are Available

Applications

- CPU Motherboard Vcore Applications
- High Frequency DC-DC Converters
- Motor Drives
- Bridge Circuits

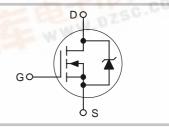
MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	24	V	
Gate-to-Source Voltage	V _{GS}	±20	V	
Thermal Resistance, Junction–to–Case Total Power Dissipation @ T _A = 25°C Drain Current –	R _{θJC} P _D	1.45 86	°C/W W	
 Continuous @ T_A= 25°C, Limited by Package Continuous @ T_A= 25°C, Limited by Wires 	I _D	95 32	A A	
Thermal Resistance, Junction-to- Ambient (Note 1)	$R_{\theta JA}$	52	°C/W	
- Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	P_{D} I_{D}	2.4 15.8	W A	
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	100	°C/W	
Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	P _D I _D	1.25 12	W A	
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 150	°C	
Continuous Source Current (Body Diode)	I _S	45	Α	
Single Pulse Drain-to–Source Avalanche Energy – (V_{DD} = 25 V, V_{G} = 10, I_{PK} = 13 A, L = 1 mH, R_{G} = 25 Ω)	E _{AS}	84	mJ	
Lead Temperature for Soldering Purposes (1/8 in from case for 10 seconds)	P.P.C.	260	°C	

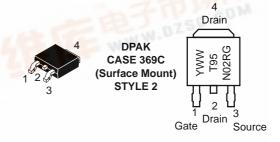
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

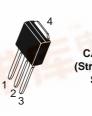
 Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

2. Surface mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412 in sq).

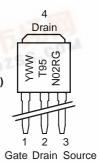


ON Semiconductor®


http://onsemi.com


V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX*
24 V	4.5 mΩ @ 10 V	95 A
24 V	5.9 mΩ @ 4.5 V	95 A

*I_D MAX in the product summary table is continuous and steady at 25°C.



MARKING DIAGRAMS & PIN ASSIGNMENTS

DPAK CASE 369D (Straight Lead) STYLE 2

Y = Year
WW = Work Week
T95N02R = Device Code
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

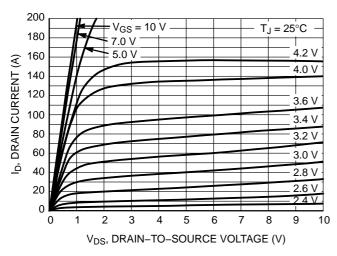
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.45	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	52	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	100	

^{3.} Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
4. Surface mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412 in sq).

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

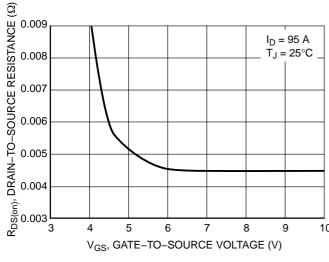
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		24	29		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			1.5 10	μΑ
Gate-to-Source Leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} =				±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.0		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D =	= 10 A		5.9	8.0	mΩ
		V _{GS} = 10 V, I _D = 20 A			4.5	5.0	
Forward Transconductance	gFS	V _{GS} = 10 V, I _D = 10 A			30		S
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 20 V			2400		pF
Output Capacitance	C _{OSS}				1020		
Reverse Transfer Capacitance	C _{RSS}				390		
Total Gate Charge	Q_{T}	V _{GS} = 4.5 V, V _{DS} = 10 V; I _D = 10 A			21		nC
	Q_{GS}				4.4		
	Q_{GD}				9.1		1
SWITCHING CHARACTERISTICS							
Turn-on Delay Time	t _{d(on)}				10		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} :	= 10 V,		82]
Turn-off Time	t _{d(off)}	$I_D = 30 \text{ A}, R_G = 3 \Omega$			26		
Fall Time	t _f				70		
DRAIN-SOURCE DIODE CHARACTERIS	STICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 20 \text{ A}$	$T_J = 25^{\circ}C$		0.83	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{ISD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			45		ns
Charge Time	Ta				20		
Discharge Time	T _b				30		
Reverse Recovery Charge	Q _{RR}				50		nC


^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

220

200


 $V_{DS} \ge 10 \text{ V}$

180 ID, DRAIN CURRENT (A) 160 140 120 100 80 T_J = 100°C 60 40 = 25°C 20 -55°C o, 4 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

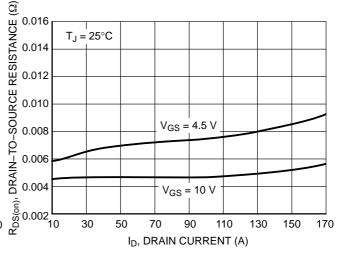
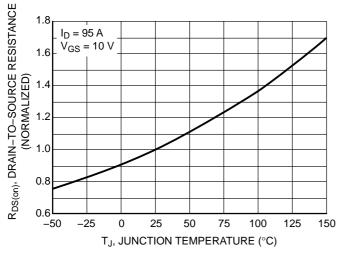
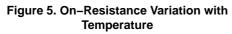




Figure 3. On–Resistance versus Gate–to–Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

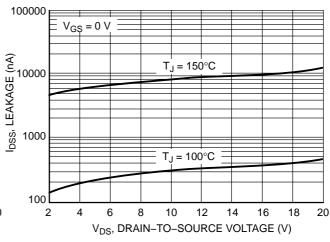


Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

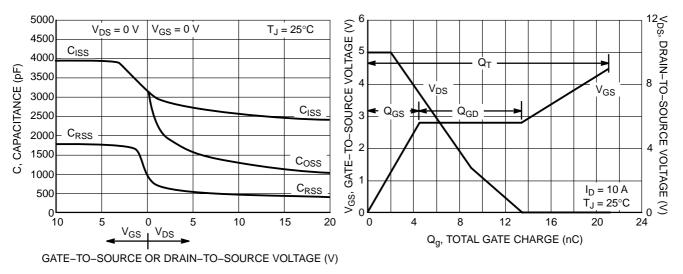


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

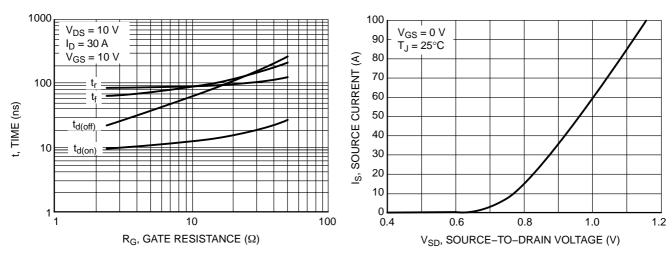
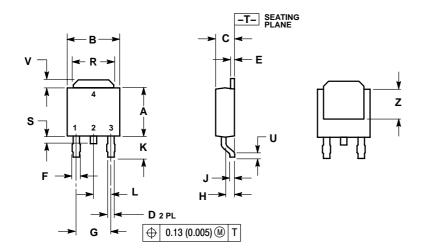


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

ORDERING INFORMATION

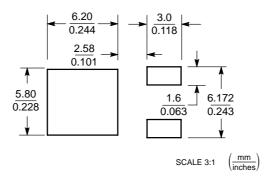

Device	Package	Shipping [†]
NTD95N02R	DPAK	75 Units / Rail
NTD95N02RG	DPAK (Pb-Free)	75 Units / Rail
NTD95N02R-001	DPAK	75 Units / Rail
NTD95N02R-001G	DPAK (Pb-Free)	75 Units / Rail
NTD95N02RT4	DPAK	2500 Units / Tape & Reel
NTD95N02RT4G	DPAK (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK

CASE 369C-01 ISSUE O

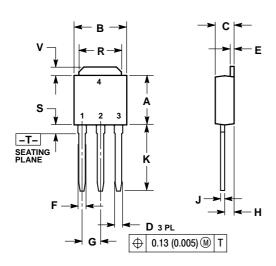


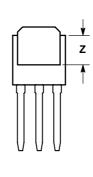
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	BSC	4.58	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29	BSC	
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*




*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK

CASE 369D-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

- PIN 1. GATE
 - 2. DRAIN 3. SOURCE
 - DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULLFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.