Freescale Semiconductor Technical Data

Document Number: MRF6S20010N Rev. 0, 12/2005

RoHS

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Designed for Class A or Class AB general purpose applications with frequencies from 1600 to 2200 MHz. Suitable for analog and digital modulation and multipurpose amplifier applications.

- Typical Two-Tone Performance @ 2170 MHz: V_{DD} = 28 Volts, I_{DQ} = 130 mA, P_{out} = 10 Watts PEP Power Gain — 15.5 dB Drain Efficiency — 36% IMD — -34 dBc
 Typical 2-Carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ} = 130 mA,
- Pout = 1 Watt Avg., Full Frequency Band (2130-2170 MHz), Channel Bandwidth = 3.84 MHz. PAR = 8.5 dB @ 0.01% Probability
 Power Gain 15.5 dB
 Drain Efficiency 15%
 IM3 @ 10 MHz Offset -47 dBc in 3.84 MHz Channel Bandwidth ACPR @ 5 MHz Offset -49 dBc in 3.84 MHz Channel Bandwidth
- Typical Single-Carrier N-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQ} = 130$ mA, $P_{out} = 1$ Watt Avg., Full Frequency Band (1930-1990 MHz), IS-95 (Pilot, Sync, Paging, Traffic Codes 8 through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 15.5 dB Drain Efficiency— 16% ACPR @ 885 kHz Offset = -60 dBc in 30 kHz Bandwidth
- Typical GSM EDGE Performance: V_{DD} = 28 Volts, I_{DQ} = 130 mA, P_{out} = 4 Watts Avg., Full Frequency Band (1805-1880 MHz) Power Gain — 16 dB Drain Efficiency — 33%
 - EVM 1.3% rms
- Capable of Handling 5:1 VSWR, @ 28 Vdc, 2000 MHz, 10 Watts CW Output Power
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified Up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- 200°C Capable Plastic Package
- N Suffix Indicates Lead-Free Terminations. RoHS Compliant.
- In Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	200	°C

NOTE - **CAUTION** - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1600-2200 MHz, 10 W, 28 V GSM/GSM EDGE SINGLE N-CDMA 2 x W-CDMA LATERAL N-CHANNEL RF POWER MOSFETS

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(1,2)	Unit
Thermal Resistance, Junction to Case Case Temperature 78°C, 1 W CW Case Temperature 79°C, 10 W PEP, Two-Tone Test	R _{θJC}	2.5 5.9	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	IV (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Unit	
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 68 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			1	μAdc
Gate - Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—		500	μAdc

On Characteristics

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 40 μAdc)	V _{GS(th)}	1.5	2.2	3.5	Vdc
Gate Quiescent Voltage (V_{DS} = 28 Vdc, I_D = 130 mAdc, Measured in Functional Test)	V _{GS(Q)}	2	2.8	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.4 Adc)	V _{DS(on)}	_	0.33	0.4	Vdc

Dynamic Characteristics⁽³⁾

•					
Input Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{iss}		0.12		pF
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}		0.02		pF
Reverse Transfer Capacitance (V_{DS} = 28 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{rss}	_	11.6	_	pF

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 10 W PEP, f1 = 2170 MHz, f2 = 2170.1 MHz, Two-Tone Test

Power Gain	G _{ps}	14	15.5	17	dB
Drain Efficiency	η _D	33	36	_	%
Intermodulation Distortion	IMD	—	-34	-28	dBc
Input Return Loss	IRL	—	-15	-9	dB

1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.

2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

3. Part internally matched on input.

(continued)

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit

Typical 2-Carrier W-CDMA Performances (In Freescale CDMA Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ} = 130$ mA, $P_{out} = 1$ W Avg., f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ \pm 5 MHz Offset. IM3 measured in 3.84 MHz Bandwidth @ \pm 10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}		15.5		dB
Drain Efficiency	η_D		15		%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 1 W CW	G _F	_	0.3	_	dB
Intermodulation Distortion	IM3		-47	—	dBc
Adjacent Channel Power Ratio	ACPR		-49	—	dBc

Typical N-CDMA Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 1 W Avg., 1930 MHz<Frequency<1990 MHz, Single-Carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ ±885 kHz Offset. PAR = 9.8 dB @ 0.01% Probability on CCDF

Power Gain	G _{ps}	_	15.5	—	dB
Drain Efficiency	η_D	_	16	_	%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 1 W CW	G _F	_	0.3	—	dB
Adjacent Channel Power Ratio	ACPR	—	-60	—	dBc

Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 4 W Avg., 1805 MHz<Frequency<1880 MHz

Power Gain	G _{ps}	_	16	_	dB
Drain Efficiency	η _D	_	33	_	%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 4 W CW	G _F	_	0.3	_	dB
Error Vector Magnitude	EVM	_	1.3	_	% rms
Spectral Regrowth at 400 kHz Offset	SR1	—	-60	—	dBc
Spectral Regrowth at 600 kHz Offset	SR2	_	-70	_	dBc

Table 0. With 00200 (01111101111) lest of cut 00110011efft Designations and values $-2110-2170$ with
--

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor (1206)	CDR33BX104AKWS	Kemet
C2, C6	4.7 pF 600B Chip Capacitors	600B4R7CW	ATC
C3, C7, C8	9.1 pF 600B Chip Capacitors	600B9R1CW	ATC
C4, C5, C9, C10	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88B	Murata
C11	10 µF, 35 V Tantalum Chip Capacitor	T490D106K035AS	Kemet
R1	1 kΩ Chip Resistor (1206)		
R2	10 kΩ Chip Resistor (1206)		
R3	10 Ω Chip Resistor (1206)		

Figure 2. MRF6S20010NR1(GNR1) Test Circuit Component Layout — 2110-2170 MHz

TYPICAL CHARACTERISTICS - 2110-2170 MHz

TYPICAL CHARACTERISTICS - 2110-2170 MHz

Figure 12. MTTF Factor versus Junction Temperature

W-CDMA TYPICAL CHARACTERISTICS - 2110-2170 MHz

Figure 13. 2-Carrier W-CDMA Broadband Performance @ Pout = 1 Watt Avg.

and Drain Efficiency versus Output Power

W-CDMA TEST SIGNAL

Figure 15. CCDF W-CDMA 3GPP, Test Model 1, 64 DPCH, 67% Clipping, Single-Carrier Test Signal

N-CDMA TYPICAL CHARACTERISTICS - 1930-1990 MHz

Figure 17. MRF6S20010NR1(GNR1) Test Circuit Schematic — 1930-1990 MHz

Table 7. MRF6S20010NR1(GNR1)	Test Circuit Com	ponent Designations and	Values — 1930-1990 MHz
· · · · · · · · · · · · · · · · · · ·			

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor (1206)	1206C104KAT	AVX
C2, C6	4.7 pF 600B Chip Capacitors	600B4R7BW	ATC
C3, C7, C8	9.1 pF 600B Chip Capacitors	600B9R1BW	ATC
C4, C5, C9, C10	10 μF Chip Capacitors (2220)	C5750X5R1H106MT	TDK
C11	10 µF, 35 V Tantalum Chip Capacitor	TAJD106K035	AVX
R1, R2	10 k Ω Chip Resistors (1206)		
R3	10 Ω Chip Resistor (1206)		

N-CDMA TYPICAL CHARACTERISTICS - 1930-1990 MHz

Figure 18. MRF6S20010NR1(GNR1) Test Circuit Component Layout - 1930-1990 MHz

GSM EDGE TYPICAL CHARACTERISTICS - 1805-1880 MHz

Figure 23. MRF6S20010NR1(GNR1) Test Circuit Schematic — 1805-1880 MHz

Table 0. Min 60266 Fourth (Girlin) rest on curt component Designations and values — 1665-1666 Minz						
Part	Description	Part Number	Manufacturer			
C1	100 nF Chip Capacitor (1206)	1206C104KAT	AVX			
C2, C6	4.7 pF 600B Chip Capacitors	600B4R7BW	ATC			
C3, C7, C8	9.1 pF 600B Chip Capacitors	600B9R1BW	ATC			
C4, C5, C9, C10	10 μF Chip Capacitors (2220)	C5750X5R1H106MT	TDK			

TAJD106K035

Table 8. MRF6S20010NR1	(GNR1) Tes	t Circuit Com	ponent Designat	tions and Value	s —1805-1880 MHz
	· /				

10 µF, 35 V Tantalum Chip Capacitor

10 kΩ Chip Resistors (1206)

10 Ω Chip Resistor (1206)

C11

R1, R2 R3 AVX

GSM EDGE TYPICAL CHARACTERISTICS - 1805-1880 MHz

Figure 24. MRF6S20010NR1(GNR1) Test Circuit Component Layout - 1805-1880 MHz

GSM EDGE TYPICAL CHARACTERISTICS - 1805-1880 MHz

Figure 26. Error Vector Magnitude and Drain Efficiency versus Output Power

RF Device Data Freescale Semiconductor

2170 MHz V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 10 W PEP

f MHz	z_{source}	Z_{load}
2110	3.619 + j0.792	2.544 + j3.068
2140	3.918 + j0.797	2.673 + j3.291
2170	4.087 + j0.558	2.818 + j3.406

	1900 MHz					
	V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 1 W Avg.					
Γ	f	7	7			

MHz	∠ source Ω	∠load Ω
1930	9.237 + j1.849	2.770 + j3.497
1960	9.521 + j2.144	2.754 + j3.668
1990	9.889 + j2.434	2.772 + j3.833

1800 MHz							
V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 4 W Avg.							
f MHz	\mathbf{Z}_{source}	z_{load}					
1805	13.237 + j5.810	2.445 + j3.698					
1840	13.953 + j6.084	2.542 + j3.942					

14.858 + j6.279

1880

Test circuit impedance as measured from Z_{source} = gate to ground.

2.695 + j4.170

Figure 29. Series Equivalent Source and Load Impedance

Table 9. Common Source Scattering Parameters (V_{DD} = 28 V, 50 ohm system)

I_{DQ} = 126 mA

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
500	0.984	- 178.1	1.195	42.42	0.001	- 129.1	0.875	- 116.3
550	0.986	- 179.0	0.947	40.48	0.001	-159.2	0.892	-121.6
600	0.985	179.9	0.747	39.66	0.001	147.4	0.905	-125.9
650	0.986	178.9	0.581	39.89	0.001	119.1	0.913	-129.9
700	0.982	177.9	0.446	41.80	0.001	108.1	0.927	-133.4
750	0.983	177.2	0.336	46.70	0.002	102.9	0.935	-136.4
800	0.983	176.5	0.248	56.02	0.002	96.99	0.941	-139.5
850	0.979	175.5	0.188	72.74	0.003	97.40	0.947	-141.9
900	0.980	174.8	0.168	96.69	0.003	94.63	0.951	-144.4
950	0.977	174.0	0.183	119.3	0.004	91.92	0.955	-146.6
1000	0.978	173.2	0.223	134.3	0.004	92.80	0.960	-148.6
1050	0.972	172.4	0.276	142.2	0.004	89.92	0.962	-150.5
1100	0.972	171.4	0.335	146.4	0.005	89.90	0.966	-152.2
1150	0.963	170.8	0.396	148.5	0.005	87.51	0.977	-153.7
1200	0.964	169.9	0.461	148.8	0.006	89.25	0.971	-155.2
1250	0.956	169.0	0.531	148.2	0.007	86.98	0.977	-156.8
1300	0.948	167.8	0.604	146.9	0.007	85.08	0.982	-157.9
1350	0.939	167.0	0.685	144.8	0.008	82.40	0.986	-159.5
1400	0.927	165.7	0.772	142.2	0.008	79.69	0.988	-160.7
1450	0.910	164.5	0.869	138.7	0.009	77.79	0.994	-162.1
1500	0.889	163.2	0.975	134.7	0.010	75.79	0.991	-163.4
1550	0.861	161.9	1.093	129.7	0.010	72.86	0.993	-164.7
1600	0.821	160.9	1.221	123.8	0.011	69.89	0.996	-166.0
1650	0.780	160.1	1.356	116.7	0.012	63.71	0.984	-167.4
1700	0.722	160.6	1.491	108.3	0.013	57.70	0.985	- 168.5
1750	0.666	162.5	1.606	98.77	0.014	49.85	0.977	-169.6
1800	0.618	167.0	1.687	88.09	0.014	41.19	0.970	-170.8
1850	0.603	173.3	1.706	76.98	0.013	32.65	0.958	-171.3
1900	0.614	179.7	1.673	66.08	0.012	25.40	0.954	-171.9
1950	0.654	- 175.6	1.591	55.96	0.011	20.73	0.945	-172.3
2000	0.701	- 173.5	1.484	47.04	0.010	15.11	0.947	-172.6
2050	0.747	- 172.7	1.364	39.29	0.008	10.13	0.947	-173.0
2100	0.783	- 172.6	1.242	32.87	0.006	6.333	0.945	-173.6
2150	0.816	- 172.9	1.136	27.69	0.004	15.63	0.944	- 173.9
2200	0.842	- 173.6	1.042	23.26	0.004	42.20	0.944	-174.2
2250	0.864	-174.2	0.961	19.26	0.005	57.76	0.948	-174.6
2300	0.882	- 175.0	0.888	15.75	0.006	62.56	0.948	-175.2
2350	0.894	- 175.7	0.822	12.69	0.008	59.72	0.949	-175.7
2400	0.906	- 176.4	0.764	9.857	0.009	49.09	0.951	-176.1
2450	0.910	-176.9	0.712	7.587	0.008	39.24	0.955	-176.5

Table 9. Common Source Scattering Parameters (V_{DD} = 28 V, 50 ohm system) (continued)

I_{DQ} = 126 mA

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
2500	0.923	-177.5	0.666	5.462	0.006	42.56	0.957	-177.2
2550	0.927	-178.0	0.625	3.680	0.006	52.25	0.962	-177.8
2600	0.937	-178.8	0.591	1.864	0.006	60.26	0.961	-178.4
2650	0.937	-179.0	0.559	0.237	0.007	64.14	0.964	-179.1
2700	0.942	-179.8	0.529	- 1.378	0.007	65.62	0.964	-179.6
2750	0.945	-179.9	0.504	-2.768	0.007	64.71	0.964	179.7
2800	0.946	179.5	0.479	-4.088	0.007	67.58	0.966	179.4
2850	0.950	179.3	0.456	-5.412	0.007	75.44	0.966	178.8
2900	0.949	178.8	0.436	-6.305	0.008	82.04	0.964	178.3
2950	0.952	178.5	0.419	-7.279	0.009	83.60	0.967	177.9
3000	0.950	178.4	0.402	-8.087	0.011	83.41	0.968	177.4
3050	0.958	177.9	0.387	-9.138	0.012	81.35	0.964	176.8
3100	0.953	177.7	0.373	-9.904	0.013	77.45	0.969	176.4
3150	0.957	177.2	0.362	- 10.86	0.014	70.98	0.970	176.2
3200	0.960	177.4	0.350	- 11.79	0.013	67.00	0.970	175.5

NOTES

NOTES

NOTES

PACKAGE DIMENSIONS

CASE 1265-08 **ISSUE H** TO-270-2 PLASTIC MRF6S20010NR1

- NOTES:
 CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
 DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
 DIMENSIONS 'DI' AND 'E1' DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS 'D1' AND 'E1' DO INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -H-.
 DIMENSION TH DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE 51 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DATUMS -A- AND -B- TO BE DETERMINED AT
- CONDITION. 6. DATUMS A- AND B- TO BE DETERMINED AT DATUM PLANE H-. 7. DIMENSION A2 APPLES WITHIN ZONE "J" ONLY. 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS.003 PER SIDE. DIMENSIONS "D" AND "E2" DO VICTURE MOLD MUNDOL MOL DE DETE TO INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -D-.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	.078	.082	1.98	2.08		
A1	.039	.043	0.99	1.09		
A2	.040	.042	1.02	1.07		
D	.416	.424	10.57	10.77		
D1	.378	.382	9.60	9.70		
D2	.290	.320	7.37	8.13		
D3	.016	.024	0.41	0.61		
Е	.436	.444	11.07	11.28		
E1	.238	.242	6.04	6.15		
E2	.066	.074	1.68	1.88		
E3	.150	.180	3.81	4.57		
E4	.058	.066	1.47	1.68		
E5	.231	.235	5.87	5.97		
F	.025 BSC		0.64 BSC			
b1	.193	.199	4.90	5.06		
c1	.007	.011	0.18	0.28		
aaa	.004		0.10			

STYLE 1:

PIN 1. DRAIN 2. GATE 3. SOURCE

CASE 1265A-02 **ISSUE B** TO-270-2 GULL PLASTIC MRF6S20010GNR1

- NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994. 3. DATUM PLANE. +I- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 000 FER SIDE DIMENSIONS "D1" AND "E1" DO
- IS .006 PER SIDE. DIMENSIONS "D1" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETER-
- INCLUDE MOLD MISMALCH AND ARE DE LEH-MINED AT DATUM PLANE -H-. 5. DIMENSION 51 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE. 005 TOTAL IN EXCESS OF THE 51 DIMENSION AT MAXIMUM MATERIAL CONDITION
- 6.

OP THE DI DIMENSION AT MAAIMUM MATERIAL CONDITION. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS.003 PER SIDE. DIMENSIONS "D" AND "E2" DO WOLUPE TO DIMENSIONS "D" AND "E2" DO 7. INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -D-.

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.078	.082	1.98	2.08
A1	.001	.004	0.02	0.10
A2	.077	.088	1.96	2.24
D	.416	.424	10.57	10.77
D1	.378	.382	9.60	9.70
D2	.290	.320	7.37	8.13
D3	.016	.024	0.41	0.61
E	.316	.324	8.03	8.23
E1	.238	.242	6.04	6.15
E2	.066	.074	1.68	1.88
E3	.150	.180	3.81	4.57
E4	.058	.066	1.47	1.68
E5	.231	.235	5.87	5.97
L	.018	.024	4.90	5.06
L1	.01 BSC		0.25 BSC	
b1	.193	.199	4.90	5.06
c1	.007	.011	0.18	0.28
е	2°	8°	2°	8°
aaa	.004		0.10	

STYLE 1: PIN 1. DRAIN 2. GATE

3. SOURCE

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

