

Wireless enCoRe™ II
 Microcontroller

CY7C601xx
CY7C602xx
1.0 Features

• Wireless enCoRe � II —“enhanced Component
Reduction”
— Internal crystalless oscillator with support for an

optional external crystal or resonator.

— Configurable IO for real-world interface without
external components

• Enhanced 8-bit microcontroller
— Harvard architecture

— M8C CPU speed can be up to 12 MHz or sourced by
an external crystal, resonator, or clock signal

• Internal memory
— 256 bytes of RAM

— 8 Kbytes of Flash including EEROM emulation

• Low power consumption
— Typically 1.97mA at 3 MHz

— 5-µA sleep

• In-system reprogrammability
— Allows easy firmware update

• General-purpose I/O ports
— Up to 36 General Purpose I/O (GPIO) pins

— High current drive on GPIO pins. Configurable 8- or
50-mA/pin current sink on designated pins

— Each GPIO port supports high-impedance inputs,
configurable pull-up, open drain output, CMOS/TTL
inputs, and CMOS output

— Maskable interrupts on all I/O pins

• SPI serial communication
— Master or slave operation

— Configurable up to 2-Mbit/second transfers

— Supports half duplex single data line mode for
optical sensors

• 2-channel 8-bit or 1-channel 16-bit capture timer.
Capture timer registers store both rising and falling
edge times
— Two registers each for two input pins

— Separate registers for rising and falling edge capture

— Simplifies interface to RF inputs for wireless
applications

• Internal low-power wake-up timer during suspend
mode
— Periodic wake-up with no external components

• Programmable Interval Timer interrupts

• Reduced RF emissions at 27 MHz and 96 MHz

• Watchdog timer (WDT)

• Low-voltage Detection with user-selectable threshold
voltages

• Improved output drivers to reduce EMI

• Operating voltage from 2.7V to 3.6VDC

• Operating temperature from 0–70°C

• Available in 24/40-pin PDIP, 24-pin SOIC, 24-pin
QSOP/SSOP, 28-pin SSOP, 48-pin SSOP, and DIE form

• Advanced development tools based on Cypress
PSoC™ tools

• Industry-standard programmer support

1.1 Applications

The CY7C601xx/CY7C602xx is targeted for the following
applications:

• Wireless HID devices
— Mice (optomechanical, optical, trackball)

— Keyboards

— Presenter tools

• General purpose wireless applications
— Remote controls

— Barcode scanners

— POS terminal

— Consumer electronics

— Toys

2.0 Introduction

The Wireless enCoRe II family brings the features and benefits
of the enCoRe II to non-USB applications. The enCoRe II
family has an integrated oscillator that eliminates the external
crystal or resonator, reducing overall cost. Also integrated into
this chip are other external components such as wake-up
circuitry.

The Wireless enCoRe II is a low-voltage, low-cost 8-bit Flash-
programmable microcontroller

The Wireless enCoRe II features up to 36 general-purpose I/O
(GPIO) pins. The I/O pins are grouped into five ports (Port 0 to
4). The pins on Port 0 and Port 1 may each be configured
individually while the pins on Ports 2, 3, and 4 may only be
configured as a group. Each GPIO port supports high-
impedance inputs, configurable pull-up, open drain output,
CMOS/TTL inputs, and CMOS output with up to five pins that
support programmable drive strength of up to 50-mA sink
current. Additionally, each I/O pin can be used to generate a
GPIO interrupt to the microcontroller. Each GPIO port has its
own GPIO interrupt vector with the exception of GPIO Port 0.
GPIO Port 0 has three dedicated pins that have independent
interrupt vectors (P0.2–P0.4).

The Wireless enCoRe II features an internal oscillator.
Optionally, an external 1-MHz to 24-MHz crystal can be used
to provide a higher precision reference.

The WIreless enCoRe II has 8 Kbytes of Flash for user’s code
and 256 bytes of RAM for stack space and user variables.
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document 38-16016 Rev. *A Revised October 3, 2005

 CY7C601xx
CY7C602xx
In addition, enCoRe II includes a Watchdog timer, a vectored
interrupt controller, a 16-bit Free-Running Timer with Capture
registers and a 12-bit Programmable Interval Timer. The
Power-on reset circuit detects when power is applied to the
device, resets the logic to a known state, and begins executing
instructions at Flash address 0x0000. When power falls below
a programmable trip voltage it generates a reset or may be
configured to generate an interrupt. There is a Low-voltage
detect circuit that detects when VCC drops below a program-
mable trip voltage and it may be configurable to generate a
LVD interrupt to inform the processor about the low-voltage
event. POR and LVD share the same interrupt; there is no
separate interrupt for each. The Watchdog timer can be used
to ensure the firmware never gets stalled in an infinite loop.

The microcontroller supports 17 maskable interrupts in the
vectored interrupt controller. All interrupts can be masked.
Interrupt sources include LVR/POR, a programmable interval
timer, a nominal 1.024-ms programmable output from the Free
Running Timer, two capture timers, five GPIO Ports, three
GPIO pins, two SPI, a 16-bit free-running timer wrap and an
internal wake-up timer interrupt. The wake-up timer causes
periodic interrupts when enabled. The capture timers interrupt
whenever a new timer value is saved due to a selected GPIO
edge event. A total of eight GPIO interrupts support both TTL
or CMOS thresholds. For additional flexibility, on the edge-

sensitive GPIO pins, the interrupt polarity is programmable to
be either rising or falling.

The free-running timer generates an interrupt at 1024-µs rate.
It can also generate an interrupt when the free-running counter
overflow occurs—every 16.384 ms. The timer can be used to
measure the duration of an event under firmware control by
reading the timer at the start and at the end of an event, then
calculating the difference between the two values. The two 8-
bit capture timers save a programmable 8-bit range of the free-
running timer when a GPIO edge occurs on the two capture
pins (P0.5, P0.6). The two 8-bit captures can be ganged into
a single 16-bit capture.

The Wireless enCoRe II supports in-system programming by
using the P1.0 and P1.1 pins as the serial programming mode
interface.

3.0 Conventions

In this document, bit positions in the registers are shaded to
indicate which members of the Wireless enCoRe II family
implement the bits.

4.0 Logic Block Diagram

5.0 Packages/Pinouts

 Available in all Wireless enCoRe II family members

CY7C601xx only

Figure 4-1. CY7C601xx/CY7C602xx Block Diagram

Internal
12 MHz

Oscillator

Clock
Control

Crystal
Oscillator

CY7C601xx only POR /
Low-Voltage

Detect

Watchdog
Timer

M8C CPU

16 Extended
I/O Pins

16 GPIO
Pins

Wakeup
Timer

Capture
Timers12-bit Timer

V
dd

Interrupt
Control

4 SPI/GPIO
Pins

Flash
8K Byte

RAM
256 Byte
Document 38-16016 Rev. *A Page 2 of 57

 CY7C601xx
CY7C602xx
Figure 5-1. Package Configurations

1
2
3
4
5
6

9

11

15
16
17
18
19
20

22
21

NC
P0.7

TIO1/P0.6
TIO0/P0.5
INT2/P0.4
INT1/P0.3

CLKIN\P0.0

P2.0

P1.5/SMOSI

P1.3/SSEL

P3.1
P3.0

VDD

P1.2

P1.1
P1.014

P1.4/SCLK

10P2.1

NC VSS12 13

7
8

INT0/P0.2
CLKOUT\P0.1

24
23

P1.7
P1.6/SMISO

24-pin QSOP
CY7C60223

Top View

1
2
3
4
5
6

9

11

15
16
17
18
19
20

22
21

P3.0
P3.1

SCLK/P1.4
SMOSI/P1.5
SMISO/P1.6

P1.7

P0.7

TIO0/P0.5

VDD

P2.0

P1.0
VSS

P0.0/CLKIN
P2.1

P0.1/CLKOUT
P0.2/INT014

P1.1

10TIO1/P0.6

INT2/P0.4 P0.3/INT112 13

7
8

NC
NC

24
23

P1.3/SSEL
P1.2

24-pin PDIP
CY7C60223

1
2
3
4
5
6

9

11

15
16
17
18
19
20

22
21

NC
P0.7

TIO1/P0.6
TIO0/P0.5
INT2/P0.4
INT1/P0.3

CLKIN\P0.0

P2.0

P1.6/SMISO

P3.0

P1.4/SCLK
P3.1

P1.2
P1.3/SSEL

VDD
P1.114

P1.5/SMOSI

10P2.1

VSS P1.012 13

7
8

INT0/P0.2
CLKOUT\P0.1

24
23

NC
P1.7

24-pin SOIC
CY7C60223

1
2
3
4
5
6

9

11

19
20
21
22
23
24

26
25

VDD
P2.7
P2.6
P2.5
P2.4
P0.7

INT2/P0.4

INT0/P0.2

P3.6

P1.6/SMISO

P3.4
P1.7

P1.4/SCLK
P1.5/SMOSI

P1.3/SSEL
P1.218

P3.5

10INT1/P0.3

CLKOUT/P0.1 VDD12 17

7
8

TIO1/P0.6
TIO0/P0.5

28
27

VSS
P3.7

28-pin SSOP
CY7C60113

15
16 P1.1

P1.0
13CLKIN/P0.0
14VSS

1
2
3
4
5
6

9

11

VDD
P4.1

P2.6

P2.4

10

P2.5

P2.3

12

7
8

P4.0
P2.7

40-pin PDIP
CY7C60123

13
14
15
16
17
18

P2.2
P2.1
P2.0
P0.7

T1O1/P0.6
TIO0/P0.5

INT0/P0.2

CLKIN/P0.0
CLKOUT/P0.1

VSS

19

INT2/P0.4
INT1/P0.3

21
22
23
24

26
25

P3.0

P1.4/SCLK

P1.6/SMISO
P1.5/SMOSI

P1.2
P1.3/SSEL

VDD
P1.1

P1.7

P1.0

28
27

P3.2
P3.131

32
33
34
35
36

38
37

P4.2

VSS
P4.3

P3.6
P3.7

P3.5
P3.4

30

P3.3

29

40
39

20

1
2
3
4
5
6

9

11

NC
NC
NC
NC

VDD
P4.1

P2.6

P2.4
10P2.5

P2.3 12

7
8

P4.0
P2.7

48-pin SSOP
CY7C60123

13
14
15
16
17
18

21

23

P2.2
P2.1
P2.0
P0.7

TIO1/P0.6
TIO0/PO.5

INT0/P0.2

CLKIN/P0.0
22CLKOUT/P0.1

VSS 24

19
20

INT2/P0.4
INT1/P0.3

27
28
29
30
31
32

34
33

P3.0

P1.4/SCLK

P1.6/SMISO
P1.5/SMOSI

P1.2
P1.3/SSEL

VDD
P1.126

P1.7

P1.025

36
35

P3.2
P3.1

39
40
41
42
43
44

46
45

NC

P4.2

VSS
P4.3

P3.6
P3.7

P3.5
P3.438

NC

P3.337

48
47

NC
NC
Document 38-16016 Rev. *A Page 3 of 57

 CY7C601xx
CY7C602xx
5.1 Pinouts Assignments

Table 5-1. Pin Assignments

48
SSOP

40
PDIP

28
SSOP

24
QSOP

24
SOIC

24
PDIP Name Description

7 3 P4.0 GPIO Port 4—configured as a group (nibble)

6 2 P4.1

42 38 P4.2

43 39 P4.3

34 30 19 18 1 P3.0 GPIO Port 3—configured as a group (byte)

35 31 20 19 2 P3.1

36 32 P3.2

37 33 P3.3

38 34 24 P3.4

39 35 25 P3.5

40 36 26 P3.6

41 37 27 P3.7

15 11 11 11 18 P2.0 GPIO Port 2—configured as a group (byte)

14 10 10 10 17 P2.1

13 9 P2.2

12 8 P2.3

11 7 5 P2.4

10 6 4 P2.5

9 5 3 P2.6

8 4 2 P2.7

25 21 15 14 13 20 P1.0 GPIO Port 1 bit 0

26 22 16 15 14 21 P1.1 GPIO Port 1 bit 1

28 24 18 17 16 23 P1.2 GPIO Port 1 bit 2

29 25 19 18 17 24 P1.3/SSEL GPIO Port 1 bit 3—Configured individually.
Alternate function is SSEL signal of the SPI bus

30 26 20 21 20 3 P1.4/SCLK GPIO Port 1 bit 4—Configured individually.
Alternate function is SCLK signal of the SPI bus

31 27 21 22 21 4 P1.5/SMOSI GPIO Port 1 bit 5—Configured individually.
Alternate function is SMOSI signal of the SPI bus

32 28 22 23 22 5 P1.6/SMISO GPIO Port 1 bit 6—Configured individually.
Alternate function is SMISO signal of the SPI bus

33 29 23 24 23 6 P1.7 GPIO Port 1 bit 7—Configured individually. TTL voltage threshold

23 19 13 9 9 16 P0.0/CLKIN GPIO Port 0 bit 0—Configured individually.
On CY7C601xx, optional Clock In when external oscillator is
disabled or external oscillator input when external oscillator is
enabled.
On CY7C602xx, oscillator input when configured as Clock In
If this pin is used as a General Purpose output it will draw
current. This pin should be configured as an input to reduce
current draw.
Document 38-16016 Rev. *A Page 4 of 57

 CY7C601xx
CY7C602xx
22 18 12 8 8 15 P0.1 / CLKOUT GPIO Port 0 bit 1—Configured individually
On CY7C601xx, optional clock out when external oscillator is
disabled or external oscillator output drive when external oscil-
lator is enabled.
On CY7C602xx, oscillator output when configured as Clock out.
If this pin is used as a General Purpose output it will draw
current. This pin should be configured as an input to reduce
current draw.

21 17 11 7 7 14 P0.2/INT0 GPIO port 0 bit 2—Configured individually
Optional rising edge interrupt INT0

20 16 10 6 6 13 P0.3/INT1 GPIO port 0 bit 3—Configured individually
Optional rising edge interrupt INT1

19 15 9 5 5 12 P0.4/INT2 GPIO port 0 bit 4—Configured individually
Optional rising edge interrupt INT2

18 14 8 4 4 11 P0.5/TIO0 GPIO port 0 bit 5—Configured individually
Alternate function Timer capture inputs or Timer output TIO0

17 13 7 3 3 10 P0.6/TIO1 GPIO port 0 bit 6—Configured individually
Alternate function Timer capture inputs or Timer output TIO1

16 12 6 2 2 9 P0.7 GPIO port 0 bit 7—Configured individually

1,2,3,4 1 1 7 NC No connect

45,46,
47,48

12 24 8 NC No connect

5 1 17 VDD Power

27 23 1 16 15 22

44 40 14 – – – VSS

24 20 28 13 12 19

Table 5-1. Pin Assignments (continued)

48
SSOP

40
PDIP

28
SSOP

24
QSOP

24
SOIC

24
PDIP Name Description
Document 38-16016 Rev. *A Page 5 of 57

 CY7C601xx
CY7C602xx
6.0 Register Summary

Wireless enCoRe II Register Summary

Addr Name 7 6 5 4 3 2 1 0 R/W Default
00 P0DATA P0.7 P0.6/TIO1 P0.5/TIO0 P0.4/INT2 P0.3/INT1 P0.2/INT0 P0.1/

CLKOUT
P0.0/CLKIN bbbbbbbb 00000000

01 P1DATA P1.7 P1.6/SMISO P1.5/SMOSI P1.4/SCLK P1.3/SSEL P1.2 P1.1 P1.0 bbbbbbbb 00000000

02 P2DATA P2.7–P2.2 P2.1–P2.0 bbbbbbbb 00000000

03 P3DATA P3.7–P3.2 P3.1–P3.0 bbbbbbbb 00000000

04 P4DATA Reserved P4.3–P4.0 ----bbbb 00000000

05 P00CR Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up
Enable

Output
Enable

-bbbbbbb 00000000

06 P01CR CLK Output Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up
Enable

Output
Enable

bbbbbbbb 00000000

07–09 P02CR–
P04CR

Reserved Int Act Low TTL Thresh Reserved Open Drain Pull-up
Enable

Output
Enable

--bb-bbb 00000000

0A–0B P05CR–
P06CR

TIO Output Int Enable Int Act Low TTL Thresh Reserved Open Drain Pull-up
Enable

Output
Enable

bbbb-bbb 00000000

0C P07CR Reserved Int Enable Int Act Low TTL Thresh Reserved Open Drain Pull-up
Enable

Output
Enable

-bbb-bbb 00000000

0D P10CR Reserved Int Enable Int Act Low Reserved Output
Enable

-bb----b 00000000

0E P11CR Reserved Int Enable Int Act Low Reserved Open Drain Reserved Output
Enable

-bb--b-b 00000000

0F P12CR CLK Output Int Enable Int Act Low TTL
Threshold

Reserved Open Drain Pull-up
Enable

Output
Enable

bbbb-bbb 00000000

10 P13CR Reserved Int Enable Int Act Low Reserved High Sink Open Drain Pull-up
Enable

Output
Enable

-bb-bbbb 00000000

11–13 P14CR–
P16CR

SPI Use Int Enable Int Act Low Reserved High Sink Open Drain Pull-up
Enable

Output
Enable

bbb-bbbb 00000000

14 P17CR Reserved Int Enable Int Act Low Reserved High Sink Open Drain Pull-up
Enable

Output
Enable

-bb-bbbb 00000000

15 P2CR Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up
Enable

Output
Enable

-bbbbbbb 00000000

16 P3CR Reserved Int Enable Int Act Low TTL Thresh High Sink Open Drain Pull-up
Enable

Output
Enable

-bbbbbbb 00000000

17 P4CR Reserved Int Enable Int Act Low TTL Thresh Reserved Open Drain Pull-up
Enable

Output
Enable

-bbb-bbb 00000000

20 FRTMRL Free Running Timer [7:0] bbbbbbbb 00000000

21 FRTMRH Free Running Timer [15:8] bbbbbbbb 00000000

22 TCAP0R Capture 0 Rising [7:0] rrrrrrrr 00000000

23 TCAP1R Capture 1 Rising [7:0] rrrrrrrr 00000000

24 TCAP0F Capture 0 Falling [7:0] rrrrrrrr 00000000

25 TCAP1F Capture 1 Falling [7:0] rrrrrrrr 00000000

26 PITMRL Prog Interval Timer [7:0] rrrrrrrr 00000000

27 PITMRH Reserved Prog Interval Timer [11:8] ----rrrr 00000000

28 PIRL Prog Interval [7:0] bbbbbbbb 00000000

29 PIRH Reserved Prog Interval [11:8] ----bbbb 00000000

2A TMRCR First Edge
Hold

8-bit capture Prescale Cap0 16bit
Enable

Reserved bbbbb--- 00000000

2B TCAPINTE Reserved Cap1 Fall
Active

Cap1 Rise
Active

Cap0 Fall
Active

Cap0 Rise
Active

----bbbb 00000000

2C TCAPINTS Reserved Cap1 Fall
Active

Cap1 Rise
Active

Cap0 Fall
Active

Cap0 Rise
Active

----bbbb 00000000

30 CPUCLKCR Reserved CPU
CLK Select

-------b 00000000

31 TMRCLKCR TCAPCLK Divider TCAPCLK Select ITMRCLK Divider ITMRCLK Select bbbbbbbb 10001111

32 CLKIOCR Reserved XOSC
Select

XOSC
Enable

EFTB
Disabled

CLKOUT Select ---bbbbb 00000000

34 IOSCTR foffset[2:0] Gain[4:0] bbbbbbbb 000ddddd

35 XOSCTR Reserved XOSC XGM [2:0] Reserved Mode ---bbb-b 000ddddd

36 LPOSCTR 32-kHz Low
Power

Reserved 32-kHz Bias Trim [1:0] 32-kHz Freq Trim [3:0] b-bbbbbb d-dddddd
Document 38-16016 Rev. *A Page 6 of 57

 CY7C601xx
CY7C602xx
Note: In the R/W column,

b = Both Read and Write

r = Read Only

w = Write Only

c = Read/Clear

d = calibration value. Should not change during normal use

7.0 CPU Architecture

This family of microcontrollers is based on a high performance,
8-bit, Harvard architecture microprocessor. Five registers
control the primary operation of the CPU core. These registers
are affected by various instructions, but are not directly acces-
sible through the register space by the user.

The 16-bit Program Counter Register (CPU_PC) allows for
direct addressing of the full eight Kbytes of program memory
space.

The Accumulator Register (CPU_A) is the general-purpose
register that holds the results of instructions that specify any
of the source addressing modes.

The Index Register (CPU_X) holds an offset value that is used
in the indexed addressing modes. Typically, this is used to
address a block of data within the data memory space.

The Stack Pointer Register (CPU_SP) holds the address of the
current top-of-stack in the data memory space. It is affected by
the PUSH, POP, LCALL, CALL, RETI, and RET instructions,
which manage the software stack. It can also be affected by
the SWAP and ADD instructions.

The Flag Register (CPU_F) has three status bits: Zero Flag bit
[1]; Carry Flag bit [2]; Supervisory State bit [3]. The Global
Interrupt Enable bit [0] is used to globally enable or disable
interrupts. The user cannot manipulate the Supervisory State
status bit [3]. The flags are affected by arithmetic, logic, and
shift operations. The manner in which each flag is changed is
dependent upon the instruction being executed (i.e., AND,
OR, XOR). See Table 9-1.

3C SPIDATA SPIData[7:0] bbbbbbbb 00000000

3D SPICR Swap LSB First Comm Mode CPOL CPHA SCLK Select bbbbbbbb 00000000

DA INT_CLR0 GPIO Port 1 Sleep Timer INT1 GPIO Port 0 SPI Receive SPI Transmit INT0 POR/LVD bbbbbbbb 00000000

DB INT_CLR1 TCAP0 Prog Interval
Timer

1-ms Timer Reserved bbb----- 00000000

DC INT_CLR2 Reserved GPIO Port 4 GPIO Port 3 GPIO Port 2 Reserved INT2 16-bit
Counter

Wrap

TCAP1 -bbb-bbb 00000000

DE INT_MSK3 ENSWINT Reserved r------- 00000000

DF INT_MSK2 Reserved GPIO Port 4
Int Enable

GPIO Port 3
Int Enable

GPIO Port 2
Int Enable

Reserved INT2
Int Enable

16-bit
Counter
Wrap Int
Enable

TCAP1
Int Enable

-bbb-bbb 00000000

E1 INT_MSK1 TCAP0
Int Enable

Prog Interval
Timer

Int Enable

1-ms Timer
Int Enable

Reserved bbb----- 00000000

E0 INT_MSK0 GPIO Port 1
Int Enable

Sleep Timer
Int Enable

INT1
Int Enable

GPIO Port 0
Int Enable

SPI Receive
Int Enable

SPI Transmit
Int Enable

INT0
Int Enable

POR/LVD
Int Enable

bbbbbbbb 00000000

E2 INT_VC Pending Interrupt [7:0] bbbbbbbb 00000000

E3 RESWDT Reset Watchdog Timer [7:0] wwwwwww
w

00000000

-- CPU_A Temporary Register T1 [7:0] -------- 00000000

-- CPU_X X[7:0] -------- 00000000

-- CPU_PCL Program Counter [7:0] -------- 00000000

-- CPU_PCH Program Counter [15:8] -------- 00000000

-- CPU_SP Stack Pointer [7:0] -------- 00000000

F7 CPU_F Reserved XIO Super Carry Zero Global IE ---brbbb 00000010

FF CPU_SCR GIES Reserved WDRS PORS Sleep Reserved Reserved Stop r-ccb--b 00010100

1E0 OSC_CR0 Reserved No Buzz Sleep Timer [1:0] CPU Speed [2:0] --bbbbbb 00000000

1E3 LVDCR Reserved PORLEV[1:0] Reserved VM[2:0] --bb-bbb 00000000

1EB ECO_TR Sleep Duty Cycle [1:0] Reserved bb------ 00000000

1E4 VLTCMP Reserved LVD PPOR ------rr 00000000

Wireless enCoRe II Register Summary (continued)

Addr Name 7 6 5 4 3 2 1 0 R/W Default

Table 7-1. CPU Registers and Register Name

Register Register Name

Flags CPU_F

Program Counter CPU_PC

Accumulator CPU_A

Stack Pointer CPU_SP

Index CPU_X
Document 38-16016 Rev. *A Page 7 of 57

 CY7C601xx
CY7C602xx
8.0 CPU Registers

8.1 Flags Register

The Flags Register can only be set or reset with logical
instruction.

8.1.1 Accumulator Register

8.1.2 Index Register

Table 8-1. CPU Flags Register (CPU_F) [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved XIO Super Carry Zero Global IE

Read/Write – – – R/W R RW RW RW

Default 0 0 0 0 0 0 1 0

Bit [7:5]: Reserved
Bit 4: XIO
Set by the user to select between the register banks.
0 = Bank 0
1 = Bank 1
Bit 3: Super
Indicates whether the CPU is executing user code or Supervisor Code. (This code cannot be accessed directly by the user.)
0 = User Code
1 = Supervisor Code
Bit 2: Carry
Set by CPU to indicate whether there has been a carry in the previous logical/arithmetic operation.
0 = No Carry
1 = Carry
Bit 1: Zero
Set by CPU to indicate whether there has been a zero result in the previous logical/arithmetic operation.
0 = Not Equal to Zero
1 = Equal to Zero
Bit 0: Global IE
Determines whether all interrupts are enabled or disabled.
0 = Disabled
1 = Enabled
Note: This register is readable with explicit address 0xF7. The OR F, expr and AND F, expr must be used to set and clear the
CPU_F bits.

Table 8-2. CPU Accumulator Register (CPU_A)

Bit # 7 6 5 4 3 2 1 0

Field CPU Accumulator [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: CPU Accumulator [7:0]
8-bit data value holds the result of any logical/arithmetic instruction that uses a source addressing mode.

Table 8-3. CPU X Register (CPU_X)

Bit # 7 6 5 4 3 2 1 0

Field X [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: X [7:0]
8-bit data value holds an index for any instruction that uses an indexed addressing mode.
Document 38-16016 Rev. *A Page 8 of 57

 CY7C601xx
CY7C602xx
8.1.3 Stack Pointer Register

8.1.4 CPU Program Counter High Register

8.1.5 CPU Program Counter Low Register

8.2 Addressing Modes

8.2.1 Source Immediate

The result of an instruction using this addressing mode is
placed in the A register, the F register, the SP register, or the
X register, which is specified as part of the instruction opcode.
Operand 1 is an immediate value that serves as a source for
the instruction. Arithmetic instructions require two sources.
Instructions using this addressing mode are two bytes in
length.

Examples

8.2.2 Source Direct

The result of an instruction using this addressing mode is
placed in either the A register or the X register, which is
specified as part of the instruction opcode. Operand 1 is an
address that points to a location in either the RAM memory
space or the register space that is the source for the
instruction. Arithmetic instructions require two sources; the
second source is the A register or X register specified in the
opcode. Instructions using this addressing mode are two bytes
in length.

Table 8-4. CPU Stack Pointer Register (CPU_SP)

Bit # 7 6 5 4 3 2 1 0

Field Stack Pointer [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Stack Pointer [7:0]
8-bit data value holds a pointer to the current top-of-stack.

Table 8-5. CPU Program Counter High Register (CPU_PCH)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [15:8]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [15:8]
8-bit data value holds the higher byte of the program counter.

Table 8-6. CPU Program Counter Low Register (CPU_PCL)

Bit # 7 6 5 4 3 2 1 0

Field Program Counter [7:0]

Read/Write – – – – – – – –

Default 0 0 0 0 0 0 0 0

Bit [7:0]: Program Counter [7:0]
8-bit data value holds the lower byte of the program counter.

Table 8-7. Source Immediate

Opcode Operand 1

Instruction Immediate Value

ADD A, 7 ;In this case, the immediate value
;of 7 is added with the Accumulator,
;and the result is placed in the
;Accumulator.

MOV X, 8 ;In this case, the immediate value
;of 8 is moved to the X register.

AND F, 9 ;In this case, the immediate value
;of 9 is logically ANDed with the F
;register and the result is placed
;in the F register.
Document 38-16016 Rev. *A Page 9 of 57

 CY7C601xx
CY7C602xx
Examples

8.2.3 Source Indexed

The result of an instruction using this addressing mode is
placed in either the A register or the X register, which is
specified as part of the instruction opcode. Operand 1 is added
to the X register forming an address that points to a location in
either the RAM memory space or the register space that is the
source for the instruction. Arithmetic instructions require two
sources; the second source is the A register or X register
specified in the opcode. Instructions using this addressing
mode are two bytes.

Examples

8.2.4 Destination Direct

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is an address that points to the location of
the result. The source for the instruction is either the A register
or the X register, which is specified as part of the instruction
opcode. Arithmetic instructions require two sources; the
second source is the location specified by Operand 1. Instruc-
tions using this addressing mode are two bytes in length.

Examples

8.2.5 Destination Indexed

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is added to the X register forming the
address that points to the location of the result. The source for
the instruction is the A register. Arithmetic instructions require
two sources; the second source is the location specified by
Operand 1 added with the X register. Instructions using this
addressing mode are two bytes in length.

Example

8.2.6 Destination Direct Immediate

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is the address of the result. The source for
the instruction is Operand 2, which is an immediate value.
Arithmetic instructions require two sources; the second source
is the location specified by Operand 1. Instructions using this
addressing mode are three bytes in length.

Table 8-8. Source Direct

Opcode Operand 1

Instruction Source Address

ADD A, [7] ;In this case, the ;value in
;the RAM memory location at
;address 7 is added with the
;Accumulator, and the result
;is placed in the Accumulator.

MOV X, REG[8] ;In this case, the value in
;the register space at address
;8 is moved to the X register.

Table 8-9. Source Indexed

Opcode Operand 1

Instruction Source Index

ADD A, [X+7] ;In this case, the value in
;the memory location at
;address X + 7 is added with
;the Accumulator, and the
;result is placed in the
;Accumulator.

MOV X, REG[X+8] ;In this case, the value in
;the register space at
;address X + 8 is moved to
;the X register.

Table 8-10. Destination Direct

Opcode Operand 1

Instruction Destination Address

ADD [7], A ;In this case, the value in
;the memory location at
;address 7 is added with the
;Accumulator, and the result
;is placed in the memory
;location at address 7. The
;Accumulator is unchanged.

MOV REG[8], A ;In this case, the Accumula-
;tor is moved to the regis-
;ter space location at
;address 8. The Accumulator
;is unchanged.

Table 8-11. Destination Indexed

Opcode Operand 1

Instruction Destination Index

ADD [X+7], A ;In this case, the value in the
;memory location at address X+7
;is added with the Accumulator,
;and the result is placed in
;the memory location at address
;x+7. The Accumulator is
;unchanged.

Table 8-12. Destination Direct Immediate

Opcode Operand 1 Operand 2

Instruction Destination Address Immediate Value
Document 38-16016 Rev. *A Page 10 of 57

 CY7C601xx
CY7C602xx
Examples

8.2.7 Destination Indexed Immediate

The result of an instruction using this addressing mode is
placed within either the RAM memory space or the register
space. Operand 1 is added to the X register to form the
address of the result. The source for the instruction is Operand
2, which is an immediate value. Arithmetic instructions require
two sources; the second source is the location specified by
Operand 1 added with the X register. Instructions using this
addressing mode are three bytes in length.

Examples

8.2.8 Destination Direct Direct

The result of an instruction using this addressing mode is
placed within the RAM memory. Operand 1 is the address of
the result. Operand 2 is an address that points to a location in
the RAM memory that is the source for the instruction. This
addressing mode is only valid on the MOV instruction. The
instruction using this addressing mode is three bytes in length.

Example

8.2.9 Source Indirect Post Increment

The result of an instruction using this addressing mode is
placed in the Accumulator. Operand 1 is an address pointing
to a location within the memory space, which contains an
address (the indirect address) for the source of the instruction.
The indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length. Refer to the PSoC Designer: Assembly
Language User Guide for further details on MVI instruction.

Example

8.2.10 Destination Indirect Post Increment

The result of an instruction using this addressing mode is
placed within the memory space. Operand 1 is an address
pointing to a location within the memory space, which contains
an address (the indirect address) for the destination of the
instruction. The indirect address is incremented as part of the
instruction execution. The source for the instruction is the
Accumulator. This addressing mode is only valid on the MVI
instruction. The instruction using this addressing mode is two
bytes in length.

Example

ADD [7], 5 ;In this case, value in the mem-
;ory location at address 7 is
;added to the immediate value of
;5, and the result is placed in
;the memory location at address 7.

MOV REG[8], 6 ;In this case, the immediate
;value of 6 is moved into the
;register space location at
;address 8.

Table 8-13. Destination Indexed Immediate

Opcode Operand 1 Operand 2

Instruction Destination Index Immediate Value

ADD [X+7], 5 ;In this case, the value in
;the memory location at
;address X+7 is added with
;the immediate value of 5,
;and the result is placed
;in the memory location at
;address X+7.

MOV REG[X+8], 6 ;In this case, the immedi-
;ate value of 6 is moved
;into the location in the
;register space at
;address X+8.

Table 8-14. Destination Direct Direct

Opcode Operand 1 Operand 2

Instruction Destination Address Source Address

MOV [7], [8] ;In this case, the value in the
;memory location at address 8 is
;moved to the memory location at
;address 7.

Table 8-15. Source Indirect Post Increment

Opcode Operand 1

Instruction Source Address Address

MVI A, [8] ;In this case, the value in the
;memory location at address 8 is
;an indirect address. The memory
;location pointed to by the indi-
;rect address is moved into the
;Accumulator. The indirect
;address is then incremented.

Table 8-16. Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination Address Address

MVI [8], A ;In this case, the value in
;the memory location at
;address 8 is an indirect
;address. The Accumulator is
;moved into the memory loca-
;tion pointed to by the indi-
;rect address. The indirect
;address is then incremented.
Document 38-16016 Rev. *A Page 11 of 57

 CY7C601xx
CY7C602xx
9.0 Instruction Set Summary

The instruction set is summarized in Table 9-1 numerically and
serves as a quick reference. If more information is needed, the

Instruction Set Summary tables are described in detail in the
PSoC Designer Assembly Language User Guide (available on
the www.cypress.com web site).

Table 9-1. Instruction Set Summary Sorted Numerically by Opcode Order [1, 2]

O
pc

od
e

H
e

x

C
yc

le
s

B
yt

es Instruction Format Flags

O
pc

od
e

H
e

x

C
yc

le
s

B
yt

es Instruction Format Flags

O
pc

od
e

H
e

x

C
yc

le
s

B
yt

es Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30 9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08 4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64 4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38 5 2 ADD SP, expr 65 7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39 5 2 CMP A, expr

if (A=B) Z=1

if (A<B) C=1

66 8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A 7 2 CMP A, [expr] 67 4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B 8 2 CMP A, [X+expr] 68 7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C 8 3 CMP [expr], expr 69 8 2 ASR [X+expr] C, Z

10 4 1 PUSH X 3D 9 3 CMP [X+expr], expr 6A 4 1 RLC A C, Z

11 4 2 SUB A, expr C, Z 3E 10 2 MVI A, [[expr]++] Z 6B 7 2 RLC [expr] C, Z

12 6 2 SUB A, [expr] C, Z 3F 10 2 MVI [[expr]++], A 6C 8 2 RLC [X+expr] C, Z

13 7 2 SUB A, [X+expr] C, Z 40 4 1 NOP 6D 4 1 RRC A C, Z

14 7 2 SUB [expr], A C, Z 41 9 3 AND reg[expr], expr Z 6E 7 2 RRC [expr] C, Z

15 8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F 8 2 RRC [X+expr] C, Z

16 9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70 4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18 5 1 POP A Z 45 9 3 XOR reg[expr], expr Z 72 4 2 XOR F, expr C, Z

19 4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73 4 1 CPL A Z

1A 6 2 SBB A, [expr] C, Z 47 8 3 TST [expr], expr Z 74 4 1 INC A C, Z

1B 7 2 SBB A, [X+expr] C, Z 48 9 3 TST [X+expr], expr Z 75 4 1 INC X C, Z

1C 7 2 SBB [expr], A C, Z 49 9 3 TST reg[expr], expr Z 76 7 2 INC [expr] C, Z

1D 8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77 8 2 INC [X+expr] C, Z

1E 9 3 SBB [expr], expr C, Z 4B 5 1 SWAP A, X Z 78 4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C 7 2 SWAP A, [expr] Z 79 4 1 DEC X C, Z

20 5 1 POP X 4D 7 2 SWAP X, [expr] 7A 7 2 DEC [expr] C, Z

21 4 2 AND A, expr Z 4E 5 1 SWAP A, SP Z 7B 8 2 DEC [X+expr] C, Z

22 6 2 AND A, [expr] Z 4F 4 1 MOV X, SP 7C 13 3 LCALL

23 7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP

24 7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25 8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F 8 1 RET

26 9 3 AND [expr], expr Z 53 5 2 MOV [expr], A 8x 5 2 JMP

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A 9x 11 2 CALL

28 11 1 ROMX Z 55 8 3 MOV [expr], expr Ax 5 2 JZ

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr Bx 5 2 JNZ

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr Cx 5 2 JC

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] Dx 5 2 JNC

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] Ex 7 2 JACC

Fx 13 2 INDEX Z

Notes:
1. Interrupt routines take 13 cycles before execution resumes at interrupt vector table.
2. The number of cycles required by an instruction is increased by one for instructions that span 256-byte boundaries in the Flash memory space.
Document 38-16016 Rev. *A Page 12 of 57

 CY7C601xx
CY7C602xx
10.0 Memory Organization

10.1 Flash Program Memory Organization
after reset Address

 16-bit PC 0x0000 Program execution begins here after a reset

0x0004 POR/LVD

0x0008 INT0

0x000C SPI Transmitter Empty

0x0010 SPI Receiver Full

0x0014 GPIO Port 0

0x0018 GPIO Port 1

0x001C INT1

0x0020 Reserved

0x0024 Reserved

0x0028 Reserved

0x002C Reserved

0x0030 Reserved

0x0034 1-ms Interval timer

0x0038 Programmable Interval Timer

0x003C Timer Capture 0

0x0040 Timer Capture 1

0x0044 16-bit Free Running Timer Wrap

0x0048 INT2

0x004C Reserved

0x0050 GPIO Port 2

0x0054 GPIO Port 3

0x0058 GPIO Port 4

0x005C Reserved

0x0060 Reserved

0x0064 Sleep Timer

0x0068 Program Memory begins here (if below interrupts not used,
program memory can start lower)

0x1FFF

Figure 10-1. Program Memory Space with Interrupt Vector Table
Document 38-16016 Rev. *A Page 13 of 57

 CY7C601xx
CY7C602xx
10.2 Data Memory Organization

The CY7C601xx/CY7C602xx microcontrollers provide up to 256 bytes of data RAM.

10.3 Flash
This section describes the Flash block of the Wireless
enCoRe II. Much of the user-visible Flash functionality,
including programming and security, are implemented in the
M8C Supervisory Read Only Memory (SROM). Wireless
enCoRe II Flash has an endurance of 1000 cycles and 10-year
data retention.

10.3.1 Flash Programming and Security

All Flash programming is performed by code in the SROM. The
registers that control the Flash programming are only visible
to the M8C CPU when it is executing out of SROM. This makes
it impossible to read, write, or erase the Flash by bypassing
the security mechanisms implemented in the SROM.

Customer firmware can only program the Flash via SROM
calls. The data or code images can be sourced via any
interface with the appropriate support firmware. This type of
programming requires a ‘boot-loader’—a piece of firmware
resident on the Flash. For safety reasons this boot-loader
should not be over written during firmware rewrites.

The Flash provides four extra auxiliary rows that are used to
hold Flash block protection flags, boot time calibration values,
configuration tables, and any device values. The routines for
accessing these auxiliary rows are documented in the SROM
section. The auxiliary rows are not affected by the device
erase function.

10.3.2 In-System Programming

Wireless enCoRe II devices enable this type of in-system
programming by using the P1.0 and P1.1 pins as the serial
programming mode interface. This allows an external
controller to cause the Wireless enCoRe II part to enter serial
programming mode and then to use the test queue to issue
Flash access functions in the SROM.

10.4 SROM
The SROM holds code that is used to boot the part, calibrate
circuitry, and perform Flash operations (Table 10-1 lists the
SROM functions). The functions of the SROM may be

accessed in normal user code or operating from Flash. The
SROM exists in a separate memory space from user code.
The SROM functions are accessed by executing the Super-
visory System Call instruction (SSC), which has an opcode of
00h. Prior to executing the SSC the M8C’s accumulator needs
to be loaded with the desired SROM function code from
Table 10-1. Undefined functions will cause a HALT if called
from user code. The SROM functions are executing code with
calls; therefore, the functions require stack space. With the
exception of Reset, all of the SROM functions have a
parameter block in SRAM that must be configured before
executing the SSC. Table 10-2 lists all possible parameter
block variables. The meaning of each parameter, with regards
to a specific SROM function, is described later in this chapter.

Two important variables that are used for all functions are
KEY1 and KEY2. These variables are used to help discrim-
inate between valid SSCs and inadvertent SSCs. KEY1 must
always have a value of 3Ah, while KEY2 must have the same
value as the stack pointer when the SROM function begins
execution. This would be the Stack Pointer value when the
SSC opcode is executed, plus three. If either of the keys do
not match the expected values, the M8C will halt (with the
exception of the SWBootReset function). The following code
puts the correct value in KEY1 and KEY2. The code starts with
a halt, to force the program to jump directly into the set-up code
and not run into it.

halt

SSCOP: mov [KEY1], 3ah

after reset Address

8-bit PSP 0x00 Stack begins here and grows upward

Top of RAM Memory 0xFF

Figure 10-2. Data Memory Organization

Table 10-1. SROM Function Codes

Function Code Function Name Stack Space

00h SWBootReset 0

01h ReadBlock 7

02h WriteBlock 10

03h EraseBlock 9

05h EraseAll 11

06h TableRead 3

07h CheckSum 3
Document 38-16016 Rev. *A Page 14 of 57

 CY7C601xx
CY7C602xx
mov X, SP

mov A, X

add A, 3

mov [KEY2], A

The SROM also features Return Codes and Lockouts.

10.4.1 Return Codes

Return codes aid in the determination of success or failure of
a particular function. The return code is stored in KEY1’s
position in the parameter block. The CheckSum and
TableRead functions do not have return codes because
KEY1’s position in the parameter block is used to return other
data.

Read, write, and erase operations may fail if the target block
is read or write protected. Block protection levels are set
during device programming.

The EraseAll function overwrites data in addition to leaving the
entire user Flash in the erase state. The EraseAll function
loops through the number of Flash macros in the product,
executing the following sequence: erase, bulk program all
zeros, erase. After all the user space in all the Flash macros
are erased, a second loop erases and then programs each
protection block with zeros.

10.5 SROM Function Descriptions

10.5.1 SWBootReset Function

The SROM function, SWBootReset, is the function that is
responsible for transitioning the device from a reset state to
running user code. The SWBootReset function is executed
whenever the SROM is entered with an M8C accumulator
value of 00h: the SRAM parameter block is not used as an

input to the function. This will happen, by design, after a
hardware reset, because the M8C's accumulator is reset to
00h or when user code executes the SSC instruction with an
accumulator value of 00h. The SWBootReset function will not
execute when the SSC instruction is executed with a bad key
value and a non-zero function code. A Wireless enCoRe II
device will execute the HALT instruction if a bad value is given
for either KEY1 or KEY2.

The SWBootReset function verifies the integrity of the
calibration data by way of a 16-bit checksum, before releasing
the M8C to run user code.

10.5.2 ReadBlock Function

The ReadBlock function is used to read 64 contiguous bytes
from Flash: a block.

The first thing this function does is to check the protection bits
and determine if the desired BLOCKID is readable. If read
protection is turned on, the ReadBlock function will exit setting
the accumulator and KEY2 back to 00h. KEY1 will have a
value of 01h, indicating a read failure. If read protection is not
enabled, the function will read 64 bytes from the Flash using
a ROMX instruction and store the results in SRAM using an
MVI instruction. The first of the 64 bytes will be stored in SRAM
at the address indicated by the value of the POINTER
parameter. When the ReadBlock completes successfully the
accumulator, KEY1 and KEY2 will all have a value of 00h.

10.5.3 WriteBlock Function

The WriteBlock function is used to store data in the Flash. Data
is moved 64 bytes at a time from SRAM to Flash using this
function. The first thing the WriteBlock function does is to
check the protection bits and determine if the desired
BLOCKID is writable. If write protection is turned on, the Write-
Block function will exit setting the accumulator and KEY2 back
to 00h. KEY1 will have a value of 01h, indicating a write failure.
The configuration of the WriteBlock function is straightforward.
The BLOCKID of the Flash block, where the data is stored,
must be determined and stored at SRAM address FAh.

The SRAM address of the first of the 64 bytes to be stored in
Flash must be indicated using the POINTER variable in the
parameter block (SRAM address FBh). Finally, the CLOCK
and DELAY value must be set correctly. The CLOCK value
determines the length of the write pulse that will be used to
store the data in the Flash. The CLOCK and DELAY values are
dependent on the CPU speed and must be set correctly. Refer
to “Clocking” Section for additional information.

Table 10-2. SROM Function Parameters

Variable Name SRAM Address

Key1 / Counter / Return Code 0,F8h

Key2 / TMP 0,F9h

BlockID 0,FAh

Pointer 0,FBh

Clock 0,FCh

Mode 0,FDh

Delay 0,FEh

PCL 0,FFh

Table 10-3. SROM Return Codes

Return Code Description

00h Success

01h Function not allowed due to level of protection
on block

02h Software reset without hardware reset

03h Fatal error, SROM halted

Table 10-4. ReadBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed

BLOCKID 0,FAh Flash block number

POINTER 0,FBh First of 64 addresses in SRAM
where returned data should be
stored
Document 38-16016 Rev. *A Page 15 of 57

 CY7C601xx
CY7C602xx
10.5.4 EraseBlock Function

The EraseBlock function is used to erase a block of 64
contiguous bytes in Flash. The first thing the EraseBlock
function does is to check the protection bits and determine if
the desired BLOCKID is writable. If write protection is turned
on, the EraseBlock function will exit setting the accumulator
and KEY2 back to 00h. KEY1 will have a value of 01h,
indicating a write failure. The EraseBlock function is only
useful as the first step in programming. Erasing a block will not
cause data in a block to be one hundred percent unreadable.
If the objective is to obliterate data in a block, the best method
is to perform an EraseBlock followed by a WriteBlock of all
zeros.

To set up the parameter block for the EraseBlock function,
correct key values must be stored in KEY1 and KEY2. The
block number to be erased must be stored in the BLOCKID
variable and the CLOCK and DELAY values must be set based
on the current CPU speed.

10.5.5 ProtectBlock Function

The Wireless enCoRe II devices offer Flash protection on a
block-by-block basis. Table 10-7 lists the protection modes
available. In the table, ER and EW are used to indicate the
ability to perform external reads and writes. For internal writes,
IW is used. Internal reading is always permitted by way of the
ROMX instruction. The ability to read by way of the SROM
ReadBlock function is indicated by SR. The protection level is
stored in two bits according to Table 10-7. These bits are bit
packed into the 64 bytes of the protection block. Therefore,
each protection block byte stores the protection level for four
Flash blocks. The bits are packed into a byte, with the lowest

numbered block’s protection level stored in the lowest
numbered bits Table 10-7.

The first address of the protection block contains the
protection level for blocks 0 through 3; the second address is
for blocks 4 through 7. The 64th byte will store the protection
level for blocks 252 through 255.

The level of protection is only decreased by an EraseAll, which
places zeros in all locations of the protection block. To set the
level of protection, the ProtectBlock function is used. This
function takes data from SRAM, starting at address 80h, and
ORs it with the current values in the protection block. The
result of the OR operation is then stored in the protection
block. The EraseBlock function does not change the
protection level for a block. Because the SRAM location for the
protection data is fixed and there is only one protection block
per Flash macro, the ProtectBlock function expects very few
variables in the parameter block to be set prior to calling the
function. The parameter block values that must be set, besides
the keys, are the CLOCK and DELAY values.

10.5.6 EraseAll Function

The EraseAll function performs a series of steps that destroy
the user data in the Flash macros and resets the protection
block in each Flash macro to all zeros (the unprotected state).
The EraseAll function does not affect the three hidden blocks
above the protection block, in each Flash macro. The first of
these four hidden blocks is used to store the protection table
for its eight Kbytes of user data.

The EraseAll function begins by erasing the user space of the
Flash macro with the highest address range. A bulk program
of all zeros is then performed on the same Flash macro, to
destroy all traces of the previous contents. The bulk program
is followed by a second erase that leaves the Flash macro in
a state ready for writing. The erase, program, erase sequence
is then performed on the next lowest Flash macro in the
address space if it exists. Following the erase of the user

Table 10-5. WriteBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executing

BLOCK ID 0,FAh 8KB Flash block number (00h–7Fh)
4KB Flash block number (00h–3Fh)
3KB Flash block number (00h–2Fh)

POINTER 0,FBh First 64 addresses in SRAM where
the data to be stored in Flash is
located prior to calling WriteBlock

CLOCK 0,FCh Clock Divider used to set the write
Pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 10-6. EraseBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value, when SSC is
executed

BLOCKID 0,FAh Flash block number (00h–7Fh)

CLOCK 0,FCh Clock Divider used to set the erase
pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to
56h

Table 10-7. Protection Modes

Mode Settings Description Marketing

00b SR ER EW IW Unprotected Unprotected

01b SR ER EW IW Read protect Factory upgrade

10b SR ER EW IW Disable external
write

Field upgrade

11b SR ER EW IW Disable internal
write

Full protection

7 6 5 4 3 2 1 0

Block n+3 Block n+2 Block n+1 Block n

Table 10-8. ProtectBlock Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

CLOCK 0,FCh Clock Divider used to set the write
pulse width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h
Document 38-16016 Rev. *A Page 16 of 57

 CY7C601xx
CY7C602xx
space, the protection block for the Flash macro with the
highest address range is erased. Following the erase of the
protection block, zeros are written into every bit of the
protection table. The next lowest Flash macro in the address
space then has its protection block erased and filled with
zeros.

The end result of the EraseAll function is that all user data in
the Flash is destroyed and the Flash is left in an unpro-
grammed state, ready to accept one of the various write
commands. The protection bits for all user data are also reset
to the zero state.

The parameter block values that must be set, besides the
keys, are the CLOCK and DELAY values.

10.5.7 TableRead Function

The TableRead function gives the user access to part-specific
data stored in the Flash during manufacturing. It also returns
a Revision ID for the die (not to be confused with the Silicon
ID).

The table space for the Wireless enCoRe II is simply a 64-byte
row broken up into eight tables of eight bytes. The tables are
numbered zero through seven. All user and hidden blocks in
the Wireless enCoRe II parts consist of 64 bytes.

An internal table holds the Silicon ID and returns the Revision
ID. The Silicon ID is returned in SRAM, while the Revision ID
is returned in the CPU_A and CPU_X registers. The Silicon ID
is a value placed in the table by programming the Flash and is
controlled by Cypress Semiconductor Product Engineering.
The Revision ID is hard-coded into the SROM. The Revision
ID is discussed in more detail later in this section.

An internal table holds alternate trim values for the device and
returns a one-byte internal revision counter. The internal
revision counter starts out with a value of zero and is incre-
mented each time one of the other revision numbers is not
incremented. It is reset to zero each time one of the other
revision numbers is incremented. The internal revision count
is returned in the CPU_A register. The CPU_X register will
always be set to FFh when trim values are read. The BLOCKID
value, in the parameter block, is used to indicate which table
should be returned to the user. Only the three least significant
bits of the BLOCKID parameter are used by TableRead
function for the Wireless enCoRe II. The upper five bits are

ignored. When the function is called, it transfers bytes from the
table to SRAM addresses F8h–FFh.

The M8C’s A and X registers are used by the TableRead
function to return the die’s Revision ID. The Revision ID is a
16-bit value hard-coded into the SROM that uniquely identifies
the die’s design.

10.5.8 Checksum Function

The Checksum function calculates a 16-bit checksum over a
user-specifiable number of blocks, within a single Flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the
checksum over. A BLOCKID value of 1 will calculate the
checksum of only block 0, while a BLOCKID value of 0 will
calculate the checksum of all 256-user blocks. The 16-bit
checksum is returned in KEY1 and KEY2. The parameter
KEY1 holds the lower eight bits of the checksum and the
parameter KEY2 holds the upper eight bits of the checksum.

The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.

romx

add [KEY1], A

adc [KEY2], 0

11.0 Clocking

The Wireless enCoRe II internal oscillator outputs two
frequencies, the Internal 24-MHz Oscillator and the 32-kHz
Low-power Oscillator.

The Internal 24-MHz Oscillator is designed such that it may be
trimmed to an output frequency of 24 MHz over temperature
and voltage variation. The Internal 24-MHz Oscillator accuracy
is 24 MHz –22% to +10% (between 0°–70°C). No external
components are required to achieve this level of accuracy.

Firmware is responsible for selecting the correct trim values
from the User row to match the power supply voltage in the
end application and writing the values to the trim registers
IOSCTR and LPOSCTR.

The internal low-speed oscillator of nominally 32-kHz provides
a slow clock source for the Wireless enCoRe II in suspend
mode, particularly to generate a periodic wake-up interrupt
and also to provide a clock to sequential logic during power-
up and power-down events when the main clock is stopped. In
addition, this oscillator can also be used as a clocking source
for the Interval Timer clock (ITMRCLK) and Capture Timer
clock (TCAPCLK). The 32-kHz Low-power Oscillator can
operate in low-power mode or can provide a more accurate
clock in normal mode. The Internal 32-kHz Low-power Oscil-
lator accuracy ranges from –53.12% to +56.25%. The 32-kHz

Table 10-9. EraseAll Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

CLOCK 0,FCh Clock Divider used to set the write pulse
width

DELAY 0,FEh For a CPU speed of 12 MHz set to 56h

Table 10-10. Table Read Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

BLOCKID 0,FAh Table number to read

Table 10-11. Checksum Parameters

Name Address Description

KEY1 0,F8h 3Ah

KEY2 0,F9h Stack Pointer value when SSC is
executed

BLOCKID 0,FAh Number of Flash blocks to calculate
checksum on
Document 38-16016 Rev. *A Page 17 of 57

 CY7C601xx
CY7C602xx
low power oscillator can be calibrated against the internal 24-
MHz oscillator or another timing source if desired.

Wireless enCoRe II provides the ability to load new trim values
for the 24-MHz oscillator based on voltage. This allows Vdd to
be monitored and have firmware trim the oscillator based on
voltage present. The IOSCTR register is used to set trim
values for the 24-MHz oscillator. Wireless enCoRe II is
initialized with 3.30V trim values at power-on, then firmware is
responsible for transferring the correct set of trim values to the
trim registers to match the application’s actual Vdd. The 32-
kHz oscillator generally does not require trim adjustments vs.
voltage but trim values for the 32-kHz are also stored in Super-
visory ROM.

When using the 32KHz oscillator the PITMRL/H should be
read until 2 consecutive readings match before
sending/receiving data. The following firmware example
assumes the developer is interested in the lower byte of the
PIT.

Read_PIT_counter:

mov A, reg[PITMRL]

mov [57h], A

mov A, reg[PITMRL]

mov [58h],A

mov [59h], A

mov A, reg[PITMRL]

mov [60h], A

;;;Start comparison

mov A,[60h]

mov X, [59h]

sub A, [59h]

jz done

mov A, [59h]

mov X, [58h]

sub A, [58h]

jz done

mov X, [57h]

;;;correct data is in memory location 57h

done:

mov [57h], X

ret

The CY7C601xx part can optionally be sourced from an
external crystal oscillator. The external clock driving on CLKIN
range is from 187KHz to 24MHz.

11.1 Clock Architecture Description
The Wireless enCoRe II clock selection circuitry allows the
selection of independent clocks for the CPU, Interval Timers
and Capture Timers.

On the CY7C601xx, the external oscillator can be sourced by
the crystal oscillator or when the crystal oscillator is disabled it
is sourced directly from the CLKIN pin. The external crystal
oscillator is fed through the EFTB block, which can optionally
be bypassed.

11.1.1 CPU Clock

The CPU clock, CPUCLK, can be sourced from the external
crystal oscillator, the Internal 24-MHz Oscillator, or the Internal
32-KHz Low-power Oscillator. The selected clock source can
optionally be divided by 2n-1 where n is 0–7 (see Table 11-2).

When it is not being used by the external crystal oscillator, the
CLKOUT pin can be driven from one of many sources. This is
used for test and can also be used in some applications. The
sources that can drive the CLKOUT are:

• CLKIN after the optional EFTB filter

• Internal 24-MHz Oscillator

• Internal 32-KHz Oscillator

• CPUCLK after the programmable divider

Table 11-1. Oscillator Trim Values vs. Voltage Settings

Supervisory FLASH
User Row Address Function

0xC094 24-MHz IOSCTR @ 3.30V

0xC095 24-MHz IOSCTR @ 3.00V

0xC096 24-MHz IOSCTR @ 2.85V

0xC097 24-MHz IOSCTR @ 2.70V

0xC098 32-kHz LPOSCTR@3.30V

0xC099 32-kHz LPOSCTR@3.00V

0xC09A 32-kHz LPOSCTR@2.85V

0xC09B 32-kHz LPOSCTR@2.70V
Document 38-16016 Rev. *A Page 18 of 57

 CY7C601xx
CY7C602xx
Figure 11-1. CPU Clock Block Diagram

SCALE
(divide by 2n, n = 0-5,7)

MUX

CLK_EXT

CLK_24MHz

CPUCLK
SEL

CLK_CPU

Doubler CLK_HS

LP OSC
32-KHz

CLK_32KHz

XTAL OSC
1-24MHz

CY7C601xx only
MUX

Crystal Oscillator Disabled

XOSC
SEL

EN

CLK_EXTEFTBP0.0
CLKIN

P0.1
CLKOUT

CY7C601xx
 only

Table 11-1. CPU Clock Config CPUCLKCR) [0x30] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved CPUCLK Select

Read/Write – – – – – – – R/W

Default 0 0 0 0 0 0 0 0

Bit [7:1]: Reserved
Bit 0: CPU CLK Select
0 = Internal 24-MHz Oscillator.
1 = External crystal oscillator—External crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled.
Note: the CPU speed selection is configured using the OSC_CR0 Register (Table 11-2.)
Document 38-16016 Rev. *A Page 19 of 57

 CY7C601xx
CY7C602xx
Table 11-2. OSC Control 0 (OSC_CR0) [0x1E0] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field Reserved No Buzz Sleep Timer [1:0] CPU Speed [2:0]

Read/Write – – R/W R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit [7:6]: Reserved
Bit 5: No Buzz
During sleep (the Sleep bit is set in the CPU_SCR Register—Table 12-1), the LVD and POR detection circuit is turned on
periodically to detect any POR and LVD events on the VCC pin (the Sleep Duty Cycle bits in the ECO_TR are used to control
the duty cycle—Table 14-3). To facilitate the detection of POR and LVD events, the No Buzz bit is used to force the LVD and
POR detection circuit to be continuously enabled during sleep. This results in a faster response to an LVD or POR event during
sleep at the expense of a slightly higher than average sleep current. Obtaining the absolute lowest power usage in sleep mode
requires the No Buzz bit be clear.
0 = The LVD and POR detection circuit is turned on periodically as configured in the Sleep Duty Cycle.
1 = The Sleep Duty Cycle value is overridden. The LVD and POR detection circuit is always enabled.
Note: The periodic Sleep Duty Cycle enabling is independent with the sleep interval shown in the Sleep [1:0] bits below.
Bit [4:3]: Sleep Timer [1:0]

Note: Sleep intervals are approximate.
Bit [2:0]: CPU Speed [2:0]
The Wireless enCoRe II ma y operate over a range of CPU clock speeds. The reset value for the CPU Speed bits is zero;
therefore, the default CPU speed is 3MHz.

Sleep Timer
[1:0]

Sleep Timer Clock
Frequency (Nominal)

Sleep Period
(Nominal)

Watchdog Period
(Nominal)

00 512 Hz 1.95 ms 6 ms

01 64 Hz 15.6 ms 47 ms

10 8 Hz 125 ms 375 ms

11 1 Hz 1 sec 3 sec

CPU Speed
[2:0]

CPU when Internal
Oscillator is selected External Clock

000 3 MHz (Default) Clock In / 8

001 6 MHz Clock In / 4

010 12 MHz Clock In / 2

011 Reserved Reserved

100 1.5 MHz Clock In / 16

101 750 KHz Clock In / 32

110 187 KHz Clock In / 128

111 Reserved Reserved
Document 38-16016 Rev. *A Page 20 of 57

 CY7C601xx
CY7C602xx
11.1.2 Interval Timer Clock (ITMRCLK)

The Interval Timer clock (ITMRCLK), can be sourced from the
external crystal oscillator, the Internal 24-MHz Oscillator, the
Internal 32-kHz Low-power Oscillator, or the Timer Capture
clock. A programmable prescaler of 1, 2, 3, 4 then divides the
selected source. The 12-bit Programmable Interval Timer is a
simple down counter with a programmable reload value. It
provides a 1-µs resolution by default. When the down counter
reaches zero, the next clock is spent reloading. The reload
value can be read and written while the counter is running, but
care should be taken to ensure that the counter does not
unintentionally reload while the 12-bit reload value is only
partially stored—i.e., between the two writes of the 12-bit
value. The Programmable interval timer generates interrupt to
the CPU on each reload.

The parameters to be set will show up on the device editor
view of PSoC Designer once you place the enCoRe II timer

user module. The parameters are PITIMER_Source and
PITIMER_Divider. The PITIMER_Source is the clock to the
timer and the PITIMER_Divider is the value the clock is divided
by.

The interval register (PITMR) holds the value that is loaded
into the PIT counter on terminal count. The PIT counter is a
down counter.

The Programmable Interval Timer resolution is configurable.
For example:

TCAPCLK divide by x of CPU clock (for example TCAPCLK
divide by 2 of a 24-MHz CPU clock will give a frequency of
12 MHz)

ITMRCLK divide by x of TCAPCLK (for example, ITMRCLK
divide by 3 of TCAPCLK is 4 MHz so resolution is 0.25 µs)

Table 11-3. Clock I/O Config (CLKIOCR) [0x32] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field
Reserved XOSC

Select
XOSC
Enable

EFTB
Disabled

CLKOUT Select

Read/Write – – – R/W R/W R/W R/W R/W

Default 0 0 0 0 0 0 0 0

Bit [7:5]: Reserved
Bit 4: XOSC Select
This bit, when set, selects the external crystal oscillator clock as clock source of external clock. Care needs to be taken while
selecting the crystal oscillator clock. First enable the crystal oscillator and wait for few cycles, which is oscillator stabilization
period. Then select the crystal clock as clock source. Similarly, while deselect crystal clock, first deselect crystal clock as clock
source then disable the crystal oscillator.
0 = Not select external crystal oscillator clock
1 = Select the external crystal oscillator clock
Bit 3: XOSC Enable
This bit is only available on the CY7C601xx
This bit when set enables the external crystal oscillator. The external crystal oscillator shares pads CLKIN and CLKOUT with
two GPIOs—P0.0 and P0.1, respectively. When the external crystal oscillator is enabled, the CLKIN signal comes from the
external crystal oscillator block and the output enables on the GPIOs for P0.0 and P0.1 are disabled, eliminating the possibility
of contention. When the external crystal oscillator is disabled the source for CLKIN signal comes from the P0.0 GPIO input.
0 = Disable the external oscillator
1 = Enable the external oscillator
Note: The external crystal oscillator start-up time takes up to 2 ms.
Bit 2: EFTB Disabled
This bit is only available on the CY7C601xx.
0 = Enable the EFTB filter
1 = Disable the EFTB filter, causing CLKIN to bypass the EFTB filter
Bit [1:0]: CLKOUT Select
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator – external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external oscillator is disabled.
1 0 = Internal 32-kHz Low-power Oscillator
1 1 = CPUCLK
Document 38-16016 Rev. *A Page 21 of 57

 CY7C601xx
CY7C602xx
11.1.3 Timer Capture Clock (TCAPCLK)

The Timer Capture clock (TCAPCLK) can be sourced from the external crystal oscillator, Internal 24-MHz Oscillator or the Internal
32-kHz Low-power Oscillator. A programmable prescaler of 2, 4, 6, or 8 then divides the selected source.

Figure 11-2. Programmable Interval Timer Block Diagram

12-bit reload
value

12-bit down
counter

12-bit reload
controlClock Timer

Configuration
Status and

Control
System Clock

Interrupt
Controller

Figure 11-3. Timer Capture Block Diagram

16-bit counter

Configuration Status
and Control

Prescale Mux

Capture Registers

Interrupt Controller

1ms
timer

Overflow
Interrupt

Captimer Clock

System Clock

Capture0 Int Capture1 Int
Document 38-16016 Rev. *A Page 22 of 57

 CY7C601xx
CY7C602xx
11.1.4 Internal Clock Trim

Table 11-4. Timer Clock Config (TMRCLKCR) [0x31] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field TCAPCLK Divider TCAPCLK Select ITMRCLK Divider ITMRCLK Select

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 1 0 0 0 1 1 1 1

Bit [7:6]: TCAPCLK Divider [1:0]
TCAPCLK Divider controls the TCAPCLK divisor.
0 0 = Divider Value 2
0 1 = Divider Value 4
1 0 = Divider Value 6
1 1 = Divider Value 8
Bit [5:4]: TCAPCLK Select
The TCAPCLK Select field controls the source of the TCAPCLK.
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator—external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled (the XOSC Enable bit of the CLKIOCR Register is cleared—Table 11-3.)
1 0 = Internal 32-kHz Low-power Oscillator
1 1 = TCAPCLK Disabled
Note: The 1024-µs interval timer is based on the assumption that TCAPCLK is running at 4 MHz. Changes in TCAPCLK
frequency will cause a corresponding change in the 1024-µs interval timer frequency.
Bit [3:2]: ITMRCLK Divider
ITMRCLK Divider controls the ITMRCLK divisor.
0 0 = Divider value of 1
0 1 = Divider value of 2
1 0 = Divider value of 3
1 1 = Divider value of 4
Bit [1:0]: ITMRCLK Select
0 0 = Internal 24-MHz Oscillator
0 1 = External crystal oscillator—external crystal oscillator on CLKIN and CLKOUT if the external crystal oscillator is enabled,
CLKIN input if the external crystal oscillator is disabled.
1 0 = Internal 32-kHz Low-power Oscillator
1 1 = TCAPCLK
Note: Changing the source of TMRCLK requires that both the source and destination clocks be running. Attempting to change
the clock source away from TCAPCLK after that clock has been stopped will not be successful.

Table 11-5. IOSC Trim (IOSCTR) [0x34] [R/W]

Bit # 7 6 5 4 3 2 1 0

Field foffset[2:0] Gain[4:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Default 0 0 0 D D D D D

The IOSC Calibrate register is used to calibrate the internal oscillator. The reset value is undefined but during boot the SROM
writes a calibration value that is determined during manufacturing test. The “D” indicates that the default value is trimmed to 24-
MHz @ 3.30V at power-on.
Bit [7:5]: foffset [2:0]
This value is used to trim the frequency of the internal oscillator. These bits are not used in factory calibration and will be zero.
Setting each of these bits causes the appropriate fine offset in oscillator frequency.
foffset bit 0 = 7.5 kHz
foffset bit 1 = 15 kHz
foffset bit 2 = 30 kHz
Bit [4:0]: Gain [4:0]
The effective frequency change of the offset input is controlled through the gain input. A lower value of the gain setting increases
the gain of the offset input. This value sets the size of each offset step for the internal oscillator. Nominal gain change
(KHz/offsetStep) at each bit, typical conditions (24-MHz operation):
Gain bit 0 = –1.5 kHz
Gain bit 1 = –3.0 kHz
Gain bit 2 = –6 kHz
Gain bit 3 = –12 kHz
Gain bit 4 = –24 kHz
Document 38-16016 Rev. *A Page 23 of 57

	1.0 Features
	1.1 Applications

	2.0 Introduction

