

专业PCB打样工厂,24小时加急出货

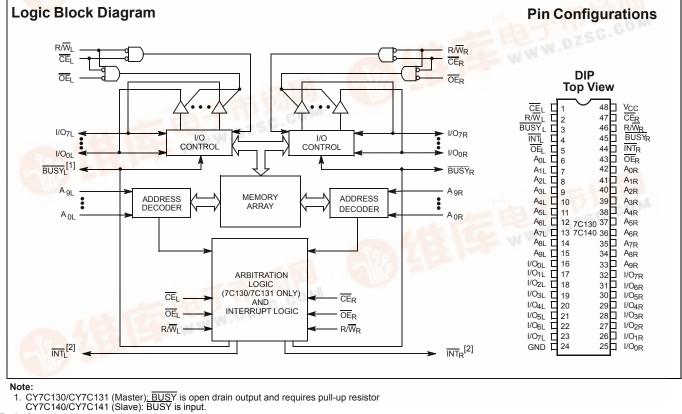
CY7C130/CY7C131 CY7C140/CY7C141

Features

 True Dual-Ported memory cells which allow simultaneous reads of the same memory location

YPRESS

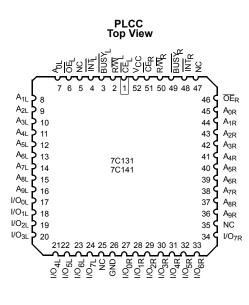
- 1K x 8 organization
- 0.65-micron CMOS for optimum speed/power
- High-speed access: 15 ns
- Low operating power: I_{CC} = 110 mA (max.)
- Fully asynchronous operation
- Automatic power-down
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using slave CY7C140/CY7C141
- BUSY output flag on CY7C130/CY7C131; BUSY input on CY7C140/CY7C141
- INT flag for port-to-port communication
- Available in 48-pin DIP (CY7C130/140), 52-pin PLCC, 52-Pin TQFP.
- Pb-Free packages available

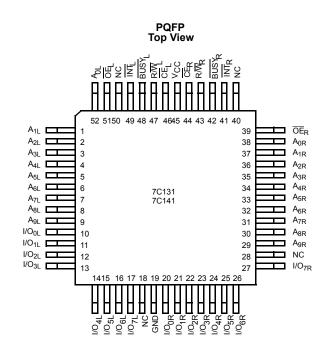

1K x 8 Dual-Port Static RAM

Functional Description

The CY7C130/CY7C131/CY7C140 and CY7C141 are high-speed CMOS 1K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/ CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dual-port device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port has independent control pins; chip enable (\overline{CE}), write enable (R/W), and output enable (OE). Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the <u>same</u> location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable (\overline{CE}) pins.


The CY7C130 and CY7C140 are available in 48-pin DIP. The CY7C131 and CY7C141 are available in 52-pin PLCC, 52-pin Pb-free PLCC, 52-pin PQFP and 52-pin Pb-free PQFP.



2. Open drain outputs: pull-up resistor required.

Pin Configuration (continued)

Pin Definitions

Left Port	Right Port	Description
CEL	CER	Chip Enable
R/WL	R/WR	Read/Write Enable
OEL	OE _R	Output Enable
A _{0L} -A _{11/12L}	A _{0R} -A _{11/12R}	Address
I/O _{0L} -I/O _{15/17L}	I/O _{0R} -I/O _{15/17R}	Data Bus Input/Output
INTL	INT _R	Interrupt Flag
BUSYL	BUSY _R	Busy Flag
V _{CC}		Power
GND		Ground

Selection Guide

		7C131-15 ^[3] 7C141-15	7C131-25 ^[3] 7C141-25	7C130-30 7C131-30 7C140-30 7C141-30	7C130-35 7C131-35 7C140-35 7C141-35	7C130-45 7C131-45 7C140-45 7C141-45	7C130-55 7C131-55 7C140-55 7C141-55	Unit
Maximum Access Time		15	25	30	35	45	55	ns
Maximum Operating	Com'l/Ind	190	170	170	120	120	110	mA
Current	Military				170	170	120	
Maximum Standby	Com'l/Ind	75	65	65	45	45	35	mA
Current	Military				65	65	45	

Shaded areas contain preliminary information.

Note:

3. 15 and 25-ns version available only in PLCC/PQFP packages.

Maximum Ratings^[4]

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied
Supply Voltage to Ground Potential (Pin 48 to Pin 24)–0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State–0.5V to +7.0V
DC Input Voltage
Output Current into Outputs (LOW)20 mA

Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%
Military ^[5]	–55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[6]

					1-15 ^[3] 41-15	7C131 7C14	0-30 ^[3] -25,30 40-30 -25,30	7C13 7C14	0-35,45 1-35,45 0-35,45 1-35,45	7C13 7C14	30-55 31-55 40-55 41-55	
Parameter	Description	Test Condition	ns	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = –	4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW	I _{OL} = 4.0 mA			0.4		0.4		0.4		0.4	V
	Voltage	I _{OL} = 16.0 mA ^[7]			0.5		0.5		0.5		0.5	
V _{IH}	Input HIGH Voltage			2.2		2.2		2.2		2.2		V
V _{IL}	Input LOW Voltage				0.8		0.8		0.8		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-5	+5	-5	+5	-5	+5	-5	+5	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC},$ Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	μA
I _{OS}	Output Short Circuit Current ^[8, 9]	V _{CC} = Max., V _{OUT} = GND			-350		-350		-350		-350	mA
I _{CC}	V _{CC} Operating	$\overline{CE} = V_{IL},$	Com'l		190		170		120		110	mA
	Supply Current	Outputs Open, f = f _{MAX} ^[10]	Mil						170		120	
I _{SB1}	Standby Current	\overline{CE}_{L} and $\overline{CE}_{R} > V_{IH}$, f = f _{MAX} ^[10]	Com'l		75		65		45		35	mA
	Both Ports, TTL Inputs	V_{IH} , f = f _{MAX} ^[10]	Mil						65		45	
I _{SB2}	Standby Current	\overline{CE}_{L} or $\overline{CE}_{R} \ge V_{IH}$,	Com'l		135		115		90		75	mA
	One Port, TTL Inputs	Active Port Outputs Open, $f = f_{MAX}^{[10]}$	Mil						115		90	
I _{SB3}	Standby Current	$\underline{Bot}h Ports \overline{CE}_L and$	Com'l		15		15		15		15	mA
	Both Ports, CMOS Inputs	$\begin{array}{l} {CE_R} \geq \\ {V_{CC}} - 0.2V, \\ {V_{IN}} \geq {V_{CC}} - 0.2V \\ \text{or } {V_{IN}} \leq 0.2V, \ \text{f} = 0 \end{array}$	Mil						15		15	

Shaded areas contain preliminary information.

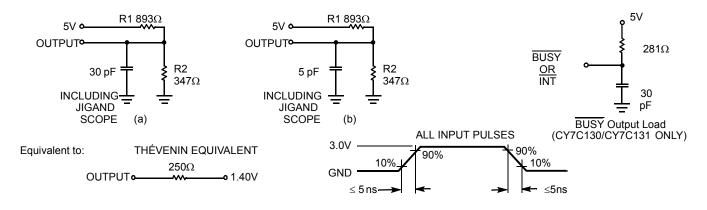
Note:

8. Duration of the short circuit should not exceed 30 seconds.

9. This parameter is guaranteed but not tested.

<sup>A. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.
5. T_A is the "instant on" case temperature
6. See the last page of this specification for Group A subgroup testing information.
7. BUSY and INT pins only.</sup>

^{10.} At f = f_{MAX}, address and data inputs are cycling at the maximum frequency of read cycle of 1/t_{RC} and using AC Test Waveforms input levels of GND to 3V.


Electrical Characteristics Over the Operating Range^[6] (continued)

					1-15 ^[3] 11-15	7C131	0-30 ^[3] -25,30 40-30 -25,30	7C13 ² 7C140	0-35,45 1-35,45 0-35,45 1-35,45	7C13 7C14	80-55 81-55 10-55 11-55	
Parameter	Description	Test Condition	ns	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
I _{SB4}	Standby Current		Com'l		125		105		85		70	mA
		$\label{eq:constraint} \begin{split} \overline{CE}_R &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V \\ \text{or } V_{IN} &\leq 0.2V, \\ \text{Active Port Outputs} \\ \text{Open,} \\ f &= f_{MAX} [^{10}] \end{split}$	Mil						105		85	

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	15	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V	10	pF

AC Test Loads and Waveforms

			1-15 ^[3] 41-15	7C1: 7C14	0-25 ^[3] 31-25 40-25 41-25	7C13 7C14	30-30 31-30 40-30 41-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E							
t _{RC}	Read Cycle Time	15		25		30		ns
t _{AA}	Address to Data Valid ^[12]		15		25		30	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		15		25		30	ns
t _{DOE}	OE LOW to Data Valid ^[12]		10		15		20	ns
t _{LZOE}	OE LOW to Low Z ^[9, 13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9, 13, 14]		10		15		15	ns
t _{LZCE}	CE LOW to Low Z ^[9, 13, 14]	3		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[9, 13, 14]		10		15		15	ns
t _{PU}	CE LOW to Power-Up ^[9]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[9]		15		25		25	ns
WRITE CYC	LE ^[15]		•					- I
t _{WC}	Write Cycle Time	15		25		30		ns
t _{SCE}	CE LOW to Write End	12		20		25		ns
t _{AW}	Address Set-Up to Write End	12		20		25		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	12		15		25		ns
t _{SD}	Data Set-Up to Write End	10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[14]}$		10		15		15	ns
t _{LZWE}	R/\overline{W} HIGH to Low $Z^{[14]}$	0		0		0		ns

Switching Characteristics Over the Operating Range^[6, 11]

Shaded areas contain preliminary information.

Note:

11. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified

11. lest conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified l_{OL}/l_{OH}, and 30-pF load capacitance.
 12. AC Test Conditions use V_{OH} = 1.6V and V_{OL} = 1.4V.
 13. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE}.
 14. t_{LZCE}, t_{LZWE}, t_{HZOE}, t_{LZOE}, t_{HZCE} and t_{HZWE} are tested with C_L = 5<u>pF</u> as in part (b) <u>of</u> AC Test Loads. Transition is measured ±500 mV from steady state voltage.
 15. The internal write time of the memory is defined by the overlap of CS LOW and R/W LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range^[6, 11] (continued)

			1-15 ^[3] 41-15	7C1: 7C14	0-25 ^[3] 31-25 40-25 41-25	7C1 7C1	30-30 31-30 40-30 41-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
BUSY/INTER	RUPT TIMING							
t _{BLA}	BUSY LOW from Address Match		15		20		20	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[16]		15		20		20	ns
t _{BLC}	BUSY LOW from CE LOW		15		20		20	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[16]		15		20		20	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[17]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	13		20		30		ns
t _{BDD}	BUSY HIGH to Valid Data		15		25		30	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18	ns
t _{WDD}	Write Pulse to Data Delay		Note 18		Note 18		Note 18	ns
INTERRUPT	TIMING							
t _{WINS}	R/W to INTERRUPT Set Time		15		25		25	ns
t _{EINS}	CE to INTERRUPT Set Time		15		25		25	ns
t _{INS}	Address to INTERRUPT Set Time		15		25		25	ns
t _{OINR}	OE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{INR}	Address to INTERRUPT Reset Time ^[16]		15		25		25	ns

Shaded areas contain preliminary information.

Note:

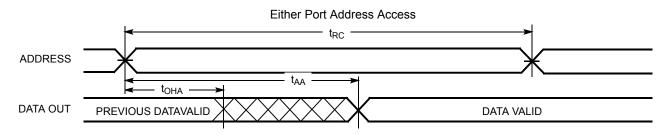
16. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.

17. CY7C140/CY7C141 only.

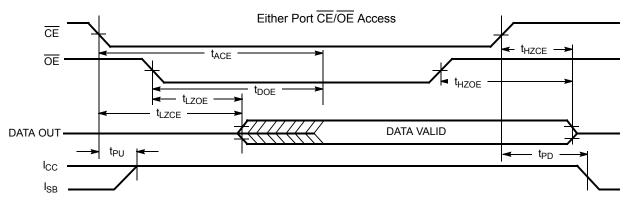
18. <u>A write</u> operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH.
 <u>Port B's address is toggled.</u>
 <u>CE for Port B is toggled.</u>
 R/W for Port B is toggled during valid read.

Switching Characteristics Over the Operating Range^[6,11]

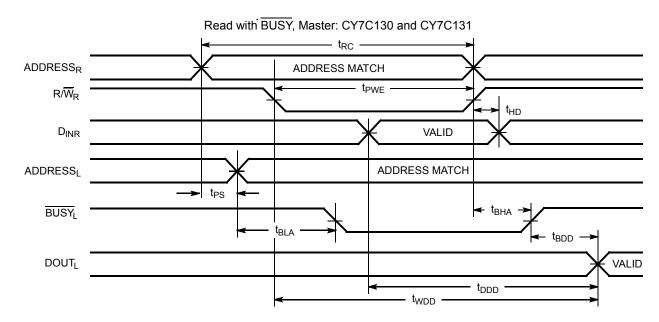
		7C13 7C14	7C130-35 7C131-35 7C140-35 7C141-35		7C130-45 7C131-45 7C140-45 7C141-45		7C130-55 7C131-55 7C140-55 7C141-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E							•
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid ^[12]		35		45		55	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		35		45		55	ns
t _{DOE}	OE LOW to Data Valid ^[12]		20		25		25	ns
t _{LZOE}	OE LOW to Low Z ^[9, 13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9, 13, 14]		20		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[9, 13, 14]	5		5		5		ns


7C130-35 7C131-35 7C130-45 7C130-55 7C131-55 7C140-55 7C131-45 7C140-35 7C140-45 7C141-35 7C141-45 7C141-55 Parameter Description Unit Min. Max. Min. Max. Min. Max. CE HIGH to High Z^[9, 13, 14] 20 20 25 ns t_{HZCE} CE LOW to Power-Up^[9] 0 0 0 ns t_{PU} CE HIGH to Power-Down^[9] 35 35 35 ns t_{PD} WRITE CYCLE^[15] Write Cycle Time 35 45 55 ns t_{WC} CE LOW to Write End 30 35 40 ns t_{SCE} Address Set-Up to Write End 30 40 35 ns t_{AW} Address Hold from Write End 2 2 2 ns t_{HA} Address Set-Up to Write Start 0 0 0 ns t_{SA} R/W Pulse Width 25 30 30 ns t_{PWE} Data Set-Up to Write End 15 20 20 ns t_{SD} Data Hold from Write End 0 0 0 t_{HD} ns R/W LOW to High $Z^{[14]}$ 25 20 20 ns t_{HZWE} R/W HIGH to Low Z^[14] 0 0 0 ns t_{LZWE} **BUSY/INTERRUPT TIMING BUSY LOW from Address Match** 20 25 30 t_{BLA} ns BUSY HIGH from Address Mismatch^[16] 20 25 30 t_{BHA} ns BUSY LOW from CE LOW 25 20 30 ns t_{BLC} BUSY HIGH from CE HIGH^[16] 20 25 30 ns t_{BHC} Port Set Up for Priority 5 5 5 t_{PS} ns t_{WB}[17] R/W LOW after BUSY LOW 0 0 0 ns R/W HIGH after BUSY HIGH 30 35 35 ns t_{WH} BUSY HIGH to Valid Data 35 45 45 ns t_{BDD} Note Write Data Valid to Read Data Valid Note Note ns t_{DDD} 18 18 18 Write Pulse to Data Delay Note Note Note ns t_{WDD} 18 18 18 INTERRUPT TIMING R/W to INTERRUPT Set Time 25 35 45 t_{WINS} ns CE to INTERRUPT Set Time 25 35 45 ns t_{EINS} Address to INTERRUPT Set Time 25 35 45 t_{INS} ns OE to INTERRUPT Reset Time^[16] 25 35 45 t_{OINR} ns CE to INTERRUPT Reset Time^[16] 25 35 45 ns t_{EINR} Address to INTERRUPT Reset Time^[16] 25 35 45 t_{INR} ns

Switching Characteristics Over the Operating Range^[6,11] (continued)



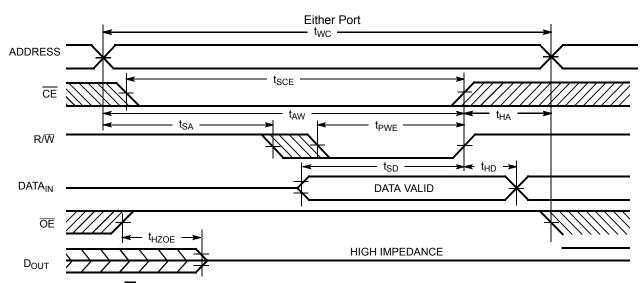
Switching Waveforms


Read Cycle No. 1^[19, 20]

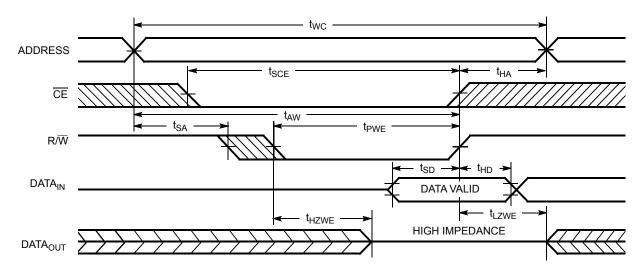
Read Cycle No. 2^[19, 21]

Read Cycle No. 3^[20]

Notes:


19. R/W is HIGH for read cycle.

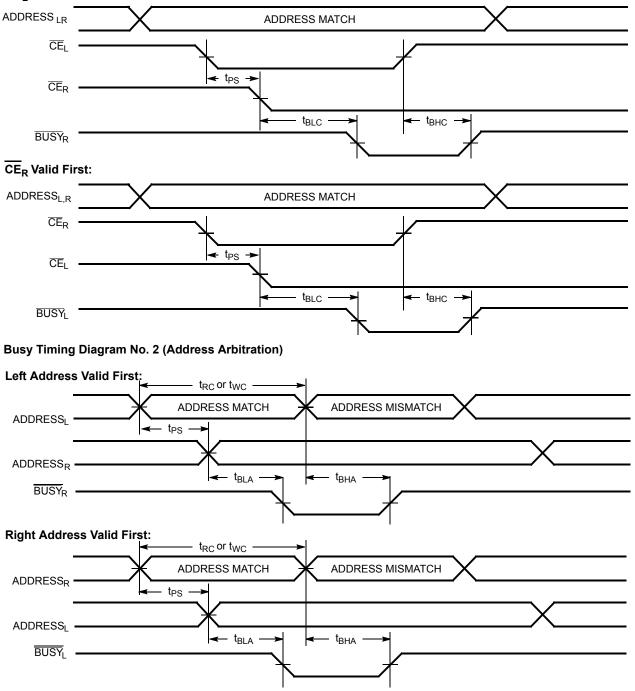
20. Device is continuously selected, $\overline{CE} = V_{\parallel}$ and $\overline{OE} = V_{\parallel}$. 21. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

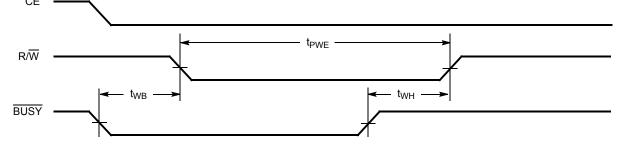
Write Cycle No. 1 (OE Three-States Data I/Os—Either Port^[15, 22]

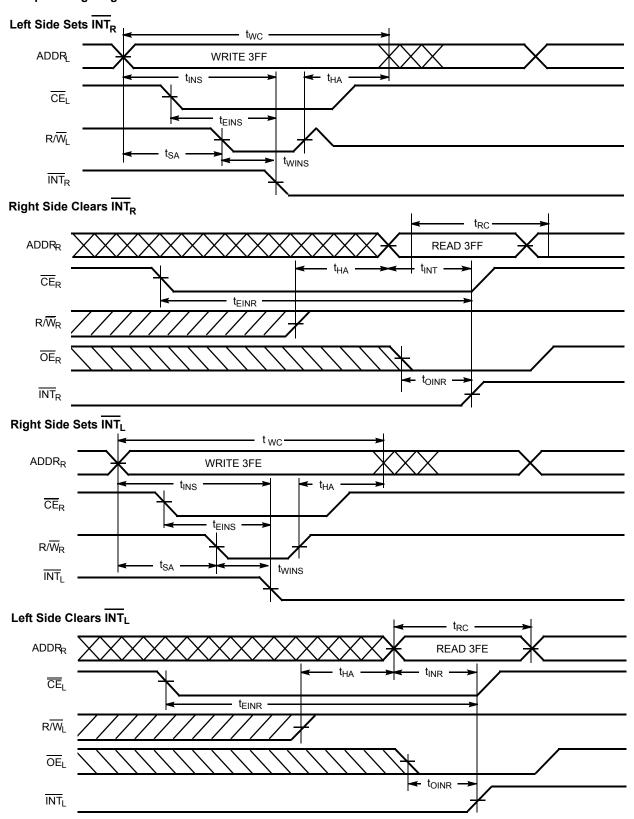
Write Cycle No. 2 (R/W Three-States Data I/Os—Either Port)^[16, 23]

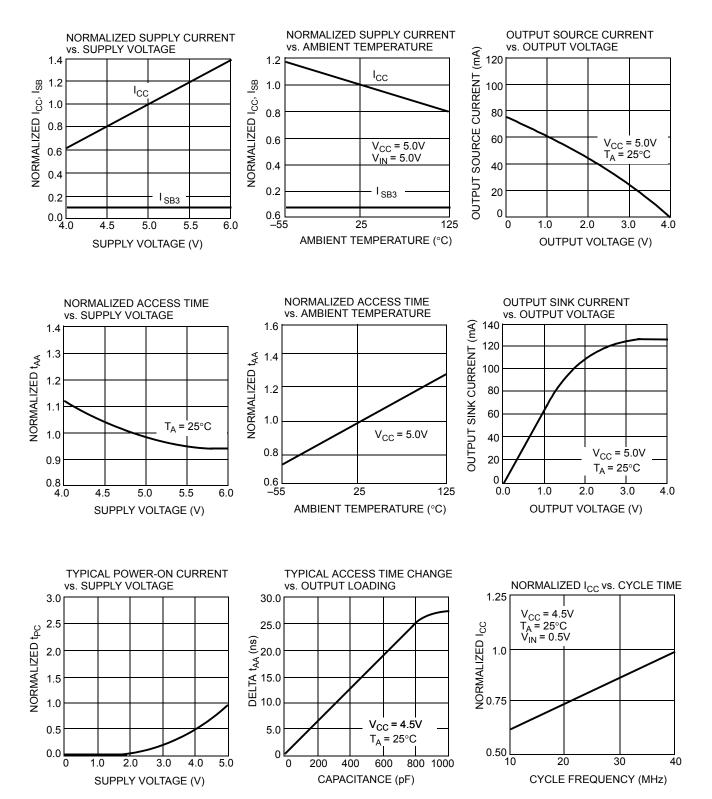


Notes:
22. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{PWE} or t_{HZWE} + t_{SD} to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.
23. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.

Switching Waveforms (continued) Busy Timing Diagram No. 1 (CE Arbitration)


\overline{CE}_{L} Valid First:


Switching Waveforms (continued) Busy Timing Diagram No. 3



Switching Waveforms (continued) Interrupt Timing Diagrams

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
15	CY7C131-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-15JXC	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier	
	CY7C131-15NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-15JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-15JXI	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier	
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-25JXC	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier	
	CY7C131-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-25NXC	N52	52-Pin Pb-Free Plastic Quad Flatpack	
	CY7C131-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-30NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-35NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-35NI	N52	52-Pin Plastic Quad Flatpack	1
45	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-45NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-45NI	N52	52-Pin Plastic Quad Flatpack	
55	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-55JXC	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier	1
	CY7C131-55NC	N52	52-Pin Plastic Quad Flatpack	1
	CY7C131-55NXC	N52	52-Pin Pb-Free Plastic Quad Flatpack	1
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-55JXI	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier	1
	CY7C131-55NI	N52	52-Pin Plastic Quad Flatpack	1

Ordering Information (continued)

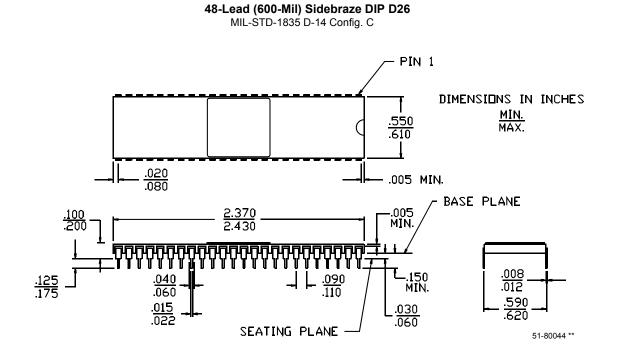
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial	
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial	
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military	
15	CY7C141-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-15NC	N52	52-Pin Plastic Quad Flatpack		
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-25JXC	J69	52-Lead Pb-Free Plastic Leaded Chip Carrier		
	CY7C141-25NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-25NI	N52	52-Pin Plastic Quad Flatpack		
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-30NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
35	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-35NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-35NI	N52	52-Pin Plastic Quad Flatpack		
45	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-45NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-45NI	N52	52-Pin Plastic Quad Flatpack		
55	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial	
	CY7C141-55NC	N52	52-Pin Plastic Quad Flatpack		
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial	
	CY7C141-55NI	N52	52-Pin Plastic Quad Flatpack		

MILITARY SPECIFICATIONS

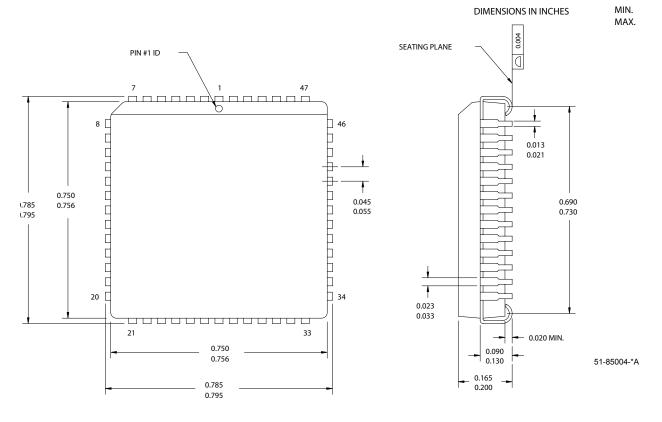
Group A Subgroup Testing

DC Characteristics

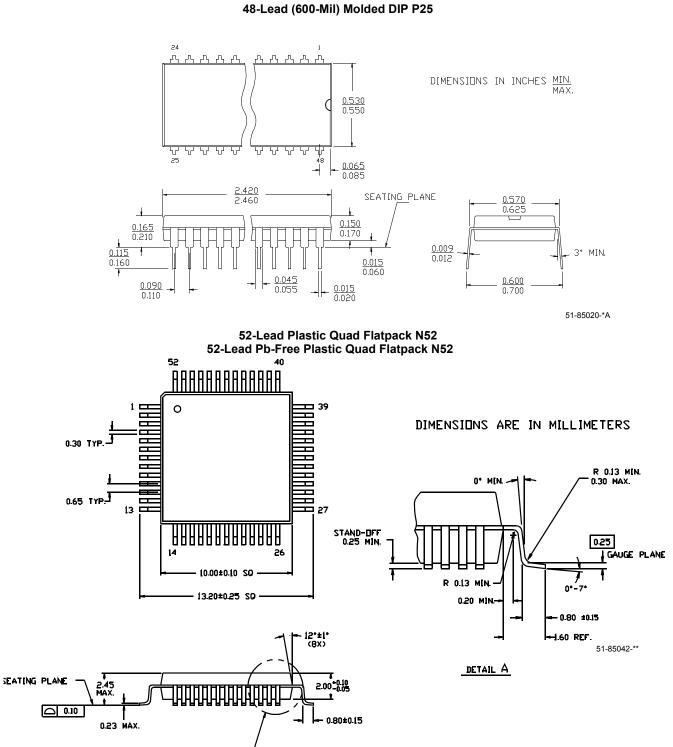
Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3
I _{SB3}	1, 2, 3
I _{SB4}	1, 2, 3


Switching Characteristics

Parameter	Subgroups		
READ CYCLE			
t _{RC}	7, 8, 9, 10, 11		
t _{AA}	7, 8, 9, 10, 11		
t _{ACE}	7, 8, 9, 10, 11		
t _{DOE}	7, 8, 9, 10, 11		
WRITE CYCLE			
t _{WC}	7, 8, 9, 10, 11		
t _{SCE}	7, 8, 9, 10, 11		
t _{AW}	7, 8, 9, 10, 11		
t _{HA}	7, 8, 9, 10, 11		
t _{SA}	7, 8, 9, 10, 11		
t _{PWE}	7, 8, 9, 10, 11		
t _{SD}	7, 8, 9, 10, 11		
t _{HD}	7, 8, 9, 10, 11		
BUSY/INTERRUPT TIMING			
t _{BLA}	7, 8, 9, 10, 11		
t _{BHA}	7, 8, 9, 10, 11		
t _{BLC}	7, 8, 9, 10, 11		
t _{BHC}	7, 8, 9, 10, 11		
t _{PS}	7, 8, 9, 10, 11		
t _{WINS}	7, 8, 9, 10, 11		
t _{EINS}	7, 8, 9, 10, 11		
t _{INS}	7, 8, 9, 10, 11		
t _{OINR}	7, 8, 9, 10, 11		
t _{EINR}	7, 8, 9, 10, 11		
t _{INR}	7, 8, 9, 10, 11		
BUSY TIMING			
t _{WB} [24]	7, 8, 9, 10, 11		
t _{WH}	7, 8, 9, 10, 11		
t _{BDD}	7, 8, 9, 10, 11		


Note: 24. CY7C140/CY7C141 only.

Package Diagrams



52-Lead Plastic Leaded Chip Carrier J69 52-Lead Pb-Free Plastic Leaded Chip Carrier J69

Package Diagrams (continued)

SEE DETAIL A

L

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C130/CY7C131/CY7C140/CY7C141 1K x 8 Dual-Port Static RAM Document Number: 38-06002						
REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change		
**	110169	09/29/01	SZV	Change from Spec number: 38-00027 to 38-06002		
*A	122255	12/26/02	RBI	Power up requirements added to Maximum Ratings Information		
*B	236751	See ECN	YDT	Removed cross information from features section		
*C	325936	See ECN	RUY	Added pin definitions table, 52-pin PQFP package diagram and Pb-free information		
*D	393153	See ECN	YIM	Added CY7C131-15JI to ordering information Added Pb-Free parts to ordering information: CY7C131-15JXI		

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

中发网 www.zfa.c

PDF 资料下载尽在中发网