

CY7C1021D

1-Mbit (64K x 16) Static RAM

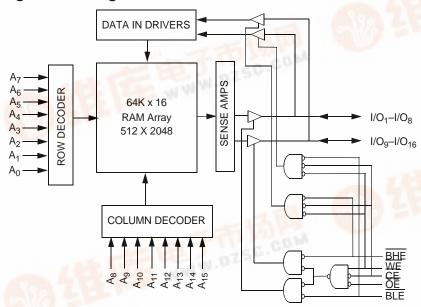
Features

- Pin- and function-compatible with CY7C1021B
- High speed
 - t_{AA} = 10 ns
- CMOS for optimum speed/power
- Low active power
 - I_{CC} = 60 mA @ 10ns
- Low CMOS Standby Power
 - I_{SB2} = 1.2 mA ("L" Version only)
- · Automatic power-down when deselected
- Data Retention at 2.0V
- Independent control of upper and lower bits
- Available in 44-pin TSOP II and 400-mil SOJ Pb-Free **Packages**

Functional Description[1]

The CY7C1021D is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an

automatic power-down feature that significantly reduces power consumption when deselected.


Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A0 through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{15}).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1021D is available in standard 44-pin TSOP Type II and 400-mil-wide SOJ Pb-Free packages.

Logic Block Diagram

Pin Configuration

For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		CY7C1021D-10	CY7C1021D-12	Unit
Maximum Access Time	Com'l / Ind'l	10	12	ns
Maximum Operating Current	Com'l / Ind'l	60	50	mA
Maximum CMOS Standby Current	Com'l / Ind'l	3	3	mA
	L-Version Only	1.2	1.2	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage on V_{CC} to Relative GND^[2] -0.5V to +7.0V

DC Input Voltage ^[2]	-0.5V to V _{CC} +0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

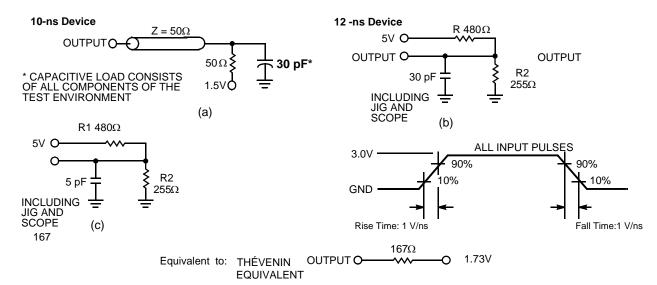
Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	5V ± 10%		
Industrial	-40°C to +85°C	5V ± 10%		

Electrical Characteristics Over the Operating Range

			7C1	021D-10	7C1	1021D-12	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m/s}$	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3V	2.0	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_CC$	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{I} \leq V_{CC},$ Output Disabled	-1	+1	– 1	+1	μΑ
Ios	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		60		50	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{split} & \underbrace{\text{Max. V}_{CC}}, \\ & \text{CE} \geq \text{V}_{IH} \\ & \text{V}_{IN} \geq \text{V}_{IH} \text{ or } \\ & \text{V}_{IN} \leq \text{V}_{IL}, \\ & \text{f} = \text{f}_{MAX} \end{split}$		10		10	mA
I _{SB2}	Automatic CE	Max. V _{CC} , CE ≥		3	t	3	mA
	Power-down Current —CMOS Inputs	$V_{CC} - 0.3V, V_{IN} \ge V_{CC} - 0.3V, f = 0$		1.2		1.2	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF


Thermal Resistance^[4]

Parameter	Description	Test Conditions	All-Packages	Unit
Θ_{JA}	[4]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	TBD	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[4]		TBD	°C/W

- 2. V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 2V for pulse durations of less than 20 ns.
 3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
 4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

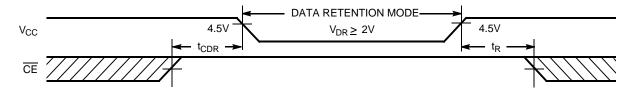
Switching Characteristics Over the Operating Range [5]

		7C102	21D-10	7C1021D-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•		II.	1
t _{power} [6]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		5		6	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		6	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		5		6	ns
Write Cycle ^[9]	•	•	•		•	•
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	8		9		ns
t _{AW}	Address Set-Up to Write End	7		8		ns

Notes:

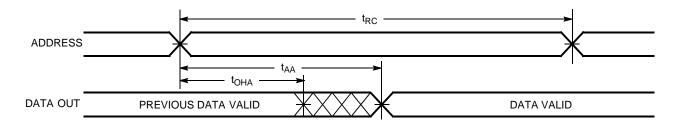
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- tooms gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
- the power street infilinitial amount of the triat the power supply should be at typical V_CC values with the first memory access can be performed.
 At any given temperature and voltage condition, the triat the power supply should be at typical V_CC values with the first memory access can be performed.
 At any given temperature and voltage condition, the triat the power supply should be at typical V_CC values with the first memory access can be performed.
 At any given temperature and voltage condition, the triat the power supply should be triat the power supply should be referenced to the performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage can be performed.
 At any given temperature and voltage and the triansition of the performed.
 At any given temperature and voltage and the triansition of the performed a

Document #: 38-05462 Rev. *C.


Switching Characteristics Over the Operating Range (continued)^[5]

		7C102	21D-10	7C102	21D-12	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Set-Up to Write End	5		6		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		5		6	ns
t _{BW}	Byte Enable to End of Write	7		8		ns

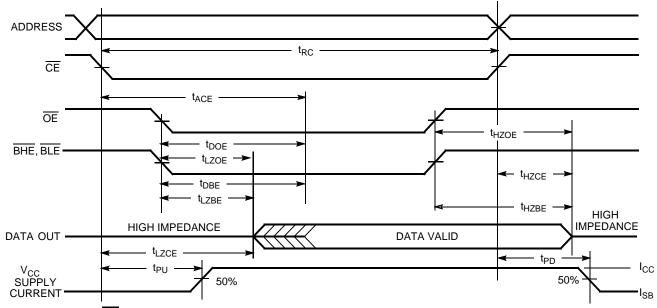
Data Retention Characteristics (Over the Operating Range)


Parameter	Des	cription	Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Non-L, Com'l / Ind'l	$V_{CC} = V_{DR} = 2.0V$		3	mA
		L-Version Only	$CE \ge V_{CC} - 0.3V$, $V_{CC} \ge V_{CC} - 0.3V$, or		1.2	mA
t _{CDR} [4]	Chip Deselect to Data R	etention Time	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Tim	е		t _{RC}		ns

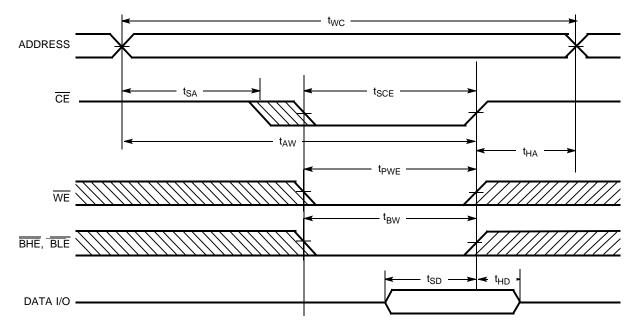
Data Retention Waveform

Switching Waveforms

Read Cycle No. 1^[11, 12]



- 10. Full device operation requires lin<u>ear</u> V_{CC} <u>ramp</u> from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs. 11. Device is continuously selected. OE, CE, BHE and/or BHE = V_{IL}. 12. WE is HIGH for read cycle.

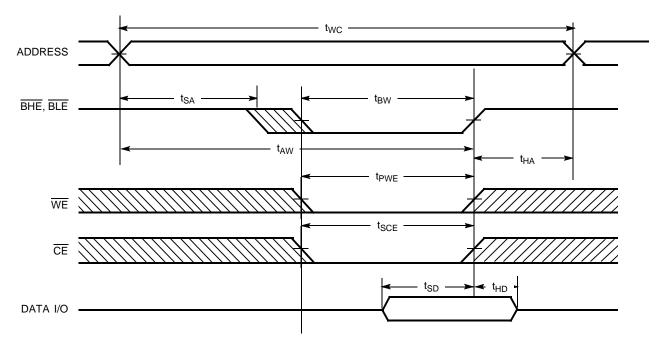


Switching Waveforms (continued)

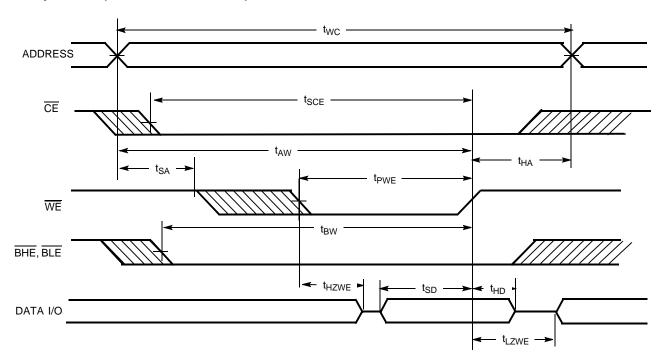
Read Cycle No. 2 (OE Controlled)[12, 13]

Write Cycle No. 1 (CE Controlled)[14, 15]

- 13. Address valid prior to or coincident with CE transition LOW.


 14. Data I/O is high impedance if OE or BHE and/or BLE = V_{IH}.

 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



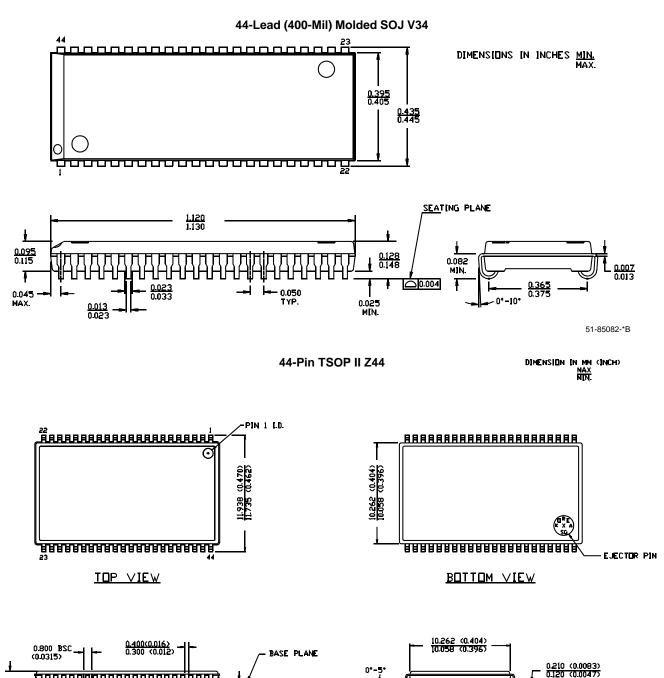
Switching Waveforms (continued)

Write Cycle No. 2 (BLE or BHE Controlled)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Χ	X	X	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Χ	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1021D-10VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1021D-10VXI	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1021DL-10VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1021D-10ZXC	Z44	44-Lead TSOP Type II (Pb-Free)	Commercial
	CY7C1021D-10ZXI	Z44	44-Lead TSOP Type II (Pb-Free)	Industrial
	CY7C1021DL-10ZXC	Z44	44-Lead TSOP Type II (Pb-Free)	Commercial
12	CY7C1021D-12VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1021D-12VXI	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1021DL-12VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1021D-12ZXC	Z44	44-Lead TSOP Type II (Pb-Free)	Commercial
	CY7C1021D-12ZXI	Z44	44-Lead TSOP Type II (Pb-Free)	Industrial
	CY7C1021DL-12ZXC	Z44	44-Lead TSOP Type II (Pb-Free)	Commercial

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams

△0.10 (.004)

All product and company names mentioned in this document may be the trademarks of their respective holders.

18.517 (0.729) 18.313 (0.721)

51-85087-*A

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	233695	See ECN	RKF	DC parameters modified as per EROS (Spec # 01-02165) Pb-free Offering in the Ordering Information
*B	263769	See ECN	RKF	Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics table Shaded Ordering Information
*C	307601	See ECN	RKF	Reduced Speed bins to -10 and -12 ns

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

PDF 资料下载尽在中发网