查询CY7C1020CV33-15ZSE供应商

PRESS

PRELIMINARY

CY7C1020D

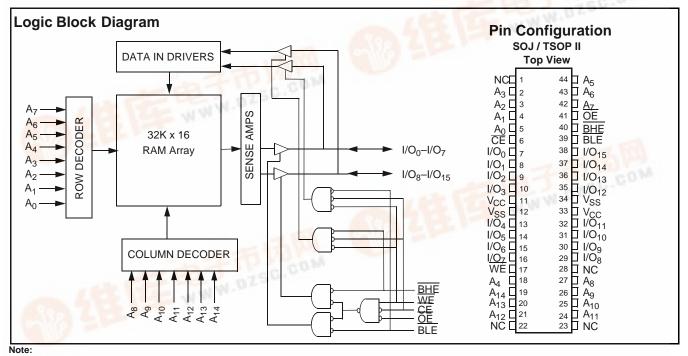
512K (32K x 16) Static RAM

Features

- Pin- and function-compatible with CY7C1020B
- High speed
 - $t_{AA} = 10 \text{ ns}$
- CMOS for optimum speed/power
- Low active power
- I_{CC} = 60 mA @ 10ns
- Low CMOS Standby Power
 - I_{SB2} = 1.2 mA ("L" Version only)
- · Automatic power-down when deselected
- Data Retention at 2.0V
- · Independent control of upper and lower bits
- Available in 44-pin TSOP II and 400-mil SOJ Pb-Free Packages

Functional Description^[1]

The CY7C1020D is a high-performance CMOS static RAM organized as 32,768 words by 16 bits. This device has an


automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₄). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₄).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O_0 through I/O_{15}) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1020D is available in standard 44-pin TSOP Type II and 400-mil-wide SOJ Pb-Free packages.

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Cypress Semiconductor Corporation

3901 North First Street • San Jose CA 95134 • 408-943-2600

Selection Guide

		CY7C1020D-10	CY7C1020D-12
Maximum Access Time (ns)	Com'l / Ind'l	10	12
Maximum Operating Current (mA)	Com'l / Ind'l	60	50
Maximum CMOS Standby Current (mA)	Com'l / Ind'l	3	3
	L-Version Only	1.2	1.2

Maximum Ratings

(Above which the useful life may be impaired. For user lines, not tested.)	guide-
Storage Temperature65°C to +	150°C
Ambient Temperature with Power Applied55°C to +	
Supply Voltage on V_{CC} to Relative GND ^[Notes:] -0.5V to) +7.0V
DC Voltage Applied to Outputs in High Z State $^{\left[2\right]}$ 0.5V to V_CC	+0.5V
DC Input Voltage ^[2] 0.5V to V _{CC}	+0.5V

Electrical Characteristics Over the Operating Range

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	.>2001V
(per MIL-STD-883, Method 3015)	

Latch-Up Current.....>200mA

Operating Range

Range	Ambient Temperature	V _{cc}	
Commercial	0°C to +70°C	$5V\pm10\%$	
Industrial	-40°C to +85°C	5V ± 10%	

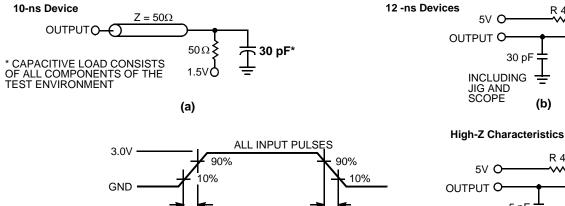
		Test		7C1020D-10		7C1020D-12		
Parameter	Description		litions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8	5.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V_{CC} + 0.3V	2.0	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	+1	-1	+1	μA
I _{OZ}	Output Leakage Current	GND <u>≤</u> V _I <u>≤</u> V _{CC} , Output Disabled		-1	+1	-1	+1	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND			-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$			60		50	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs	$\begin{array}{l} \underline{Ma} x. \ V_{CC}, \\ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \\ f = f_{MAX} \end{array}$			10		10	mA
I _{SB2}	Automatic CE	<u>Ma</u> x. V _{CC} , CE <u>></u>	Non-L, Com'l / Ind'l		3		3	mA
	Power-Down Current—CMOS Inputs	$\begin{array}{l} CE \geq \\ V_{CC} - 0.3V, V_{IN} \geq \\ V_{CC} - 0.3V, \\ or V_{IN} \leq 0.3V, f = 0 \end{array}$	L-Version Only		1.2		1.2	mA

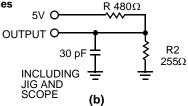
Capacitance^[4]

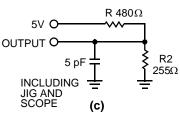
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Notes:

V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 2V for pulse durations of less than 20 ns.
 Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.




CY7C1020D


Thermal Resistance^[4]

Parameter	Description	Test Conditions	All - Packages	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 3×4.5 inch, two-layer printed circuit board	TBD	°C/W
	Thermal Resistance (Junction to Case) ^[4]		TBD	°C/W

AC Test Loads and Waveforms

167Ω 1.73V Equivalent to: THÉVENIN OUTPUT O 0 ~~ EQUIVALENT

Switching Characteristics^[5] Over the Operating Range

Rise Time: 1 V/ns

		7C10	20D-10	7C1020D-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{power} [6]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		5		6	ns
t _{LZCE}	CE LOW to Low Z ^[7]	0		3		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		6	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		5		6	ns

Fall Time: 1 V/ns

Notes:

4. Tested initially and after any design or process changes that may affect these parameters.

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

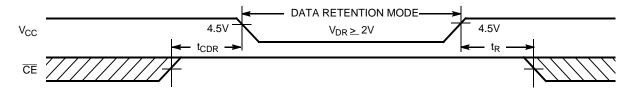
6. tpOWER gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.

7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 8. t_{HZOE}, t_{HZEE}, t_{HZEE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage.

Document #: 38-05463 Rev. *C

Page 3 of 10

CY7C1020D


Switching Characteristics^[5] Over the Operating Range

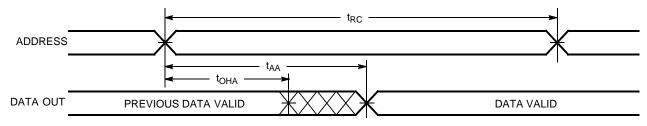
		7C10	20D-10	7C1020D-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[9]	-			L	ı	1
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	7		9		ns
t _{AW}	Address Set-Up to Write End	7		8		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Set-Up to Write End	6		6		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		6		6	ns
t _{BW}	Byte Enable to End of Write	7		8		ns

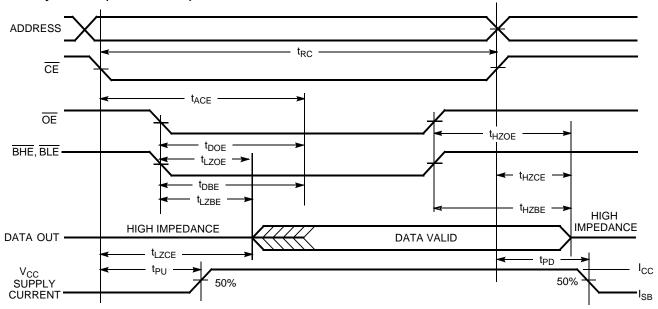
Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions	Min.	Max.	Unit	
V _{DR}	V _{CC} for Data Retention	$\underline{V_{CC}} = V_{DR} = 2.0V,$	2.0		V	
I _{CCDR}	Data Retention Current	Non-L, Com'l / Ind'l	$\label{eq:V_CC} \begin{array}{l} V_{CC} = V_{DR} = 2.0V, \\ CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V \end{array}$		3	mA
		L-Version Only	$V_{\rm IN} \le 0.3V$		1.2	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time			0		ns
t _R ^[10]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform

Notes:


Notes: 9. The internal write time of the memory is defined by the overlap of \overline{CE} LOW, \overline{WE} LOW and $\overline{BHE} / \overline{BLE}$ LOW. \overline{CE} , \overline{WE} and $\overline{BHE} / \overline{BLE}$ must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 10. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} \geq 50 µs or stable at V_{CC(min.)} \geq 50 µs.

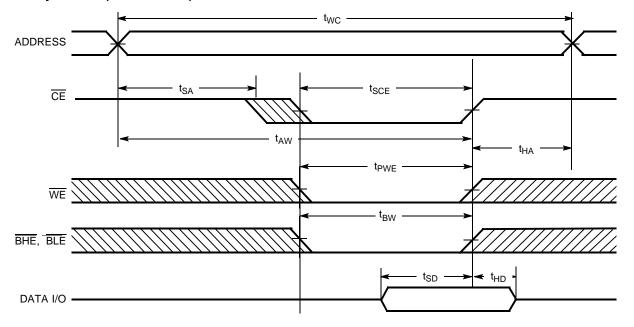

CY7C1020D

Switching Waveforms

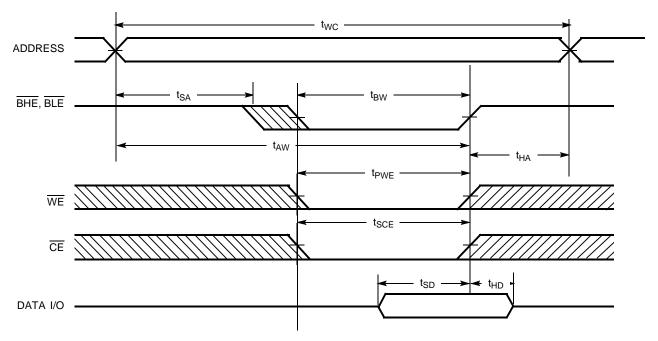
Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)^[12, 13]

Notes:


11. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or \overline{BHE} = V_{IL}. 12. WE is HIGH for read cycle.

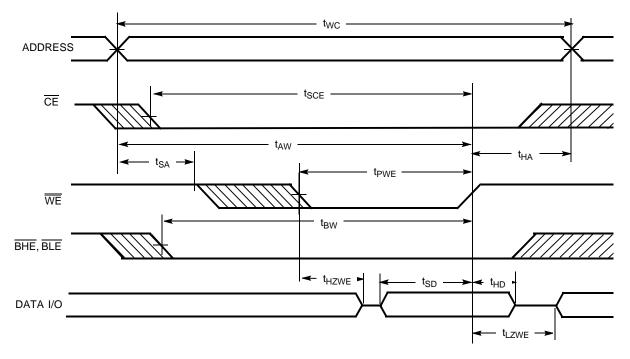
13. Address valid prior to or coincident with \overline{CE} transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (\overline{CE} Controlled)^[14, 15]

Write Cycle No. 2 (BLE or BHE Controlled)


Notes:

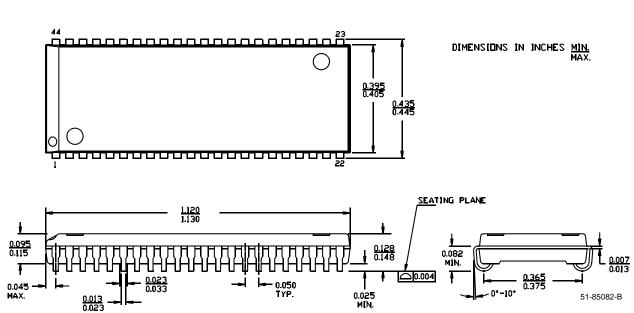
14. Data I/O is high impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$. 15. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled) OE LOW

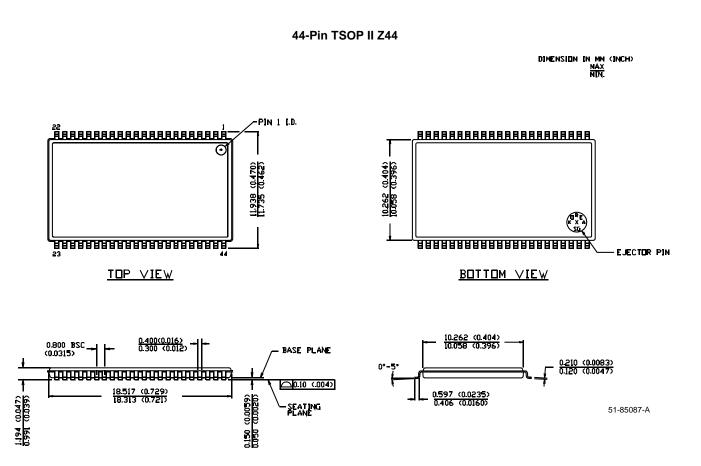
Truth Table

CE	OE	WE	BLE	BHE	1/0 ₀ -1/0 ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1020D-10VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1020D-10ZXC	V34	44-Lead TSOP Type II (Pb-Free)	
	CY7C1020D-10VXI	Z44	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1020D-10ZXI	Z44	44-Lead TSOP Type II (Pb-Free)	
12	CY7C1020D-12VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1020D-12ZXC	V34	44-Lead TSOP Type II (Pb-Free)	
	CY7C1020D-12VXI	Z44	44-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1020D-12ZXI	Z44	44-Lead TSOP Type II (Pb-Free)]

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.


Package Diagrams

44-Lead (400-Mil) Molded SOJ V34

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

ined berein is subject to change without notice. Cypress Semiconductor Corporat

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Datasheet for C9 IPP
*A	233695	See ECN	RKF	 DC parameters modified as per EROS (Spec # 01-0216) Pb-free Offering in the 'Ordering Information'
*B	263769	See ECN	RKF	1) Corrected Pin #18 on SOJ/TSOPII Pinout (Page #1) from A_{15} to A_4 2) Changed I/O ₁ - I/O ₁₆ to I/O ₀ - I/O ₁₅ on the Pin-out diagram 3) Added T _{power} Spec in Switching Characteristics Table 4) Added Data Retention Characteristics Table and Waveforms 5) Shaded 'Ordering Information'
*C	307594	See ECN	RKF	Reduced Speed bins to -10, -12 and -15 ns

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

中发网 www.zfa.c

PDF 资料下载尽在中发网