

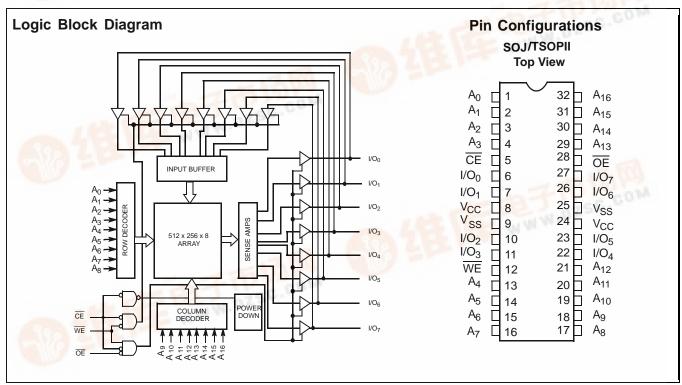
CY7C1019D

1-Mbit (128K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C1019B
- High speed
 - $t_{AA} = 10 \text{ ns}$
- CMOS for optimum speed/power
- Low active power
 - I_{CC} = 60 mA @ 10 ns
- Low CMOS standby power
 - I_{SB2} = 1.2 mA ('L' Version only)
- Data Retention at 2.0V
- Center power/ground pinout
- · Automatic power-down when deselected
- Easy memory expansion with CE and OE options
- Functionally equivalent to CY7C1019B
- Available in Pb-Free Packages

Functional Description[1]


The CY7C1019D is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and tri-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019D is available in standard 32-pin TSOP Type II and 400-mil-wide SOJ Pb-Free packages.

. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		CY7C1019D-10	CY7C1019D-12	Unit
Maximum Access Time		10	12	ns
Maximum Operating Current		60	50	mA
Maximum Standby Current		3	3	mA
	L	1.2	1.2	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[2]}$ -0.5V to +7.0VDC Voltage Applied to Outputs in High-Z State $^{[2]}$ -0.5V to $\rm V_{CC}$ + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	5V ± 10%		
Industrial	–40°C to +85°C	5V ± 10%		

Electrical Characteristics Over the Operating Range

DC Input Voltage^[2]......-0.5V to V_{CC} + 0.5V

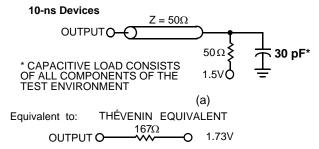
				7C101	7C1019D-10		9D-12	
Parameter	Description	Test Condi	tions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.$	0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$		+1	-1	+1	μА
l _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$			+1	-1	+1	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0$ $f = f_{MAX} = 1/t_{RC}$	mA,		60		50	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$			10		10	mA
Power-Down Current —TTL Inputs		$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	L		10		10	1
I _{SB2}	Automatic CE	Max. V _{CC} ,			3.0		3.0	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	L		1.2		1.2	

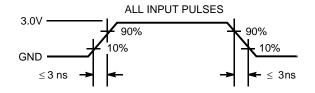
Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

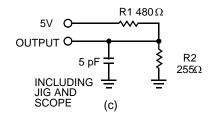
Thermal Resistance^[3]

Parameter	Description	Test Conditions	All - Packages	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	TBD	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[3]		TBD	°C/W


- 2. $V_{\rm IL}$ (min.) = -2.0V and $V_{\rm IH}$ (max) = $V_{\rm CC}$ + 2V for pulse durations of less than 20 ns. 3. Tested initially and after any design or process changes that may affect these parameters.


Document #: 38-05464 Rev. *C

Page 3 of 9


AC Test Loads and Waveforms

12 -ns Devices R1 480Ω **OUTPUT O** R2 255Ω INCLUDING JIG AND SCOPE

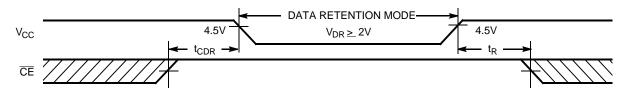
High-Z characteristics:

Switching Characteristics Over the Operating Range [5]

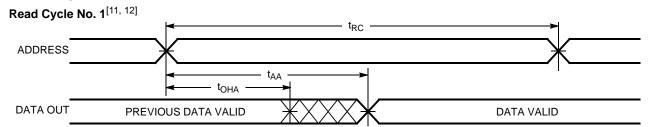
		7C101	9D-10	7C10 ⁻	19D-12	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•	•	•	•
t _{power} ^[4]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		5		6	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
Write Cycle ^{[8}	3, 9]					
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	8		9		ns
t _{AW}	Address Set-Up to Write End	7		8		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Set-Up to Write End	5		6		ns

Notes:

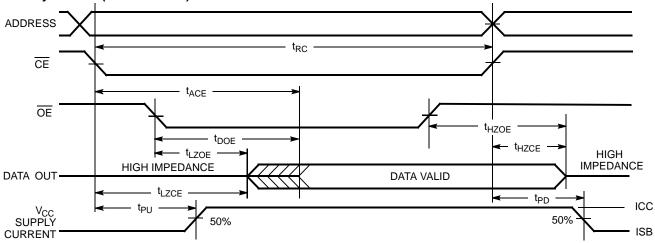
- 4. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo_L/l_{OH} and 30-pF load capacitance.
 6. t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage.
 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 9. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


Switching Characteristics Over the Operating Range (continued)^[5]

		7C1019D-10		7C1019D-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		5		6	ns


Data Retention Characteristics Over the Operating Range

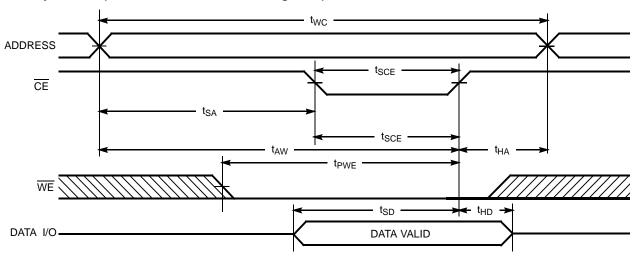
Parameter	Description		Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		$V_{CC} = V_{DR} = 2.0V$	2.0		V
I _{CCDR}	Data Retention Current	Non-L, Com'l/Ind'l	$\overrightarrow{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or		3	mA
		L-Version Only	$V_{IN} \leq 0.3V$		1.2	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0		ns	
t _R ^[10]	Operation Recovery Time			t _{RC}		ns


Data Retention Waveform

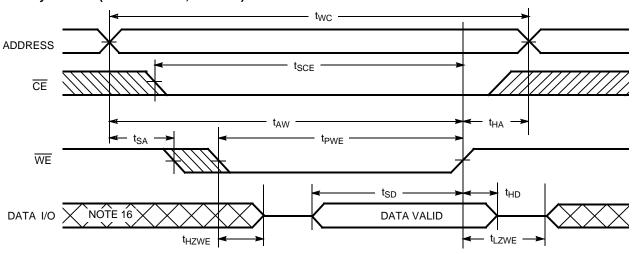
Switching Waveforms

Read Cycle No. 2 (OE Controlled)[12, 13]

Notes:


- Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 µs or stable at V_{CC(min.)} ≥ 50 µs.
 Device is continuously selected. OE, CE = V_L.
- 12. WE is HIGH for read cycle.
- 13. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Document #: 38-05464 Rev. *C.



Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ HIGH During Write)[14, 15]

Write Cycle No. 3 (WE Controlled, OE LOW)[15]

Notes:

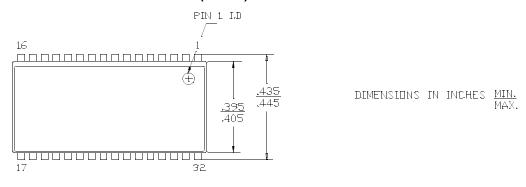
^{14.} Data I/O is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.

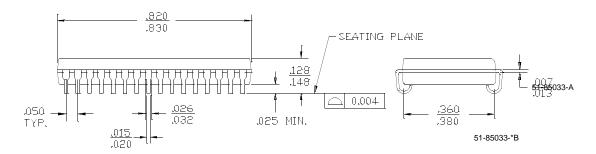
15. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

16. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

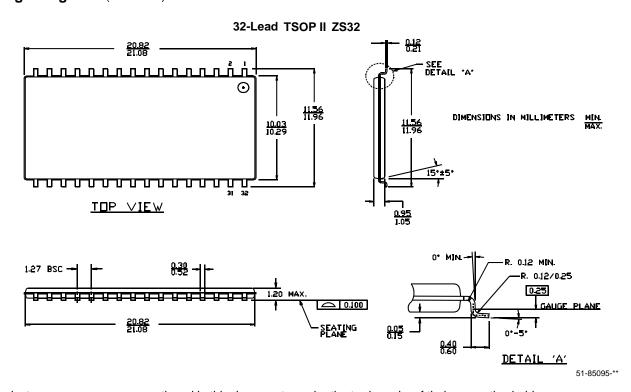
CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1019D-10VXC	V33	32-Lead 400-Mil Molded SOJ (Pb-Free)	Commercial
	CY7C1019D-10VXI	V33	32-Lead 400-Mil Molded SOJ (Pb-Free)	Industrial
	CY7C1019D-10ZXC	ZS32	32-Lead TSOP Type II (Pb-Free)	Commercial
	CY7C1019D-10ZXI	ZS32	32-Lead TSOP Type II (Pb-Free)	Industrial
12	CY7C1019D-12VXC	V33	32-Lead 400-Mil Molded SOJ (Pb-Free)	Commercial
	CY7C1019D-12VXI	V33	32-Lead 400-Mil Molded SOJ (Pb-Free)	Industrial
	CY7C1019D-12ZXC	ZS32	32-Lead TSOP Type II (Pb-Free)	Commercial
	CY7C1019D-12ZXI	ZS32	32-Lead TSOP Type II (Pb-Free)	Industrial

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams


32-Lead (400-Mil) Molded SOJ V33

Package Diagrams (continued)

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05464 Rev. *C

Document History Page

Documen Documen	Document Title: CY7C1019D 1-Mbit (128K x 8) Static RAM (Preliminary) Document Number: 38-05464							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP				
*A	233715	See ECN	RKF	DC parameters are modified as per EROS (Spec # 01-2165) Pb-free offering in the Ordering Information				
*B	262950	See ECN	RKF	Added T _{power} Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information				
*C	307598	See ECN	RKF	Reduced Speed bins to -10 and -12 ns				

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

PDF 资料下载尽在中发网