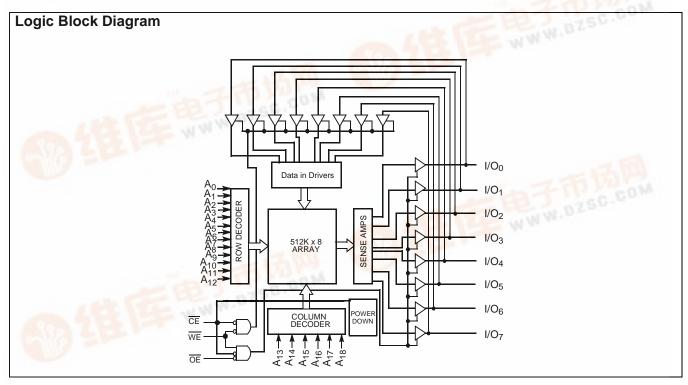


CY62148DV30

4-Mb (512K x 8) MoBL® Static RAM

Features

- · Very high speed: 55 ns
 - Wide voltage range: 2.20V 3.60V
- Pin-compatible with CY62148CV25, CY62148CV30 and CY62148CV33
- Ultra low active power
 - Typical active current: 1.5 mA @ f = 1 MHz
 - Typical active current: 8 mA @ f = f_{max}(55-ns speed)
- Ultra low standby power
- Easy memory expansion with $\overline{\text{CE}}$, and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Packages offered: 36-ball BGA, 32-pin TSOPII and 32-pin SOIC

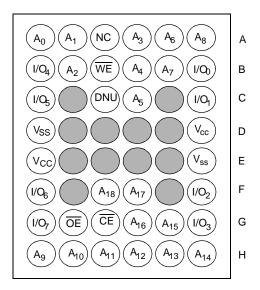

Functional Description[1]

The CY62148DV30 is a high-performance CMOS static RAMs organized as 512K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption when deselected (CE HIGH).

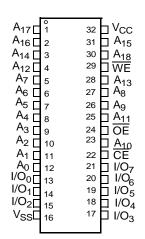
Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

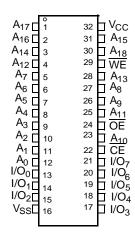


For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



Pin Configuration^[2,3]

FBGA Top View


32 SOIC Top View

Notes:

- 2. NC pins are not connected on the die.
- 3. DNU pins have to be left floating or tied to Vss to ensure proper application.

32 TSOPII Top View

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential -0.3V to V_{CC(MAX)} + 0.3V

DC Input Voltage ^[4,5]	$-0.3V$ to $V_{CC(MAX)} + 0.3V$
Output Current into Outputs (LOW	, ,
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	> 200 mA

Operating Range

Product	Range	Ambient Temperature	V _{CC} ^[6]
CY62148DV30L	Industrial	–40°C to +85°C	2.2V to 3.6V
CY62148DV30LL			

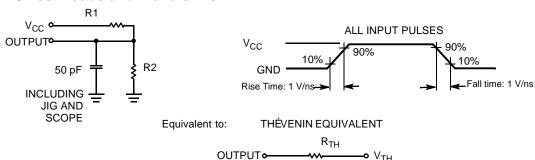
Product Portfolio

						Power Dissipation				
						Operating I _{CC} (mA)				
	Vo	C Range ((V)	Speed	f = 1	MHz	f = 1	max	Standby	I _{SB2} (uA)
Product	Min.	Typ. ^[7]	Max.	(ns)	Typ. ^[7]	Max.	Typ. ^[7]	Max.	Typ. ^[7]	Max.
CY62148DV30L	2.2	3.0	3.6	55	1.5	3	8	15	2	12
CY62148DV30LL	2.2	3.0	3.6	55		3		10		8
CY62148DV30L	2.2	3.0	3.6	70	1.5	3	8	15	2	12
CY62148DV30LL	2.2	3.0	3.6	70		3		10		8

Electrical Characteristics Over the Operating Range

					C	62148	DV30-55	CY	′62148I	DV30-70	
Parameter	Description	Test C	onditions		Min.	Typ. ^[7]	Max.	Min.	Typ. ^[7]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 2.20V$		2.0			2.0			V
		$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.70V$		2.4			2.4			V
V_{OL}	Output LOW Voltage	$I_{OL} = 0.1 \text{ mA}$	$V_{CC} = 2.20V$				0.4			0.4	V
		$I_{OL} = 2.1 \text{ mA}$	$V_{CC} = 2.70V$				0.4			0.4	V
V_{IH}	Input HIGH Voltage	$V_{CC} = 2.2V \text{ to } 2.$	7V		1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
		$V_{CC} = 2.7 \text{V to } 3.6$	6V		2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V_{IL}	Input LOW Voltage	$V_{CC} = 2.2V \text{ to } 2.$	7V		-0.3		0.6	-0.3		0.6	V
		$V_{CC} = 2.7 \text{V to } 3.6$	6V		-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$				+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{O} \leq V_{CC}$, Output Disable	t	-1		+1	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	L		8	15		8	15	mΑ
	Current		I _{OUT} = 0 mA CMOS levels	LL			10			10	mΑ
		f = 1 MHz	Olvioo levels	L		1.5	3		1.5	3	mΑ
				LL							mΑ
I _{SB1}	Automatic CE	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$,		L		2	12		2	12	μΑ
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{IN} \ge V_{I$	/ _{IN} ≤0.2V) <u>s a</u> nd Data Only) VE), V _{CC} =3.60V	LL			8			8	
I _{SB2}	Automatic CE	$\overline{CE} \ge V_{CC} - 0.2$	/,	L		2	12		2	12	μΑ
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V_{CC}$ f = 0, $V_{CC} = 3.60$		LL			8			8	

- 4. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.
- V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a 100 μs ramp time from 0 to V_{cc}(min) and 200 μs wait time after V_{cc} stabilization.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

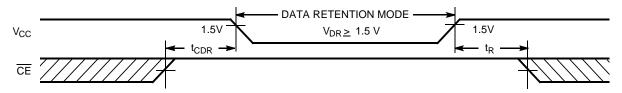

Capacitance for all packages^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

Thermal Resistance

Parameter	Description	Test Conditions	BGA	TSOP II	SOIC	STSOP	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	72	75.13	55	105	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		8.86	8.95	22	13	°C/W

AC Test Loads and Waveforms

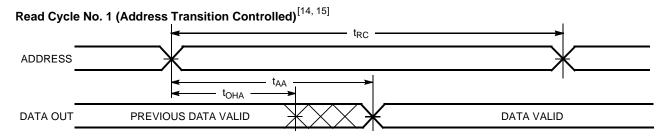


Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[7]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	L			9	μΑ
		$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	LL			6	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time		•	0			ns
t _R ^[9]	Operation Recovery Time			t _{RC}			ns

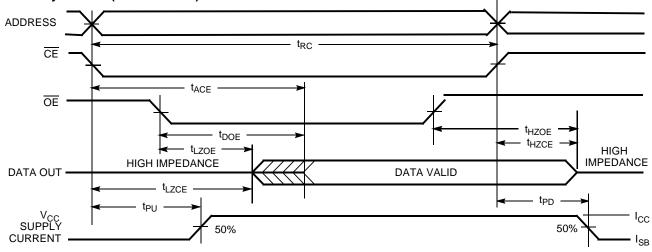
Data Retention Waveform


- Tested initially and after any design or process changes that may affect these parameters. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \, \mu s$ or stable at $V_{CC(min.)} \ge 100 \, \mu s$.

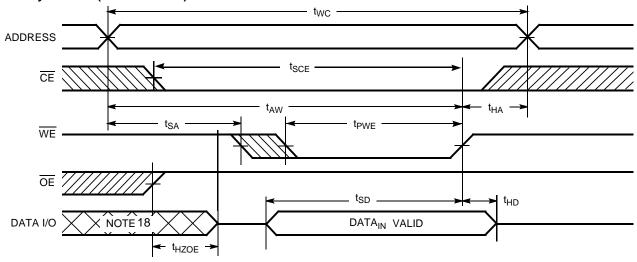
Switching Characteristics (Over the Operating Range)^[10]

		55	ns	70	ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	<u> </u>	1	1	· ·	· ·	
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11,12]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[11]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[11, 12]		20		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-up		55		70	ns
Write Cycle ^[13]	<u> </u>	<u> </u>		1		
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	40		45		ns
t _{AW}	Address Set-up to Write End	40		45		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[11, 12]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11]	10		10		ns

Switching Waveforms



- Notes:
 10. Test Conditions for all parameters other than three-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
 11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} for any given device.
 12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
 13. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.
 14. Device is continuously selected. OE, CE = V_{IL}.
 15. WE is HIGH for read cycle.

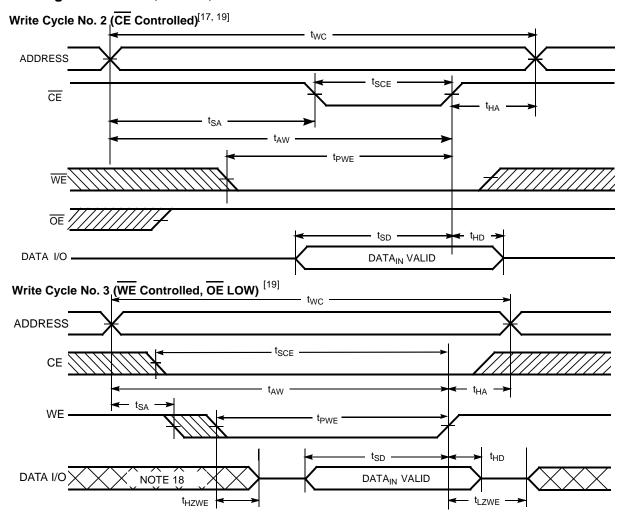


Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled) [15, 16]

Write Cycle No. 1 (WE Controlled) [17, 19]

- Address valid prior to or coinc<u>ide</u>nt with $\overline{\text{CE}}$ transition LOW.


 Data I/O is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.

 During this period, the I/Os are in output state and input signals should not be applied.

 If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high-impedance state.

Switching Waveforms (continued)

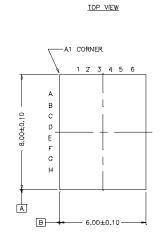
Truth Table

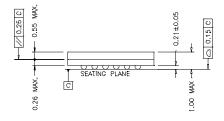
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Χ	Χ	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (Icc)
L	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

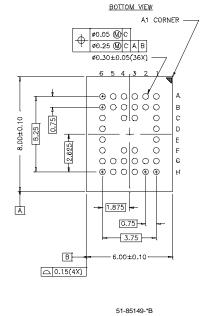
Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62148DV30L-55BVI	BV36A	36-ball Very Fine Pitch BGA (6 mm × 8 mm × 1 mm)	Industrial
	CY62148DV30LL-55BVI			
55	CY62148DV30L-55BVXI	BV36A	36-ball Very Fine Pitch BGA (6 mm x 8 mm x 1 mm) Pb-free	Industrial
	CY62148DV30LL-55BVXI			
55	CY62148DV30L-55ZSXI	ZS-32	32-pin TSOP II Pb-free	Industrial
	CY62148DV30LL-55ZSXI			
55	CY62148DV30L-55SXI	S-32	32-pin SOIC Pb-free	Industrial
	CY62148DV30LL-55SXI			

Document #: 38-05341 Rev *B

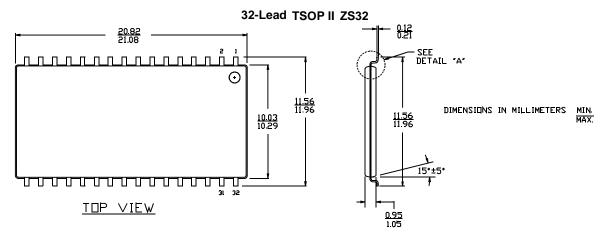


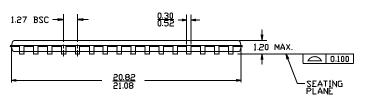

Ordering Information (continued)

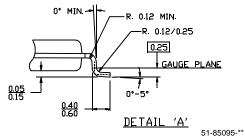

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62148DV30L-70BVI	BV36A	36-ball Very Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62148DV30LL-70BVI			
70	CY62148DV30L-70BVXI	BV36A	36-ball Very Fine Pitch BGA (6 mm × 8 mm × 1 mm) Pb-free	Industrial
	CY62148DV30LL-70BVXI			
70	CY62148DV30L-70ZSXI	ZS-32	32-pin TSOP II Pb-free	Industrial
	CY62148DV30LL-70ZSXI			
70	CY62148DV30L-70SXI	S-32	32-pin SOIC Pb-free	Industrial
	CY62148DV30LL-70SXI			

Package Diagrams

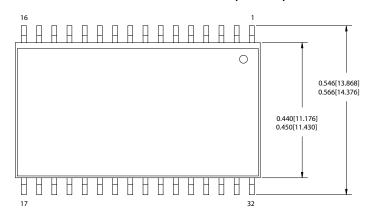
36-Lead FBGA (6 x 8 x 1 mm) BV36A

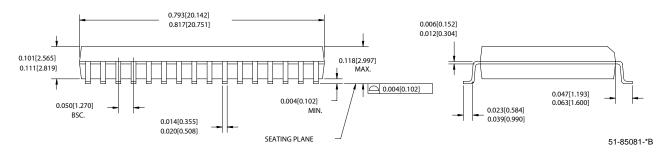


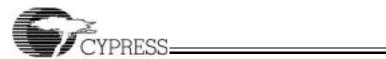




Package Diagrams (continued)






Package Diagrams (continued)

32-Lead (450 MIL) Molded SOIC S34

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	127480	06/17/03	HRT	Created new data sheet
*A	131041	01/23/04	CBD	Change from Advance to Preliminary
*B	222180	See ECN	AJU	Change from Preliminary to Final Added 70 ns speed bin Modified footnote #6 and #12 Removed MAX value for V _{DR} on "Data Retention Characteristics" table Modified input and output capacitance values Added Pb-free ordering information Removed 32-pin STSOP package

中发网 WWW.ZFA.CN

全球最大的PDF中文下载站

PDF 资料下载尽在中发网