ANALOG DEVICES

0.4Ω CMOS，Dual DPDT Switch in WLCSP／LFCSP／TSSOP Packages

FEATURES

1.8 V to 5.5 V operation

Ultralow on resistance

0.4Ω typical

0.6Ω maximum at 5 V supply
Excellent audio performance，ultralow distortion 0.07Ω typical
0.14Ω maximum Ron flatness
High current carrying capability
400 mA continuous
600 mA peak current at 5 V
Automotive temperature range：$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rail－to－rail switching operation
Typical power consumption（ $<0.1 \mu \mathrm{~W}$ ）

APPLICATIONS

Cellular phones

PDAs
MP3 players
Power routing
Battery－powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communication systems
Data switching

GENERAL DESCRIPTION

The ADG888 is a low voltage，dual DPDT（double pole double throw）CMOS device optimized for high performance audio switching．With its low power and small physical size，it is ideal for portable devices．

This device offers ultralow on resistance of less than 0.8Ω over the full temperature range making it an ideal solution for applications requiring minimal distortion through the switch． The ADG888 also has the capability of carrying large amounts of current，typically 400 mA at 5 V operation．

When on，each switch conducts equally well in both directions and has an input signal range that extends to the supplies．The ADG888 exhibits break－before－make switching action．

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT Figure 1.

The ADG888 is available in a 4×4 bump， $2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ WLCSP；a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ ， 16 －lead LFCSP；and a 16 －lead TSSOP． These packages make the ADG888 the ideal solution for space－ constrained applications．

PRODUCT HIGHLIGHTS

1．$<0.6 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．
2．High current handling capability（ 400 mA continuous current at 5 V ）．

3．Low THD +N （ 0.008% typical）．
4．Tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm}, 16$－ball WLCSP package，and 16 －lead LFCSP and TSSOP packages．

ADG888

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions6
Truth Table 6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 11
Outline Dimensions 12
Ordering Guide 13

REVISION HISTORY

7/05—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 1.

[^0]
ADG888

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted ${ }^{1}$.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat (on))	$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.045 \\ & 0.065 \\ & 0.16 \end{aligned}$	0.75 0.07	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 0.8 \\ & 0.075 \\ & 0.25 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} ; \text { see Figure } 16 \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Channel On Leakage Io, Is (ON)	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$			nA typ nA typ	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.6 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 2.6 \mathrm{~V} \text {; see Figure } 18 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current lincor or linh Cin, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		1.3 0.8 ± 0.1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$					
ton		47	50	ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {; see Figure } 19 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} \end{aligned}$
toff	13 20	21	22	ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {; see Figure } 19 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} \end{aligned}$
Break-Before-Make Time Delay (($_{\text {BM }}$)	14		5	ns typ ns min	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} \text {; see Figure } 20 \end{aligned}$
Charge Injection	50			pC typ	$\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 21
Off Isolation	-67			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 22
Channel-to-Channel Crosstalk	$\begin{aligned} & -99 \\ & -67 \end{aligned}$			dB typ dB typ	Adjacent channel; $\mathrm{R}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 25 Adjacent switch; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 23
Total Harmonic Distortion (THD + N)	0.01			\%	$\mathrm{RL}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} \mathrm{p}-\mathrm{p}$
Insertion Loss	-0.04			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 24
-3 dB Bandwidth	29			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 24
$\mathrm{C}_{s}(\mathrm{OFF})$	60			pF typ	
$\mathrm{C}_{\mathrm{D},} \mathrm{C}_{5}(\mathrm{ON})$	115			pF typ	
POWER REQUIREMENTS IDD	0.003	1	2	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{VDD}=3.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +6 V
Analog Inputs ${ }^{1}$, Digital Inputs ${ }^{1}$	$\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } \\ & 10 \mathrm{~mA} \text {, whichever } \\ & \text { occurs first } \end{aligned}$
Peak Current, S or D	600 mA (pulsed at 1 ms , 10\% duty cycle max)
Continuous Current, S or D	400 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP Package	
θ_{JA} Thermal Impedance (4-Layer Board)	$112^{\circ} \mathrm{C} / \mathrm{W}$
Өлc Thermal Impedance	$27.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead WLCSP Package	
θ_{JA} Thermal Impedance (4-Layer Board)	$130^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP Package	
θ_{JA} Thermal Impedance (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
IR Reflow, Peak Temperature <20 sec	$235^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.
${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG888

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. 16-Lead LFCSP_VQ (CP-16-4)

Figure 4. 16-Lead TSSOP (RU-16)

TOP VIEW
(Solder Bumps on Opposite Side)
Figure 2. 16-Lead WLCSP (CB-16)

Table 4. Pin Function Descriptions

Bump No. WL CSP	Pin No. LFCSP_VQ	Pin No. TSSOP	Mnemonic	Description
2c	15	1	VD	Most Positive Power Supply Potential.
2b	14	16	GND	Ground (0 V) Reference.
1b, 1c, 2a, 2d, 3a, 3d, 4b, 4c	$2,3,5,8,10,11,13,16$	$2,4,5,7,10,12,13,15$	S	Source Terminal. May be an input or output.
$1 \mathrm{a}, 1 \mathrm{~d}, 4 \mathrm{a}, 4 \mathrm{~d}$	$1,4,9,12$	$3,6,11,14$	Drain Terminal. May be an input or output.	
3b, 3c	6,7	8,9	IN	Logic Control Input.

TRUTH TABLE

Table 5.

Logic (IN1/IN2)	Switch 1A/2A/3A/4A	Switch 1B/2B/3B/4B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right) V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right) V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different
Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperature, $V_{D D}=3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise (THD + N)

Figure 15. AC PSRR

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Switching Times, $t_{\text {ON }}, t_{\text {OFF }}$

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$

Figure 21. Charge Injection

OFF ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V S}$
Figure 22. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VS}}$
Figure 23. Channel-to-Channel Crosstalk (S1A to S1B)

INSERTION LOSS $=20 \log \frac{V_{\text {OUT WITH SWITCH }}}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$
Figure 24. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VS}}$
Figure 25. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

$I_{\text {DD }}$
Positive supply current.
$\mathrm{V}_{\mathrm{D}}(\mathrm{V})$
Analog voltage on Terminal D and Terminal S.
Ron
Ohmic resistance between Terminal D and Terminal S.
$\mathrm{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.
$\Delta \mathbf{R o N}_{\text {on }}$
On resistance match between any two channels.

I_{s} (OFF)

Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}$ ($\mathrm{I}_{\mathrm{INH}}$)
Input current of the digital input.

Cs (OFF)

Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton
Delay time between the 50% and the 90% points of the digital input and switch on condition.
toff
Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. This is specified for two conditions:

Adjacent channel, that is, S1A to S2A, S1B to S2B, S3A to S4A, or S3B to S4B.

Adjacent switch, that is, S1A to S1B, S2A to S2B, S3A to S3B, or S4A to S4B.
-3 dB Bandwidth
The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitudes plus signal noise to the fundamental.

OUTLINE DIMENSIONS

Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding 1
ADG888YRUZ 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Thin Shrink Small Outline Package (TSSOP)	RU-16	
ADG888YRUZ-REEL 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package (TSSOP)	RU-16	
ADG888YRUZ-REEL7 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16	
ADG888YCPZ-REEL 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16- Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-4	SOD
ADG888YCPZ-REEL7 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-4	SOD
ADG888YCBZ-REEL 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Ball Wafer Level Chip Scale Package (WLCSP)	CB-16	SOD
ADG888YCBZ-REEL7 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Ball Wafer Level Chip Scale Package (WLCSP)	CB-16	SOD

${ }^{1}$ Branding on these packages is limited to three characters due to space constraints.
${ }^{2} Z=P b$-free part.

ADG888

NOTES

ADG888

NOTES

ADG888

NOTES

中发网
 WWW．Zfa．©n

[^0]: ${ }^{1}$ Temperature range, Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature range, Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

