

0.5 Ω CMOS 1.65 V TO 3.6 V Dual SPDT/2:1 MUX

ADG836

FEATURES

0.5 Ω typical on resistance
0.8 Ω maximum on resistance at 125°C
1.65 V to 3.6 V operation
Automotive temperature range: -40°C to +125°C
High current carrying capability: 300 mA continuous
Rail-to-rail switching operation
Fast-switching times <20 ns
Typical power consumption (<0.1 μW)

APPLICATIONS

Cellular phones
PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG836 is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than 0.8 Ω over the full temperature range. The ADG836 is fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation.

Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. The ADG836 exhibits break-before-make switching action.

The ADG836 is available in a 10-lead MSOP and a 3 mm \times 3 mm 12-lead LFCSP.

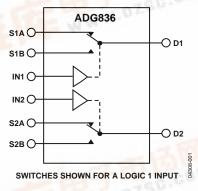


Figure 1.

PRODUCT HIGHLIGHTS

- 1. $<0.8 \Omega$ over full temperature range of -40° C to $+125^{\circ}$ C.
- 2. Single 1.65 V to 3.6 V operation.
- 3. Compatible with 1.8 V CMOS logic.
- 4. High current handling capability (300 mA continuous current at 3.3 V).
- 5. Low THD + N (0.02% typ).
- 6. 3 mm × 3 mm LFCSP package and 10-lead MSOP package.

TABLE OF CONTENTS

Specifications	. 3
Absolute Maximum Ratings	. 6
ESD Caution	. 6
Pin Configurations	. 7

Typical Performance Characteristics	8
Test Circuits	. 11
Outline Dimensions	. 13
Ordering Guide	13

REVISION HISTORY

4/05—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Table 1	3
Changes to Table 2	4
Changes to Table 3	5
Changes to Ordering Guide	13

Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 1.

		Temperate			
Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	0.5			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
	0.65	0.75	0.8	Ω max	Figure 19
On Resistance Match	0.04			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0.65 \text{ V}, I_S = 100 \text{ mA}$
Between Channels (ΔR_{ON})		0.075	0.08	Ω max	
On Resistance Flatness (R _{FLAT (ON)})	0.1			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
		0.15	0.16	Ω max	$I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage I _s (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V};$ Figure 20
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V; Figure } 21$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
linl or linh	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	21			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	26	28	29	ns max	$V_S = 1.5 \text{ V/0 V}$; Figure 22
t _{OFF}	4			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	7	8	9	ns max	V _S = 1.5 V; Figure 22
Break-Before-Make Time Delay	17			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
(t _{BBM})			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Figure 23
Charge Injection	40			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 24}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-90			dB typ	S1A–S2A/S1B–S2B, R_L = 50 Ω, C_L = 5 pF, f = 100 kHz; Figure 28
	-67			dB typ	S1A–S1B/S2A–S2B, R_L = 50 Ω, C_L = 5 pF, f = 100 kHz; Figure 27
Total Harmonic Distortion (THD + N)	0.02			%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 2 \text{ V p-p}$
Insertion Loss	-0.05			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
–3 dB Bandwidth	57			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
C _s (OFF)	25			pF typ	
C_D , C_S (ON)	75			pF typ	
POWER REQUIREMENTS	1			1	$V_{DD} = 3.6 \text{ V}$
IDD	0.003			μA typ	Digital inputs = 0 V or 3.6 V
		1	4	μA max	

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

 V_{DD} = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	
Analog Signal Range On Resistance (R _{ON}) 0.65 0.72 0.8 0.88 0.88 0.88 0.88 0.89 Figure 19 On Resistance Match Between Channels (ΔR _{ON}) 0.08 0.08 0.085 0.24 LEAKAGE CURRENTS Source Off Leakage I _S (OFF) Channel On Leakage I _D , I _S (ON) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{NL} or I _{INH} 0.005 0.65 0.70 0.88 0.88 0.88 0.88 0.88 0.89 0.89 0.8	
On Resistance (Ron) 0.65 Ω typ V _{DD} = 2.3 V, V _S = 0 V to V _{DD} , I _S = 10 0 m 0.72 0.8 0.88 Ω max Figure 19 On Resistance Match Between Channels (ΔRon) 0.08 0.085 Ω max On Resistance Flatness (RFLAT (ON)) 0.16 Ω typ V _{DD} = 2.3 V, V _S = 0.7 V, I _S = 100 m On Resistance Flatness (RFLAT (ON)) 0.16 Ω typ V _{DD} = 2.3 V, V _S = 0 V to V _{DD} , I _S = 10 m LEAKAGE CURRENTS Σ typ V _{DD} = 2.3 V, V _S = 0 V to V _{DD} , I _S = 10 m Source Off Leakage I _S (OFF) ±0.2 nA typ V _S = 0.6 V/2.4 V, V _D = 2.4 V/0.6 V; Channel On Leakage I _D , I _S (ON) ±0.2 nA typ V _S = 0.6 V/2.4 V, V _D = 2.4 V/0.6 V; DIGITAL INPUTS 1.7 V min Input High Voltage, V _{INH} 1.7 V max Input Current μA typ V _{IN} = V _{INL} or V _{INH} I _{INL} or I _{INH} 0.005 μA max C _{IN} , Digital Input Capacitance 4 pF typ	
On Resistance Match Between Channels (ΔRoN) 0.04 0.08 0.085 Ω typ VDD = 2.3 V, V₅ = 0.7 V, I₅ = 100 m On Resistance Flatness (RFLAT (ON)) 0.08 0.085 Ω typ VDD = 2.3 V, V₅ = 0 V to VDD, I₅ = 10 m On Resistance Flatness (RFLAT (ON)) 0.16 0.23 0.24 Ω max LEAKAGE CURRENTS VDD = 2.7 V VDD = 2.7 V Source Off Leakage I₅ (OFF) ±0.2 nA typ V₅ = 0.6 V/2.4 V, VD = 2.4 V/0.6 V; nA typ V₅ = 0.6 V/2.4 V; Figure 2.2 V DIGITAL INPUTS 1.7 V min Input Low Voltage, VINH 1.7 V min V max Input High Voltage, VINL 0.7 V max VIN = VINL or VINH Input Current ±0.1 μA typ μA max VIN = VINL or VINH CIN, Digital Input Capacitance 4 pF typ	
On Resistance Match Between Channels (ΔR_{ON}) 0.08 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.095 0.16 0.23 0.24 0.095 0.23 0.24 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	00 mA;
Channels (ΔR_{ON}) 0.08 0.085 Ω max Ω typ $V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ MeV}$ Ω typ Ω	
On Resistance Flatness (R _{FLAT (ON)}) 0.16 0.23 0.24 Ω typ Ω max	Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
LEAKAGE CURRENTS $V_{DD} = 2.7 \text{ V}$ Source Off Leakage Is (OFF) ± 0.2 <td>00 mA</td>	00 mA
Source Off Leakage Is (OFF) ± 0.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
DIGITAL INPUTS Input High Voltage, V_{INH} Input Low Voltage, V_{INL} Input Current IINL or IINH O.005 $ \mu A \text{ typ} V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$ CIN, Digital Input Capacitance $ 4 pF \text{ typ} $	Figure 20
DIGITAL INPUTS Input High Voltage, V_{INH} Input Low Voltage, V_{INL} Input Current Input Current Input Current Link or linh Cink Digital Input Capacitance 4 1.7 V min V max V ma	-
Input Low Voltage, V _{INL} 0.7 V max Input Current μA typ ν _{INL} or V _I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
±0.1 μA max C _{IN} , Digital Input Capacitance 4 pF typ	
C _{IN} , Digital Input Capacitance 4 pF typ	
C _{IN} , Digital Input Capacitance 4 pF typ	
t_{ON} 23 ns typ $R_L = 50 \Omega$, $C_L = 35 pF$	
29 30 31 ns max V _s = 1.5 V/0 V; Figure 22	
t_{OFF} 5 ns typ $R_L = 50 \Omega$, $C_L = 35 pF$	
7 8 9 ns max V _s = 1.5 V; Figure 22	
Break-before-Make Time Delay (t_{BBM}) 17	
5	
Charge Injection 30 pC typ $V_S = 1.25 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; F	gure 24
Off Isolation -67 $dB typ R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	-
Channel-to-Channel Crosstalk –90 dB typ S1A–S2A/S1B–S2B,	3
$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	Figure 28
_67	J
$R_{L} = 50 \Omega, C_{L} = 5 \text{ pF, } f = 100 \text{ kHz};$	Figure 27
Total Harmonic Distortion (THD + N) 0.022	-
Insertion Loss -0.06 dB typ $R_L = 50 \Omega$, $C_L = 5$ pF; Figure 26	p p
-3 dB Bandwidth -3 MHz typ $R_L = 50 \Omega$, $C_L = 5$ pF; Figure 26	
C _S (OFF) 25 pF typ	
C_{D} , C_{S} (ON) C_{D} , C_{S} (ON) C_{D}	
POWER REQUIREMENTS V _{DD} = 2.7 V	
I_{DD} 0.003 $\mu A typ$ Digital inputs = 0 V or 2.7 V	
1 4 μA max	

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

 V_{DD} = 1.65 V \pm 1.95 V, GND = 0 V, unless otherwise noted.

Table 3.

		Temperatu			
Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	1			Ω typ	$V_{DD} = 1.8 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
	1.4	2.2	2.2	Ω max	Figure 19
	2	4	4	Ω max	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD},$ $I_S = 100 \text{ mA; Figure 19}$
On Resistance Match Between Channels (ΔR_{ON})	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					V _{DD} = 1.95 V
Source Off Leakage I₅ (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$ Figure 20
Channel On Leakage ID, Is (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.65 \text{ V; Figure } 21$
DIGITAL INPUTS				, ,	
Input High Voltage, V _{INH}			0.65 V _{DD}	V min	
Input Low Voltage, V _{INL}			$0.35 V_{DD}$	V max	
Input Current					
Ini or linh	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²				F: -7/F	
ton	28			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	37	38	39	ns max	$V_S = 1.5 \text{ V/O V}$; Figure 22
toff	7	30	37	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
COTT	9	10	11	ns max	$V_S = 1.5 \text{ V}$; Figure 22
Break-Before-Make Time Delay (tbbm)	21		••	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
break before Make Time belay (tabili)			5	ns min	$V_{S1} = V_{S2} = 1 \text{ V; Figure 23}$
Charge Injection	20		3	pC typ	$V_S = 1 \text{ V, R}_S = 0 \text{ V, C}_L = 1 \text{ nF; Figure 24}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-90			dB typ	S1A-S2A/S1B-S2B;
Chainer to Chainer crosstant				abtyp	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 28
	-67			dB typ	S1A-S1B/S2A-S2B;
					$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 27
Total Harmonic Distortion, THD	0.14			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1.2 V p-p$
Insertion Loss	-0.08			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
–3 dB Bandwidth	57			MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
	1			typ	
C _s (OFF)	25			pF typ	
C_D , C_S (ON)	75			pF typ	
POWER REQUIREMENTS					V _{DD} = 1.95 V
lod	0.003			μA typ	Digital inputs = 0 V or 1.95 V
		1.0	4	μA max	

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

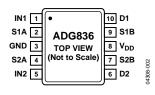
1 autc 1.	
Parameter	Rating
V _{DD} to GND	-0.3 V to +4.6 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	–0.3 V to 4.6 V or 10 mA,
	whichever occurs first
Peak Current, S or D	
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA (pulsed at 1ms,
	10% duty cycle max)
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range	
Automotive (Y Version)	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
MSOP Package	
θ_{JA} Thermal Impedance	206°C/W
θ _{JC} Thermal Impedance	44°C/W
LFCSP Package	
θ_{JA} Thermal Impedance (3-Layer	61.1°C/W
Board)	
IR Reflow, Peak Temperature < 20 sec	235°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

Table 5. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS

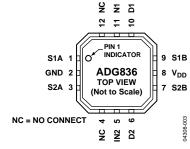


Figure 2. 10-Lead MSOP (RM-10)

Figure 3. 12-Lead LFCSP (CP-12)

Table 6. Terminol	ogy
V _{DD}	Most positive power supply potential.
I_{DD}	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
V_D (V_S)	Analog voltage on terminals D, S.
R _{ON}	Ohmic resistance between D and S.
R _{FLAT} (ON)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
ΔR_{ON}	On resistance match between any two channels.
Is (OFF)	Source leakage current with the switch off.
I _D (OFF)	Drain leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
V_{INL}	Maximum input voltage for Logic 0.
V_{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
Cs (OFF)	Off switch source capacitance. Measured with reference to ground.
C _D (OFF)	Off switch drain capacitance. Measured with reference to ground.
C_D , C_S (ON)	On switch capacitance. Measured with reference to ground.
C _{IN}	Digital input capacitance.
ton	Delay time between the 50% and the 90% points of the digital input and switch on condition.
toff	Delay time between the 50% and the 90% points of the digital input and switch off condition.

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection Off Isolation

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

A measure of unwanted signal coupling through an off switch.

Crosstalk A measure of unwanted signal, which is coupled through from one channel to another, as a result of parasitic

capacitance.

-3 dB Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch. The loss due to the on resistance of the switch. **Insertion Loss**

THD + N The ratio of the harmonics amplitude plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

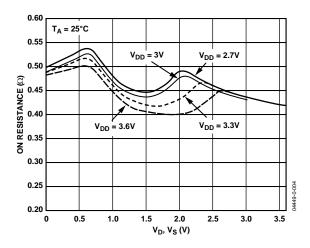


Figure 4. On Resistance vs. $V_D(V_S) V_{DD} = 2.7$ to 3.6 V

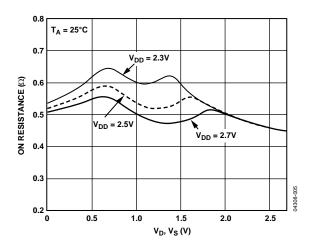


Figure 5. On Resistance vs. V_D (V_S) $V_{DD} = 2.5 \text{ V}$ to 0.2 V

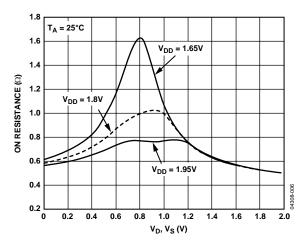


Figure 6. On Resistance vs. V_D (V_S) $V_{DD} = 1.8 \pm 3.6$

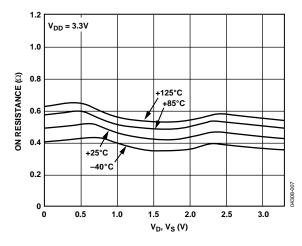


Figure 7. On Resistance vs. V_D (V_S) for Different Temperature, 3.3 V

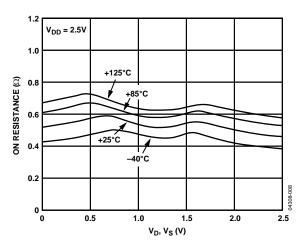


Figure 8. On Resistance vs. V_D (V_S) for Different Temperature, 2.5 V

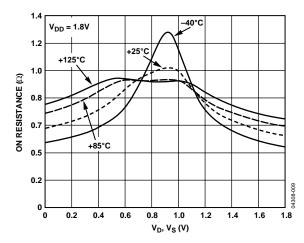


Figure 9. On Resistance vs. V_D (V_S) for Different Temperature, 1.8 V

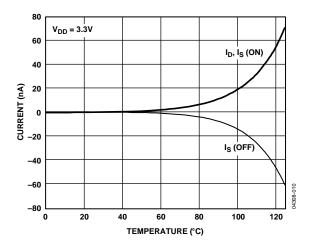


Figure 10. Leakage Current vs. Temperature, 3.3 V

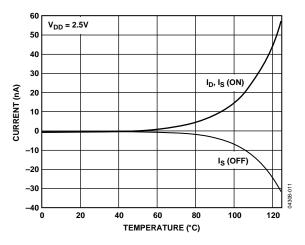


Figure 11. Leakage Current vs. Temperature, 2.5 V

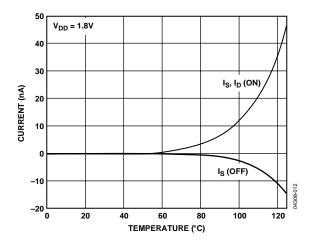


Figure 12. Leakage Current vs. Temperature, 1.8 V

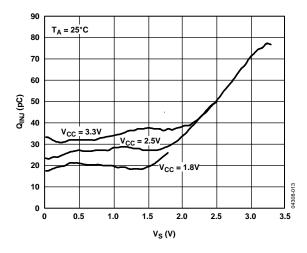


Figure 13. Charge Injection vs. Source Voltage

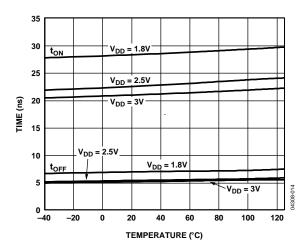


Figure 14. ton/toff Times vs. Temperature

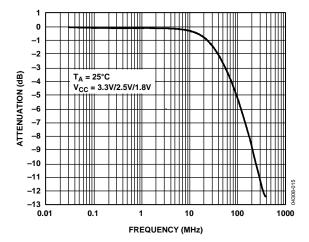


Figure 15. Bandwidth

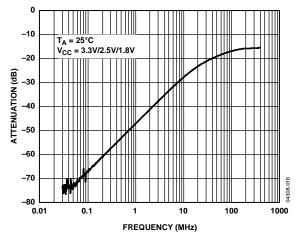


Figure 16. Off Isolation vs. Frequency

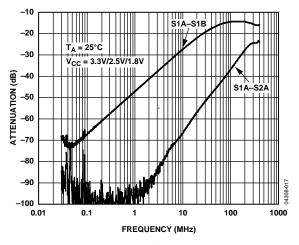


Figure 17. Crosstalk vs. Frequency

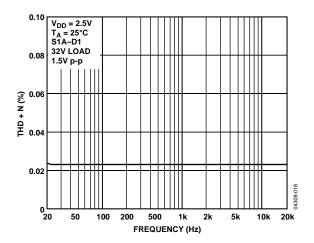
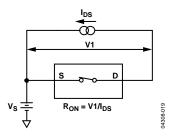
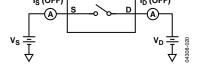




Figure 18. Total Harmonic Distortion + Noise

TEST CIRCUITS

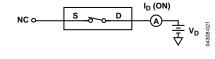


Figure 19. On Resistance

Figure 20. Off Leakage

Figure 21. On Leakage

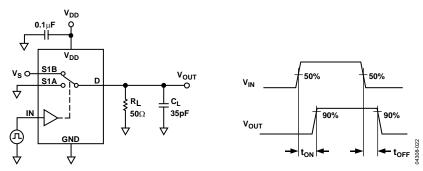


Figure 22. Switching Times, ton, toff

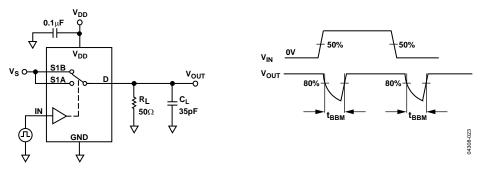


Figure 23. Break-Before-Make Time Delay, tbbm

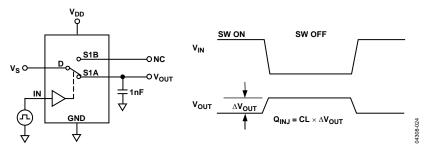


Figure 24. Charge Injection

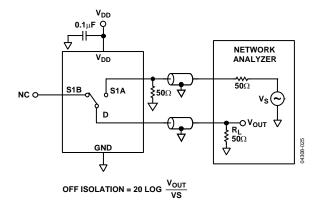


Figure 25. Off Isolation

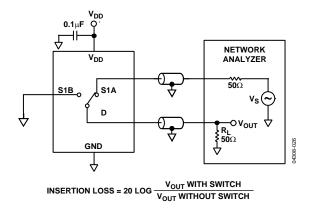


Figure 26. Bandwidth

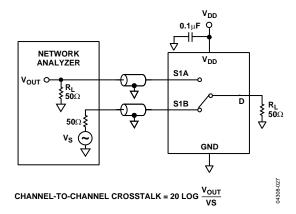
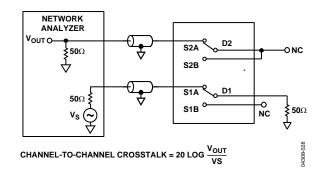
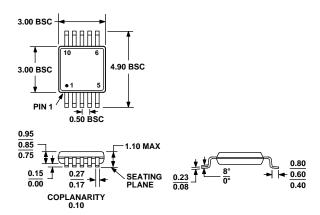
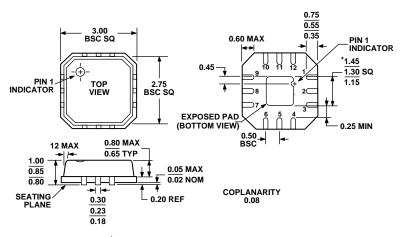


Figure 27. Channel-to-Channel Crosstalk (S1A-S1B)


Figure 28. Channel-to-Channel Crosstalk (S1A-S2A)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 29. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-1 EXCEPT FOR EXPOSED PAD DIMENSION.

Figure 30. 12-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 3 x 3 mm Body, Very Thin Quad (CP-12-1) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG836YRM	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S9A
ADG836YRM-REEL	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S9A
ADG836YRM-REEL7	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S9A
ADG836YRMZ ²	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S05
ADG836YRMZ-REEL ²	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S05
ADG836YRMZ-REEL7 ²	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S05
ADG836YCP-REEL	-40°C to +125°C	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-12-1	S9A
ADG836YCP-REEL7	-40°C to +125°C	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-12-1	S9A

¹ Branding on this package is limited to three characters due to space constraints.

Pov. A | Page 13 of 14

 $^{^{2}}$ Z = Pb-free part.

NOTES

NOTES

NOTES

中发网 WWW.ZFA.CN
全球最大的PDF中文下载站

PDF 资料下载尽在中发网