MW39580AE

Diagonal 11 mm (type-2/3) IT CCD Area Image Sensor

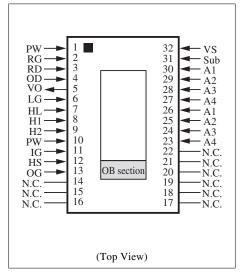
Overview

The MW39580AE is a type-2/3 2.2M-pixel CCD solid state image sensor.

This device uses photodiodes in the opto-electric conversion section and CCDs for signal read-out. The electronic shutter function allows for an exposure time of 1/10000 seconds. Further, it features high sensitivity, low noise, broad dynamic range and low smear level.

The device has a total of 2182860 pixels (2010 horizontal \times 1086 vertical) and provides stable and clear images with a resolution of 1100 horizontal and 730 vertical TV lines.

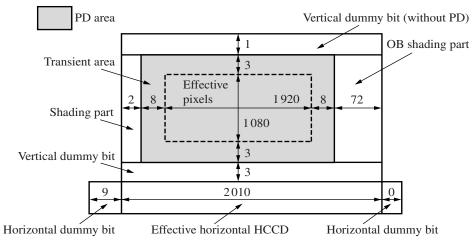
Part Number	CCD size	System	Color or B/W
MW39580AE	11 mm (type-2/3)	HDTV	B/W


Features

- Effective pixel number: 1936 (horizontal) × 1086 (vertical)
- High sensitivity
- High resolution
- Low smear level
- · Continuously variable-speed electronic shutter function

Applications

- · Broadcasting and professional use camera
- Front-edge surveillance camera


Pin Assignments

Device Configuration

Parameter	Value	Unit
Horizontal drive frequency	$f_{CK} = 2200 \ f_{H} = 74.25$	MHz
Total pixel number	2010 (H) × 1086 (V)	Pixel
Effective pixel number (including transient ones)	1936 (H) × 1086 (V)	Pixel
Effective pixel number	1920 (H) × 1080 (V)	Pixel
Pixel size	5.0 (H) × 5.0 (V)	μm ²
Effective image sensor size	9.6 (H) × 5.4 (V)	mm ²
Aspect ratio	16 : 9	H : V
Aspect ratio error	0.0	%

• Element Construction

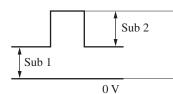
Note) The horizontal dummy bit is based on 2 gates = 1 unit.

Pin Descriptions

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	PW	P-well	13	OG	Output gate
2	RG	Reset gate	14	N.C.	Non Connection
3	RD	Reset drain	15	N.C.	Non Connection
4	OD	Output drain	16	N.C.	Non Connection
5	VO	Video output	17	N.C.	Non Connection
6	LG	Output load transistor gate	18	N.C.	Non Connection
7	HL	Horizontal CCD final gate	19	N.C.	Non Connection
8	H1	Horizontal CCD 1	20	N.C.	Non Connection
9	H2	Horizontal CCD 2	21	N.C.	Non Connection
10	PW	P-well	22	N.C.	Non Connection
11	IG	Horizontal input gate	23	A4	Vertical CCD gate 4
12	HS	Horizontal input source	24	A3	Vertical CCD gate 3

■ Pin Descriptions (continued)

Pin No.	Symbol	Description	Pin No.	Symbol	Description
25	A2	Vertical CCD gate 2	29	A2	Vertical CCD gate 2
26	A1	Vertical CCD gate 1	30	A1	Vertical CCD gate 1
27	A4	Vertical CCD gate 4	31	Sub	Substrate
28	A3	Vertical CCD gate 3	32	VS	Vertical input source


■ Absolute Maximum Ratings and Operating Conditions

Pin No.	Parameter		Absolute maximum rating		Operating condition			Unit
PIN NO.			Lower limit	Upper limit	Min	Тур	Max	
1	PW		Referenc	e voltage		0.0		V
2	RG	Amplitude	0	9.0	4.7	5.0	5.3	V
		Low	0		5.5	adj.	7.0	V
3	RD	1	0	18	15.7	16.0	16.3	V
4	OD		0	18	15.7	16.0	16.3	V
5	VO		_			_		V
6	LG		0	6	2.7	3.0	3.3	V
7	ϕ_{HL}	High	_	10	2.7	3.0	3.3	V
		Low	0		0.0	00	0.3	V
8	ϕ_{H1}	High	_	10	2.7	3.0	3.3	V
		Low	0		0.0	0.0	0.3	V
9	ϕ_{H2}	High	_	10	2.7	3.0	3.3	V
		Low	0		0.0	0.0	0.3	V
10	PW	1	Referenc	e voltage		0.0		V
11	IG		0	5		0.0		V
12	HS		0	18	15.7	16.0	16.3	V
13	OG		0	5	0.0	0.0	0.3	V
14	N.C.		_			_		_
15	N.C.		_		_	_		_
16	N.C.		_	_	_	_		_
17	N.C.		_			_		
18	N.C.		_			_		_
19	N.C.		_	_	_	_		_
20	N.C.		—			—		—
21	N.C.		_			_		_
22	N.C.		—			_		_
23	ϕ_{A4}	Middle	_	18	0.7	1.0	1.3	V
		Low	-12		-9.3	-9.0	-8.7	v

	Dam		Absolute ma	ximum rating	Operating condition			Linit
Pin No.	Para	Parameter		Upper limit	Min	Тур	Max	- Unit
24	φ _{A3}	High	_	18	15.7	16.0	16.3	V
		Middle	_	18	- 0.3	0.0	0.3	V
		Low	-12		-9.3	-9.0	-8.7	V
25	φ _{A2}	Middle	_	18	0.7	1.0	1.3	V
		Low	-12		-9.3	-9.0	-8.7	V
26	φ _{A1}	High	_	18	15.7	16.0	16.3	V
		Middle	_	18	- 0.3	0.0	0.3	V
		Low	-12		-9.3	-9.0	-8.7	V
27	ϕ_{A4}	Middle	_	18	0.7	1.0	1.3	V
		Low	-12		-9.3	-9.0	-8.7	V
28 \$\phi_{A3}\$	ф _{А3}	High	_	18	15.7	16.0	16.3	V
		Middle	_	18	- 0.3	0.0	0.3	V
	Low	-12		-9.3	-9.0	-8.7	V	
29	29	Middle	_	18	0.7	1.0	1.3	V
		Low	-12		-9.3	-9.0	-8.7	V
30	30 \$\phi_{A1}\$	High	_	18	15.7	16.0	16.3	V
		Middle	_	18	- 0.3	0.0	0.3	V
		Low	-12		-9.3	-9.0	-8.7	V
31	Sub *1	1	0	40 *2	3.0	adj.	14.0	V
		2	0	40	24.0	25.0	26.0	V
32	VS		0	18	15.7	16.0	16.3	V
Operati	ng temperatu	ıre	-10	60		25		°C
Storage	e temperature	;	-30	70	_	_		°C

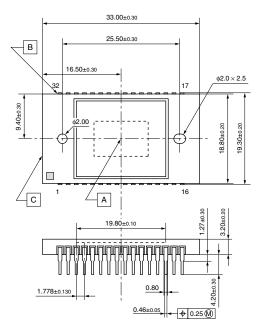
Absolute Maximum Ratings and Operating Conditions (continued)

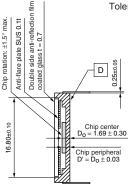
Note) *1: Sub pulse at the electronic shutter

*2: Upper limit of Sub maximum rating:

Sub 1 + Sub 2 \leq 40 V

Image Sensor Characteristics $T_a = 25^{\circ}C$


Parameter		Conditions	Min	Тур	Max	Unit	Remarks	
Saturation output		F value adjust	600	750	_	mV	at CCD out	
Standard output		J chart, Standard light intensity	100	120		mV	at CCD out	
Image lag		1/10 light intensity		0		%	Able to be swept out directly to substrate	
Vertical smear		1/10 V	—	-102	-96	dB	Ratio to standard output	
Transfer efficiency H F11 + 1/32ND			Resolution should not be reduced.					
	V							
Electronic shutter		Specified driving	No abnormality within 1/100 to 1/2000 seconds					


Note) 1. The substrate voltage (Sub 1) should be adjusted to the minimum voltage that would not cause blooming, overflow and injection at image sensor of light input of 1 600 times the standard light intensity.

2. The standard light intensity is the one when the exposure is done at an aperture of F/11 using a light source of 2856K and 920 nt and placing a color temperature conversion filter LB-40 (HOYA) and an IR cutting filter CAW-500S (t = 2.5 mm) in the light path.

Package Dimensions (unit: mm)

• WDIP032-G-0750C (Lead-free package)

Tolerance: ± 0.20 unless otherwise specified

- 1. The package center must meet the center of the effective pixel area. A is the center of the effective pixel area.
- The reference of a vertical direction(V) is the side B. The reference of a horizontal direction(H) is the side C. The reference of a height direction is the package bottom D.
- 3. The rotation precision of the effective pixel area: maximum $\pm 1.5^{\circ}$
- 4. The distance from the package bottom D to the effective pixel area : 1.69 mm \pm 0.3 mm
- 5. The tilt of the effective pixel area toward the package bottom D : D' = $D_0 \pm max$. 0.03 mm
- 6. The thickness of the seal glass: 0.7 mm, and the refractive index : $1.50\,$

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.