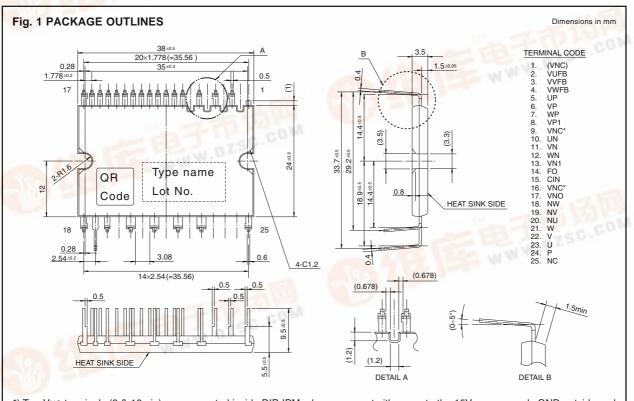


捷多邦,专业PCB打样工厂,24小时加急出货

MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>


PS21964-S TRANSFER-MOLD TYPE INSULATED TYPE

- Fault signaling : Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface : 3V, 5V line (High Active).

APPLICATION

AC100V~200V inverter drive for small power motor control.

*) Two VNc terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and leave another one open.

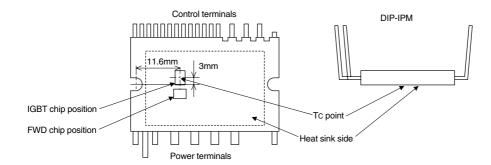
PS21964-S

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±IC	Each IGBT collector current	Tc = 25°C	15	А
±IСР	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	30	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	33.3	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tc ≤ 100°C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tc ≤ 100°C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
Vfo	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2µs	400	V
Тс	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	1500	Vrms

Note 2: Tc measurement point

PS21964-S

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Symbol	Parameter	Condition		Linit			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	—	—	3.0	°C/W	
Rth(j-c)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	—	—	3.9	°C/W	

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink.

The contacting thermal resistance between DIP-IPM case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) (per 1/6 module) is about 0.3°C/W when the grease thickness is 20 μ m and the thermal conductivity is 1.0W/m-k.

ELECTRICAL CHARACTERISTICS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Symbol		Quere d'Atient			Limits			
Symbol	Parameter		Condition		Тур.	Max.	Unit	
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 15A, Tj = 25°C	_	1.70	2.20	V	
V CE(Sal)	voltage	VIN = 5V	IC = 15A, Tj = 125°C	—	1.80	2.30	V	
VEC	FWD forward voltage	Tj = 25°C, –IC = 15A, VIN = 0V			1.70	2.20	V	
ton				0.70	1.30	1.90	μs	
trr		VCC = 300V, VD = VDB = 15V			0.30	—	μs	
tc(on)	Switching times	IC = 15A, Tj = 125°C, VIN	IC = 15A, Tj = 125°C, VIN = $0 \leftrightarrow 5V$		0.50	0.75	μs	
toff		Inductive load (upper-low	Inductive load (upper-lower arm)		1.60	2.20	μs	
tc(off)				—	0.50	0.80	μs	
ICES	Collector-emitter cut-off	VCE = VCES	Tj = 25°C	—	—	1	mA	
1013	current	VCE = VCES	Tj = 125°C	—	—	10	ША	

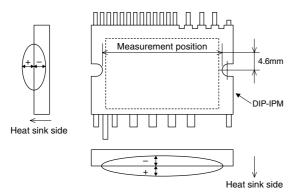
CONTROL (PROTECTION) PART

Sumbol	Parameter		Condition			Limits			
Symbol	Farameter	Condition			Min.	Тур.	Max.	Unit	
		VD = VDB = 15V	Total of	of VP1-VNC, VN1-VNC	—	—	2.80		
ID	Circuit current	VIN = 5V	VUFB-	U, Vvfb-V, Vwfb-W	—	—	0.55	mA	
		VD = VDB = 15V	Total of	of VP1-VNC, VN1-VNC	—	—	2.80		
		VIN = 0V	VUFB-	U, Vvfb-V, Vwfb-W	—	—	0.55		
VFOH	Fault output voltage	Vsc = 0V, Fo termi	Vsc = 0V, Fo terminal pull-up to 5V by $10k\Omega$			—	—	V	
VFOL	Fault output voltage	VSC = 1V, IFO = 1n	VSC = 1V, IFO = 1mA			—	0.95	V	
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, V_D = 15V$ (Note 4)			0.43	0.48	0.53	V	
lin	Input current	VIN = 5V			0.70	1.00	1.50	mA	
UVDBt				Trip level	10.0	—	12.0	V	
UVDBr	Control supply under-voltage	Ti≤ 125°C		Reset level	10.5	—	12.5	V	
UVDt	protection	1]≤125 €	J≤ 125 C Trip level		10.3	—	12.5	V	
UVDr				Reset level	10.8	—	13.0	V	
tFO	Fault output pulse width	(Note 5)			20	—	—	μs	
Vth(on)	ON threshold voltage	Applied between UP, VP, WP, UN, VN, WN-VNC			—	2.1	2.6	V	
Vth(off)	OFF threshold voltage				0.8	1.3	_	V	
Vth(hys)	ON/OFF threshold hysteresis voltage				0.35	0.65	_	V	

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure.

PS21964-S


TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

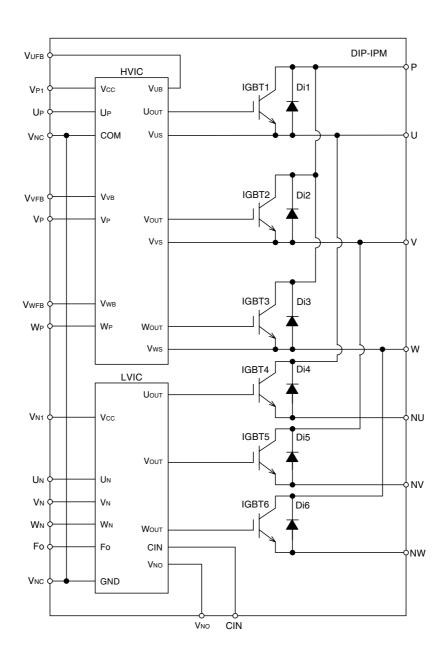
Devementer	Gan		Linit			
Parameter	Con	Min.	Тур.	Max.	Unit	
Mounting torque	Mounting screw : M3 (Note 6) Recommended : 0.69 N·m		0.59	_	0.78	N∙m
Weight		_	10	—	g	
Heat-sink flatness		-50	_	100	μm	

Note 6: Plain washers (ISO 7089~7094) are recommended.

Note 7: Flatness measurement position

RECOMMENDED OPERATION CONDITIONS

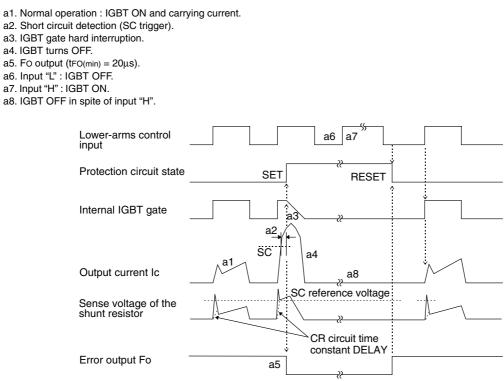
Cumhal	Parameter Condition			Recommended value			Linit
Symbol Parameter		Condition	Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-	W	13.0	15.0	18.5	V
$\Delta VD, \Delta VDB$	Control supply variation		-1		1	V/µs	
tdead	Arm shoot-through blocking time	For each input signal, $TC \le 100^{\circ}C$	1.5	_	_	μs	
		Vcc = 300V, VD = VDB = 15V,	fPWM = 5kHz	—	_	7.5	
ю	Allowable r.m.s. current	$\begin{array}{l} P.F = 0.8, \mbox{ sinusoidal output}, \\ T_{j} \leq 125^{\circ} C, \mbox{ Tc} \leq 100^{\circ} C \end{array} \mbox{ (Note 8)} \end{array}$	fpwm = 15kHz	_	_	4.5	Arms
PWIN(on)	Allowable minimum input		0.5	—	—		
PWIN(off)	pulse width		0.5	—	—	μs	
VNC	VNC variation	Between VNC-NU, NV, NW (including sur	ge)	-5.0	—	5.0	V


Note 8: The allowable r.m.s. current value depends on the actual application conditions. 9: IPM might not make response if the input signal pulse width is less than the recommended minimum value.

PS21964-S

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



PS21964-S

TRANSFER-MOLD TYPE INSULATED TYPE

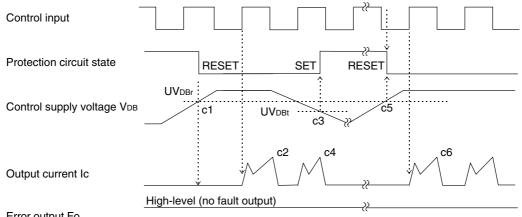
Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

[B] Under-Voltage Protection (Lower-arm, UVD)

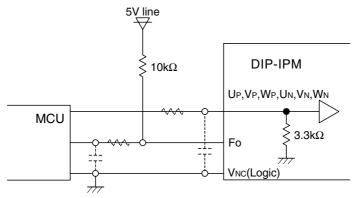
- b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. FO output (tFO \ge 20µs and FO output continuously during UV period).
- b6. Under voltage reset (UVDr)
- b7. Normal operation : IGBT ON and carrying current.

Control input								
Protection circuit state		RESET		SET	RESET	Ĺ		
Control supply voltage VD	UV _{Dr}	b1	UV _{Dt}	b3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	b6		
			b2	b4		Ÿ	b7	M
Output current Ic		ÿ]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Error output Fo					, b5 ?	j		


PS21964-S

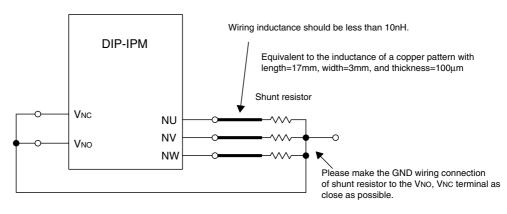
TRANSFER-MOLD TYPE INSULATED TYPE

[C] Under-Voltage Protection (Upper-arm, UVDB)


- c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current.

- c3. Under voltage trip (UVDBt).c4. IGBT OFF in spite of control input signal level, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).c6. Normal operation : IGBT ON and carrying current.

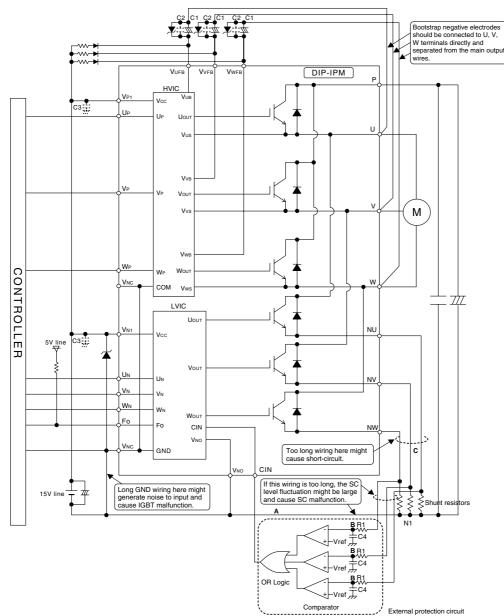
Error output Fo


Fig. 4 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note : The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 3.3kΩ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR



PS21964-S

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

Note 1 : To prevent malfunction, the wiring of each input should be as short as possible (2~3cm).

- 2 : By virtue of integrating HVIC inside, direct coupling to MCU without opto-coupler or transformer isolation is possible.
- 3 :Fo output is open drain type. It should be pulled up to a 5V supply with an approximately 10kΩ resistor.
- 4 : The logic of input signal is high-active. The DIP-IPM input signal section integrates a 3.3kΩ (min) pull-down resistor.
- If using external filtering resistor, ensure the voltage drop of ON signal not below the threshold value.
- 5 : To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
- 6 : Please set the filter R1•C4 time constant such that the IGBT can be interrupted within 2μ s.
- 7 Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
- 8 :To prevent surge destruction, the wiring between the smoothing capacitor and the P-N1 pins should be as short as possible. Approximately a $0.1 \sim 0.22 \mu$ F snubber capacitor between the P-N1 pins is recommended.
- 9 : Make external wiring connection between VNO and VNC terminals as shown in Fig.5.
- 10 : Two VNc terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and leave another one open.
- 11 : To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
 12 : The reference voltage Vref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).
- 13: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).

