MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>

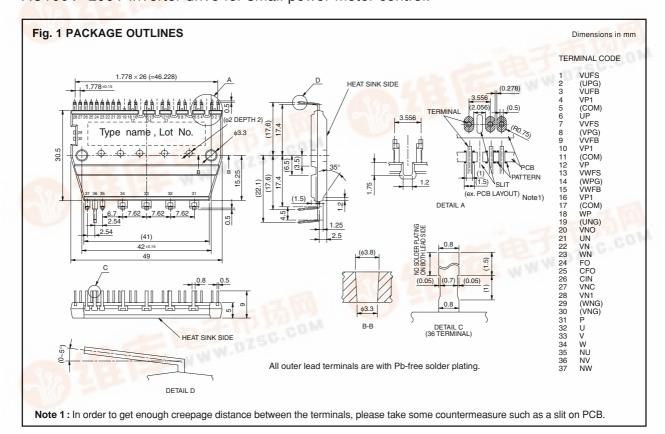
PS21562-SP

TRANSFER-MOLD TYPE INSULATED TYPE

PS21562-SP

INTEGRATED POWER FUNCTIONS

600V/5A low-loss 5th generation IGBT inverter bridge for three phase DC-to-AC power conversion.


Open emitter type.

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3,5V line CMOS/TTL compatible. (High Active)
- UL Approved: Yellow Card No. E80276

APPLICATION

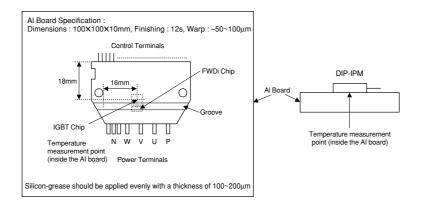
AC100V~200V inverter drive for small power motor control.

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS ($T_j = 25$ °C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tf = 25°C	5	Α
±ICP	Each IGBT collector current (peak)	Tf = 25°C, less than 1ms	10	Α
Pc	Collector dissipation	Tf = 25°C, per 1 chip	16.7	W
Tj	Junction temperature	(Note 1)	− 20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tf $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) $\leq 125^{\circ}$ C (@ Tf $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC 20		V
VDB	Control supply voltage	Applied between Vufb-Vufs, Vvfb-Vvfs, Vwfb-Vwfs	20	٧
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	٧
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5 \sim 16.5 V$, Inverter part $T_j = 125 °C$, non-repetitive, less than 2 μs	400	V
Tf	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	2500	Vrms

Note 2 : Tr measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Symbol	Darameter	Condition	Limits			Unit
Syllibol	Parameter	Condition		Тур.	Max.	Offic
Rth(j-f)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	6.0	°C/W
Rth(j-f)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)		_	6.5	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100μm~+200μm on the contacting surface of DIP-IPM and heat-sink.

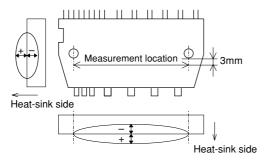
ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Symbol Parameter		Condition		Limits			Unit	
Symbol	Parameter	Condition		Min.	Тур.	Max.	UIIIL	
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	Ic = 5A, Tj = 25°C	_	1.60	2.10		
V CE(Sai)	voltage	VIN = 5V	Ic = 5A, Tj = 125°C	_	1.70	2.20	V	
VEC	FWD forward voltage	$T_j = 25^{\circ}C, -IC = 5A, VIN = 0V$		_	1.50	2.00	V	
ton		Vcc = 300V, VD = VDB = 15V		0.60	1.20	1.80	μs	
trr				_	0.30	_	μs	
tc(on)	Switching times	$IC = 5A$, $T_j = 125$ °C, $VIN = 0 \leftrightarrow 5V$		_	0.40	0.60	μs	
toff		Inductive load (upper-lov	Inductive load (upper-lower arm)		1.30	2.00	μs	
tc(off)				_	0.50	0.80	μs	
ICES	Collector-emitter cut-off	VCE = VCES	Tj = 25°C	_	_	1	mA	
IOLO	current	VCE = VCES	Tj = 125°C	_	_	10	IIIA	

CONTROL (PROTECTION) PART

Cumbal	Doromotor		Co	ndition		Limits								
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit							
		VD = VDB = 15V Total		of VP1-VNC, VN1-VNC	_	_	5.00							
ID	Circuit current	VIN = 5V	Vufb-\	VUFS, VVFB-VVFS, VWFB-VWFS	· —	_	0.40	7						
ID	Circuit current	VD = VDB = 15V	Total o	f VP1-VNC, VN1-VNC	_	_	7.00	mA						
		VIN = 0V	VUFB-\	VUFS, VVFB-VVFS, VWFB-VWFS	_	_	0.55							
VFOH	Foult output voltage	Vsc = 0V, Fo circuit pull-up to 5V with 10kΩ		4.9	_	_	V							
VFOL	- Fault output voltage	VSC = 1V, IFO = 1mA		_	_	0.95	V							
VSC(ref)	Short circuit trip level	$T_f = -20 \sim 100 ^{\circ} C$, $V_D = 15V$ (Note 4)		0.45	_	0.52	V							
lin	Input current	VIN = 5V	VIN = 5V		1.0	1.5	2.0	mA						
UVDBt				Trip level	10.0	_	12.0	V						
UVDBr	Control supply under-voltage	 T _i ≤ 125°C		Reset level	10.5	_	12.5	V						
UVDt	protection	1] ≤ 125°C		Trip level	10.3	_	12.5	V						
UVDr										Reset level	10.8	_	13.0	V
tFO	Fault output pulse width	CFO = 22nF		(Note 5)	1.0	1.8	_	ms						
Vth(on)	ON threshold voltage	Applied by the action of the Man Man Man Man Man Man Man		2.1	2.3	2.6	V							
Vth(off)	OFF threshold voltage	Applied between UP, VP, WP-Vnc, Un, Vn, Wn-Vnc			0.8	1.4	2.1	V						

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.


^{5:} Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation: CFO = 12.2 X 10⁻⁶ X tFO [F].

TRANSFER-MOLD TYPE **INSULATED TYPE**

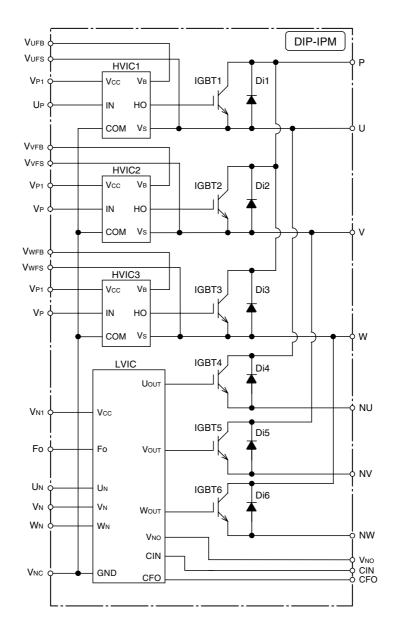
MECHANICAL CHARACTERISTICS AND RATINGS

Dovometer	Condition		Limits			Unit
Parameter	Condition			Тур.	Max.	Unit
Mounting torque	Mounting screw : M3 Recommended : 0.78 N·m		0.59	_	0.98	N·m
Weight			_	20		g
Heat-sink flatness	(Note 6)		- 50	_	100	μm

Note 6: Measurement point of heat-sink flatness

RECOMMENDED OPERATION CONDITIONS

Cumbal Daramatar		Condition		Reco	mmended	value	1.1
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VN	С	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB	-Vvfs, Vwfb-Vwfs	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation			-1	_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tf ≤ 100°C		1.5	_	_	μs
fPWM	PWM input frequency	Tf ≤ 100°C, Tj ≤ 125°C		_	_	20	kHz
		VCC = 300V, VD = VDB = 15V,	fPWM = 5kHz	_	_	3.5	
lo	Allowable r.m.s. current	P.F = 0.8, sinusoidal output	(45111			0.0	Arms
		Tf \leq 100°C, Tj \leq 125°C (Note 7)	fPWM = 15kHz	_	_	3.2	
PWIN(on)			(Note 8)	0.3	_	_	
		$200 \le VCC \le 350V$,	Below rated current	0.5			
	Allanca la la casimina como importa	$13.5 \le VD \le 16.5V$,	below rated current	0.5	_	-	
PWIN(off)	Allowable minimum input pulse width	$13.0 \le VDB \le 18.5V$,	Between rated current and	0.5			μs
I WIIN(OII)	pulse width	-20 °C \leq Tf \leq 100°C,	1.7 times of rated current		_	_	
		N-line wiring inductance less than 10nH (Note 9)	Between 1.7 times and 2.0 times of rated current	0.5	_	_	
VNC	VNC variation	between VNC-NU, NV, NW (includi	-5.0	_	5.0	V	

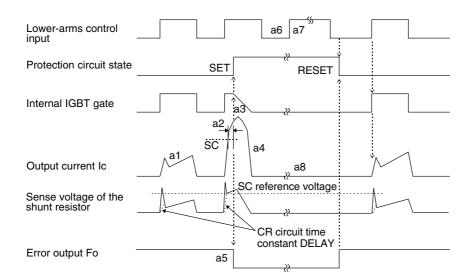

Note 7: The allowable r.m.s. current value depends on the actual application conditions.

8: The input pulse width less than PWIN(on) might make no response.

9: IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.5.

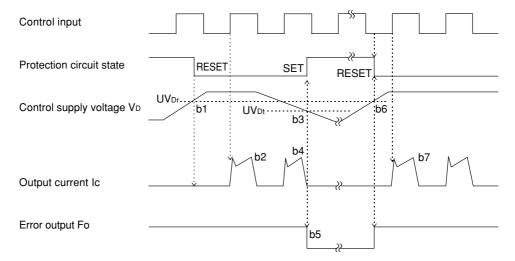
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts: The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "L": IGBT OFF.
- a7. Input "H": IGBT ON.
- a8. IGBT OFF in spite of input "H".

[B] Under-Voltage Protection (Lower-arm, UVD)

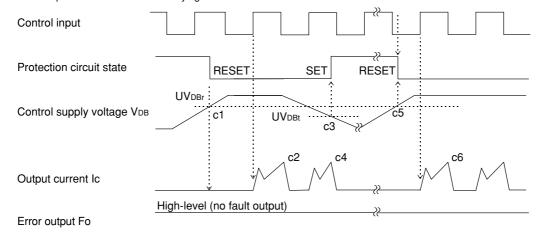
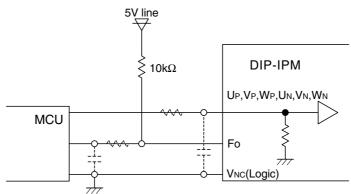
- b1. Control supply voltage rises: After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT ON and carrying current.
- b3. Under voltage trip (UVDt)
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr). b7. Normal operation: IGBT ON and carrying current.

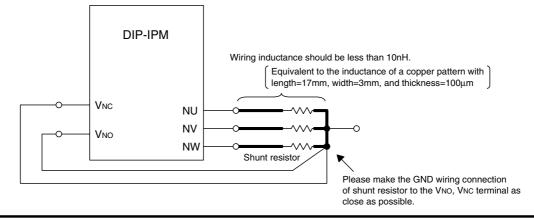
TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.

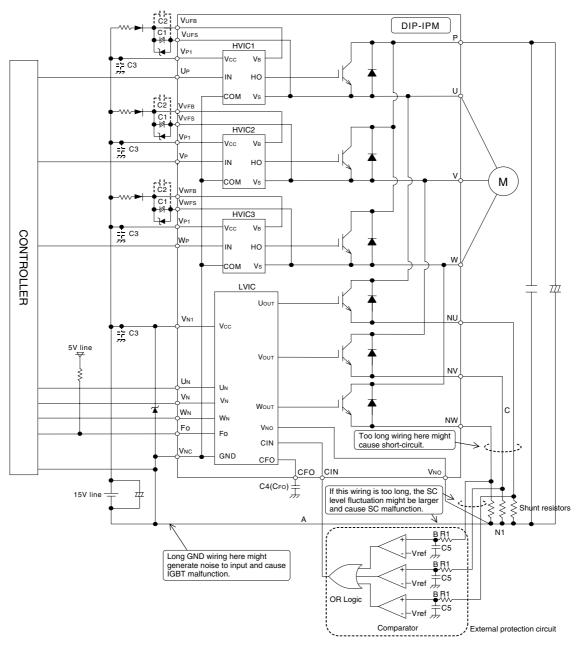
- c3. Under voltage trip (UVDBt).c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).c6. Normal operation: IGBT ON and carrying current.


Fig. 4 RECOMMENDED CPU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 2.5k Ω (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)

- 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
- 3: FO output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ resistor. 4: Fo output pulse width is determined by the external capacitor between CFO and VNC terminals (CFO). (Example: CFO = 22 nF → tFO = 1.8 ms (typ.))
- 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
- 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
- 7: Please set the C5R1 time constant in the range 1.5~2µs.
- 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
- 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
- 10: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
- 11: The reference voltage Viref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).
- 12: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).

