

LTC1384

5V Low Power RS232 Transceiver with 2 Receivers Active in Shutdown

FEATURES

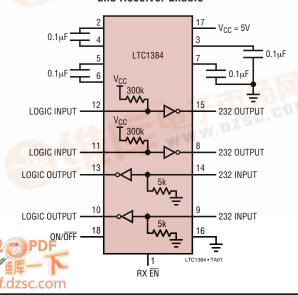
- Operates from a Single 5V Supply Low Supply Current: I_{CC} = 220μA
- I_{CC} = 35µA in Shutdown Mode with Both Receivers Kept Alive
- ESD Protection Over ±10kV
- Uses Small Capacitors: 0.1μF
- Operates to 120kBaud
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1180A

APPLICATIONS

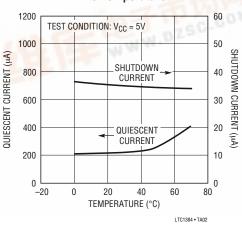
- Notebook Computers
- Palmtop Computers

DESCRIPTION

The LTC®1384 is an ultra-low power 2-driver/2-receiver RS232 transceiver that operates from a single 5V supply. The charge pump requires only four space-saving 0.1µF capacitors.


The transceiver operates in one of two modes, Normal and Shutdown. In the Normal mode, I_{CC} is only $220\mu A$ with the driver outputs unloaded. In the Shutdown mode, the charge pump is turned off, the driver outputs are forced into three-state, both receivers are kept active and I_{CC} drops to $35\mu A$. The receiver outputs may be forced into three-state at any time using the receiver enable (RX \overline{EN}) pin.

The LTC1384 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120kbaud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage and can survive multiple $\pm 10kV$ ESD strikes.


T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

2-Drivers/2-Receivers with Shutdown and Receiver Enable

Quiescent and Shutdown Supply Current vs Temperature

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	6V
Input Voltage	
Driver	$-0.3V$ to $V_{CC} + 0.3V$
Receiver	25V to 25V
Digital Input	$-0.3V$ to $V_{CC} + 0.3V$
Output Voltage	
Driver	25V to 25V
Receiver	$-0.3V$ to $V_{CC} + 0.3V$

Short-Circuit Duration	
V+	30 sec
V ⁻	30 sec
Driver Output Inc	lefinite
Receiver Output Inc	lefinite
Operating Temperature Range	
LTC1384C0°C to	o 70°C
LTC1384I40°C to	o 85°C
Storage Temperature Range65°C to	150°C
Lead Temperature (Soldering, 10 sec)	

PACKAGE/ORDER INFORMATION

TOP VIEW RX EN 1 C1+ 2 V+ 3 C1- 4 C2+ 5 C2- 6 C2- 6 C2- 6 T3 RX1 OUT C2- 7 TR1 OUT TR2 OUT 8 RX2 IN 9 RX2 IN 9 RX2 OUT IOP VIEW 20 ON/OFF 19 VCC 18 GND 17 TR1 OUT 16 RX1 IN 15 RX1 OUT 14 TR1 IN 13 TR2 IN 12 RX2 OUT 11 NC	ORDER PART NUMBER LTC1384CG LTC1384IG	TOP V RX EN 1 C1+ 2 V+ 3 C1- 4 C2+ 5 C2- 6 V- 7 TR2 OUT 8 RX2 IN 9	18 ON/OFF 17 V _{CC} 16 GND 15 TR1 OUT 14 RX1 IN 13 RX1 OUT 12 TR1 IN 11 TR2 IN 10 RX2 OUT	ORDER PART NUMBER LTC1384CN LTC1384CSW LTC1384IN LTC1384ISW
G PACKAGE 20-LEAD SSOP T _{JMAX} = 125°C, θ _{JA} = 135°C/W		N PACKAGE 18-LEAD PDIP $T_{JMAX} = 125^{\circ}C, \theta_{JA} = 65^{\circ}C/W$	SW PACKAGE 18-LEAD PLASTIC SO T _{JMAX} = 125°C, θ _{JA} = 85°C/W	

Consult LTC Marketing for parts specified with wider operating temperature ranges.

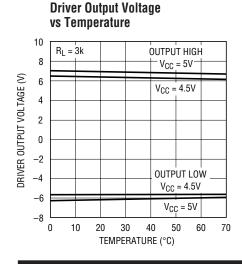
$\begin{array}{ll} \textbf{DC ELECTRICAL CHARACTERISTICS} & \text{The } \bullet \text{ denotes specifications which apply over the full operating temperature range.} & V_{CC} = 5V, \ C1 = C2 = C3 = C4 = 0.1 \mu F, \ V_{ON/\overline{OFF}} = V_{CC}, \ RX \ \overline{EN} = 0V, \ unless \ otherwise \ noted. \end{array}$

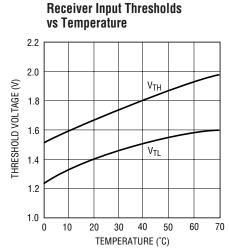
CONDITIONS			MIN	TYP	MAX	UNITS
3k to GND	Positive Negative	•	5.0 -5.0	7.0 -6.5		V
Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V
$V_{IN} = V_{CC}$ $V_{IN} = 0V$		•		-20	5 -40	μ Α μ Α
$V_{OUT} = 0V$			±9	±12		mA
Shutdown or $V_{CC} = 0V$ (Note 3), V_{OUT}	- = ±10V	•		±10	±500	μА
Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V
		•	0.1	0.4	1	V
$-10V \le V_{IN} \le 10V$			3	5	7	kΩ
		•	3.0	0.2 3.2	0.4	V
	Input Low Level ($V_{OUT} = High$) Input High Level ($V_{OUT} = Low$) $V_{IN} = V_{CC}$ $V_{IN} = 0V$ $V_{OUT} = 0V$ Shutdown or $V_{CC} = 0V$ (Note 3), V_{OUT} Input Low Threshold Input High Threshold $-10V \le V_{IN} \le 10V$ Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 5$)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

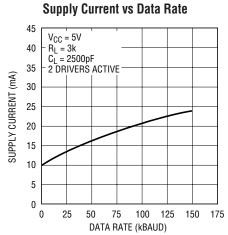
DC ELECTRICAL CHARACTERISTICS The ullet denotes specifications which apply over the full operating temperature range. $V_{CC}=5V$, $C1=C2=C3=C4=0.1\mu F$, $V_{ON/\overline{OFF}}=V_{CC}$, RX $\overline{EN}=0V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}		-15	-40		mA
	Sourcing Current, V _{OUT} = 0V		10	20		mA
Output Leakage Current	$\overline{EN} = V_{CC}, \ 0V \le V_{OUT} \le V_{CC}$	•		1	10	μА
Power Supply Generator						
V ⁺ Output Voltage	$I_{OUT} = 0mA$			8.0		V
	$I_{OUT} = 8mA$			7.5		V
V ⁻ Output Voltage	$I_{OUT} = 0mA$			-8.0		V
	$I_{OUT} = -8mA$			-7.0		V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
Power Supply						
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C	•		0.22	0.5	mA
	No Load (Note 2), -40°C to 85°C	•		0.35	1.0	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 3)	•		35	50	μА
Digital Input Threshold Low		•		1.4	8.0	V
Digital Input Threshold High		•	2.0	1.4		V

AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless otherwise noted.

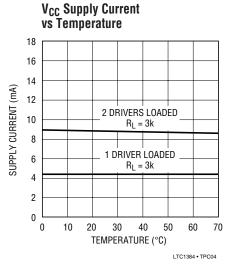

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 2500pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to RS232)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(RS232 to TTL)	t _{LHR} (Figure 2)	•		0.3	8.0	μS

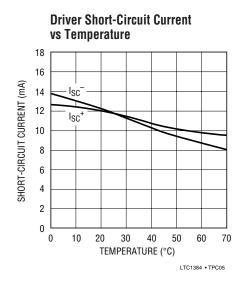

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

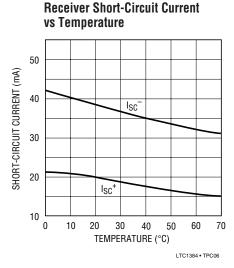

Note 2: Supply current is measured with driver and receiver outputs unloaded.

Note 3: Measurements made in the Shutdown mode are performed with $V_{ON/\overline{OFF}} = 0V$.

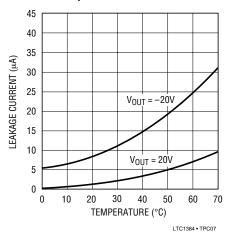
TYPICAL PERFORMANCE CHARACTERISTICS

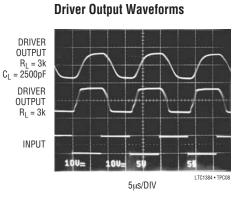


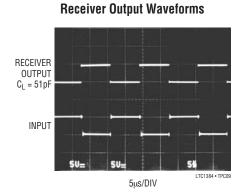




1384fa


TYPICAL PERFORMANCE CHARACTERISTICS





Driver Leakage in Shutdown vs Temperature

PIN FUNCTIONS

V_{CC}: 5V Input Supply Pin. This pin should be decoupled with a $0.1\mu F$ ceramic capacitor.

GND: Ground Pin.

ON/ $\overline{\text{OFF}}$: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode independent of the RX $\overline{\text{EN}}$ pin. The supply current of the device drops to 35 μ A (two receivers alive) and both driver outputs are forced into three-state.

RX EN: TTL/CMOS Compatible Receiver Enable Pin. A logic high forces the receiver outputs into three-state. A logic low enables the receiver outputs.

V*: Positive Supply Output (RS232 Drivers). $V^+ \cong 2V_{CC} - 2V$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V^+ and V^- pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V = (2V_{CC} - 2V)$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1- and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

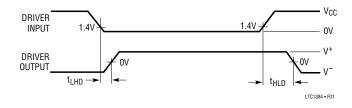
TR IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from V_{CC} in the Shutdown mode.

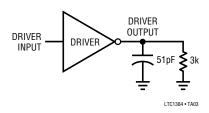
TR OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in the Shutdown or V_{CC} = 0V. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.

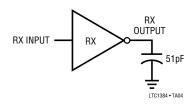
RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. A logic high at RX $\overline{\text{EN}}$ puts the outputs into three-state.

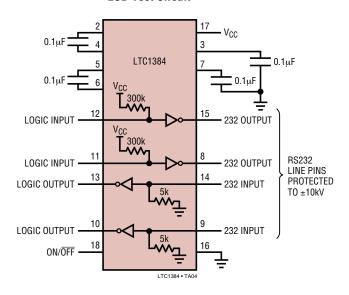
SWITCHING TIME WAVEFORMS



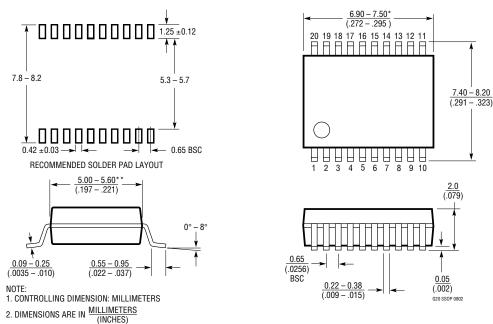



Figure 2. Receiver Propagation Delay Timing

TEST CIRCUITS

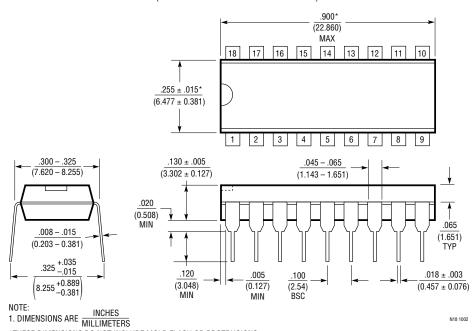

Driver Timing Test Load

Receiver Timing Test Load


ESD Test Circuit

PACKAGE DESCRIPTION

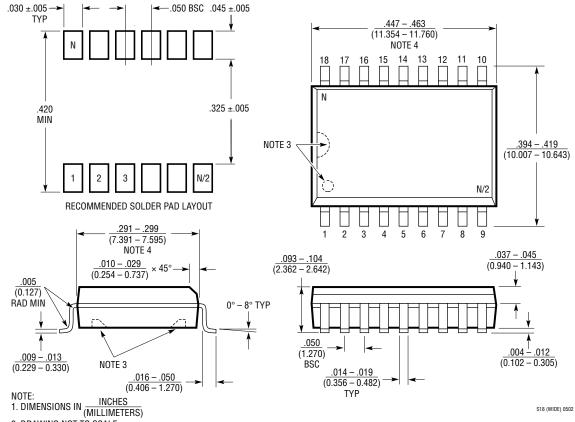
G Package 20-Lead Plastic SSOP (5.3mm)


(Reference LTC DWG # 05-08-1640)

- 3. DRAWING NOT TO SCALE
- *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDE
- **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE

N Package 18-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)



*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

SW Package 18-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE
- 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
- 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1780/LT1781	5V, 2 Driver, 2 Receiver RS232 Transeivers	±15kV ESD per IEC 1000-4
LTC1382	5V, 2 Driver, 2 Receiver RS232 Transceiver	220μA Supply Current, 0.2μA in Shutdown
LTC1383	5V, 2 Driver, 2 Receiver RS232 Transceiver	220µA Supply Current, Narrow 16-pin SO
LTC1385	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220µA Supply Current, 2 Receivers Active in Shutdown
LTC1386	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220µA Supply Current, Narrow 16-pin SO