查询MAX9770EVKIT供应商

19-3296; Rev 1; 2/05

捷多邦,专业PCB打样工厂,24小时加急出货

MAX9770 Evaluation Kit

General Description

The MAX9770 evaluation kit (EV kit) is a fully assembled and tested circuit board that uses the MAX9770, a low-EMI, filterless class D, bridge-tied-load (BTL) speaker amplifier with an 80mW stereo DirectDriveTM headphone amplifier. Designed to operate from a 2.5V to 5.5V power supply, the EV kit is capable of delivering 1.2W into an 8 Ω load with efficiency up to 85%.

Ordering Information

PART	TEMP RANGE	IC PACKAGE	
MAX9770EVKIT	0°C to +70°C	28 TQFN*	
*Package code is T2855N-1.			

_Features

- Filterless Operation Class D Amplifier Passes
 FCC Class B Radiated Emissions
- 2.5V to 5.5V Single-Supply Operation
- ♦ 0.1µA (typ) IC Shutdown Current
- Drives 1.2W into 8Ω Speaker
- Drives 80mW into 16Ω Headphone
- Low 0.015% THD+N
- Selectable Gain Options
- Selectable 3-Way Input Mixer/Multiplexer
- Selectable Switching Frequency
- Also Evaluates MAX9771
- Surface-Mount Construction
- Fully Assembled and Tested

DESIGNATION QTY DESCRIPTION 10µF ±20%, 6.3V X5R ceramic capacitor (0805) C1 1 Taiyo Yuden JMK212BJ106MG or TDK C2012X5R0J106M 1µF ±10%, 10V X7R ceramic C2, C4-C7 5 capacitors (0603) TDK C1608X7R1A105K 0.047µF ±10%, 25V X7R ceramic C3 1 capacitor (0603) TDK C1608X7R1E473K 0.47µF ±10%, 10V X5R ceramic capacitors (0603) C8-C11 4 Taiyo Yuden LMK107BJ474KA or TDK C1608X5R1A474K 0.1µF ±10%, 25V X7R ceramic capacitor (0603) C12 1 Murata GRM188R71E104J or TDK C1608X7R1E104K 100pF ±5%, 50V COG ceramic capacitor (0402) C13 1 Murata GRP1555C1H101J or Taivo Yuden UMK105CG101JW PDF

7.201017			
DESIGNATION	QTY	DESCRIPTION	
C14, C15, C20	0	Not installed, ceramic capacitors (0402)	
C16–C19, C21, C22	0	Not installed, ceramic capacitors (0603)	
L1, L2	0	Not installed, power inductors	
J1	1	3.5mm surface-mount stereo headphone jack	
JU1–JU6	6	3-pin headers	
JU7	1	5-pin header	
JU8	1	2-pin header	
OUT+, OUT-, FOUT1+, FOUT1-, HPOUTR, HPOUTL, TP1	0	Not installed, test points	
R1	1	49.9Ω ±1% resistor (0402)	
R2, R3	0	Not installed, resistors (0603)	
T1	0	Not installed, common-mode choke	
U1	1	MAX9770ETI (28-pin 5mm x 5mm thin QFN)	
None	8	Shunts	
None	1	MAX9770/MAX9771 PC board	

Component List

L

Maxim Integrated Products 1

Control Pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

Evaluates: MAX9770/MAX9771

SUPPLIER	PHONE	FAX	WEBSITE
Murata	770-436-1300	770-436-3030	www.murata.com
Taiyo Yuden	800-348-2496	847-925-0899	www.t-yuden.com
TDK	847-803-6100	847-390-4405	www.component.tdk.com

Note: Indicate that you are using the MAX9770 when contacting these component suppliers.

_Quick Start

The MAX9770 EV kit is fully assembled and tested. Follow the steps listed below to verify board operation. **Do not turn on the power supply until all connections are completed.**

Recommended Equipment

- 2.5V to 5.5V, 1A power supply (suggested supply of 3.3V)
- Audio source (i.e., CD player, cassette player, etc.)
- 8Ω speaker
- Stereo headphone with 3.5mm plug

Procedure

- Install shunts across jumpers JU1 (pins 1 and 2, GAIN1 = high) and JU2 (pins 2 and 3, GAIN2 = low) (speaker gain = 9dB, headphone gain = -2dB).
- Install shunts across jumpers JU3 (pins 1 and 2, SEL1 = high), JU4 (pins 2 and 3, SEL2 = low), and JU5 (pins 2 and 3, SELM = low) (stereo inputs VRIN1 and VLIN1 are enabled).
- Install a shunt across pins 1 and 2 of jumper JU6 (the EV kit is enabled).
- Install a shunt across pins 1 and 4 of jumper JU7 (SYNC = high, spread-spectrum mode).
- 5) Install a shunt across jumper JU8 (automatic switchover to headphone operation is enabled).
- Connect the speaker across the OUT+ and OUTtest points.

- Connect the positive terminal of the power supply to the VDD pad and the power-supply ground terminal to the GND pad.
- 8) Connect the audio source to VRIN1 and VLIN1.
- 9) Turn on the power supply.
- 10) Turn on the audio source.

11) Plug the headphone into J1 for headphone mode.

Detailed Description

Component Suppliers

The MAX9770 EV kit features the MAX9770 low-EMI filterless class D amplifier IC, designed to drive a BTL mono speaker or a stereo headphone with an AC stereo/mono input source in portable audio applications. The EV kit operates from a DC power supply that can provide 2.5V to 5.5V and 1A of current. The EV kit accepts only a single-ended audio input. The audio input source is amplified to drive 1.2W into an 8 Ω speaker.

The MAX9770 is designed to pass FCC class B emissions without additional filtering when using 10cm of cable to connect the speaker. In applications where more margin and/or cable length are required, output capacitors C14, C15, and common-mode choke T1 can be added to reduce radiated emission. Connect the speaker to FOUT1+/FOUT1- test points. Table 1 lists the cable length vs. the required output components. The filtered outputs (FOUT2+, FOUT2-) require installation of filtering components L1, L2, C16–C19, C21, R2, and R3.

CABLE LENGTH X (cm)	OUTPUT CAPACITORS C14 AND C15	COMMON-MODE CHOKE T1	LCR FILTER L1, L2, C16–C19, C21, R2, R3	OUTPUT SPEAKER CONNECTED BETWEEN
X < 10	_	_	—	OUT+, OUT-
10 < X < 15	Required (100pF)	_	—	OUT+, OUT-
15 < X < 30	Required (100pF)	Required	—	FOUT1+, FOUT1-
X>30	_		Required	FOUT2+, FOUT2-

Table 1. Cable Length vs. Suggested Output Components

The EV kit outputs (OUT+, OUT-) can be connected directly to a speaker load without any filtering. However, a filter can be added to ease evaluation by recovering the audio signal. See Table 2 for the recommended filtering component values for an 8Ω load and 30kHz cutoff frequency.

Jumper Selection

Output Gain Selection

Jumpers JU1 and JU2 control the GAIN1 and GAIN2 pins of the MAX9770 IC. The MAX9770 can be configured to automatically switch between two gain settings depending on whether the EV kit is in speaker or headphone mode. By driving one or both gain inputs with the HPS pin, the gain of the output changes when a headphone is inserted/removed. See Table 3 for output gain settings.

Table 3. JU1 and JU2 Jumpers Selection

Table 2. Recommended Filtering Components for Outputs with 8 Ω Load

COMPONENT	RECOMMENDED VALUE
L1, L2	15µH
C16, C17	0.033µF
C18, C19	0.068µF
C21	0.15µF
R2, R3	22Ω

SPEAKER MODE GAIN (HPS = 0) (dB)	HEADPHONE MODE GAIN (HPS = 1) (dB)	JU1 SHUNT POSITION	GAIN1 PIN	JU2 SHUNT POSITION	GAIN2 PIN
6	-2	Open	GAIN1 = HPS, connect pin 2 of JU1 to pin 1 of JU8	Pins 2 and 3	GAIN2 = low
3	1	Open	GAIN1 = HPS, connect pin 2 of JU1 to pin 1 of JU8	Pins 1 and 2	GAIN2 = high
6	4	Pins 2 and 3	GAIN1 = low	Open	GAIN2 = HPS, connect pin 2 of JU2 to pin 1 of JU8
9	1	Pins 1 and 2	GAIN1 = high	Open	GAIN2 = HPS, connect pin 2 of JU2 to pin 1 of JU8
6	1	Open	GIAN1 = HPS, connect pin 2 of JU1 to pin 1 of JU8	Open	GAIN2 = HPS, connect pin 2 of JU2 to pin 1 of JU8
0	1	Pins 1 and 2	GAIN1 = high	Pins 1 and 2	GAIN2 = high
9 (default)	-2 (default)	Pins 1 and 2	GAIN1 = high	Pins 2 and 3	GAIN2 = low
3	4	Pins 2 and 3	GAIN1 = low	Pins 1 and 2	GAIN2 = high
6	7	Pins 2 and 3	GAIN1 = low	Pins 2 and 3	GAIN2 = low

Note: JU8 is closed.

Input Selection

Jumpers JU3, JU4, and JU5 control the SEL1, SEL2, and SELM pins of the MAX9770 IC.

See Table 4 for JU3, JU4, and JU5 functions.

Table 4. JU3, JU4, and JU5 Jumpers Selection

JU3 SHUNT POSITION	JU4 SHUNT POSITION	JU5 SHUNT POSITION	INPUT SELECTION
Pins 2 and 3 (SEL1 = low)	Pins 2 and 3 (SEL2 = low)	Pins 2 and 3 (SELM = low)	All inputs are disabled
Pins 2 and 3 (SEL1 = low)	Pins 2 and 3 (SEL2 = low)	Pins 1 and 2 (SELM = high)	VMONO (mono)
Pins 2 and 3 (SEL1 = low)	Pins 1 and 2 (SEL2 = high)	Pins 2 and 3 (SELM = low)	VRIN2/VLIN2 (stereo)
Pins 2 and 3 (SEL1 = low)	Pins 1 and 2 (SEL2 = high)	Pins 1 and 2 (SELM = high)	VRIN2/VLIN2 (stereo), VMONO (mono)
Pins 1 and 2 (SEL1 = high)	Pins 2 and 3 (SEL2 = low)	Pins 2 and 3 (SELM = low)	VRIN1/VLIN1 (stereo) (default)
Pins 1 and 2 (SEL1 = high)	Pins 2 and 3 (SEL2 = low)	Pins 1 and 2 (SELM = high)	VRIN1/VLIN1 (stereo), VMONO (mono)
Pins 1 and 2 (SEL1 = high)	Pins 1 and 2 (SEL2 = high)	Pins 2 and 3 (SELM = low)	VRIN1/VLIN1 (stereo), VRIN2/VLIN2 (stereo)
Pins 1 and 2 (SEL1 = high)	Pins 1 and 2 (SEL2 = high)	Pins 1 and 2 (SELM = high)	VRIN1/VLIN1 (stereo), VRIN2/VLIN2 (stereo), VMONO (mono)

Note: Refer to Table 2 of the MAX9770 IC data sheet for the multiplex/mixer settings.

Shutdown Mode (SHDN)

Jumper JU6 controls the shutdown pin (SHDN) of the MAX9770 IC. See Table 5 for shunt positions.

Table 5. JU6 Jumper Selection

SHUNT POSITION	SHDN PIN	EV KIT FUNCTION
Pins 1 and 2 (default)	Connected to VDD	EV kit enabled
Pins 2 and 3	Connected to GND	Shutdown mode

Switching Frequency Mode (SYNC)

Jumper JU7 provides an option to select the switching frequency of the MAX9770 IC. See Table 6 for the various shunt positions.

Table 6. JU7 Jumper Selection

SHUNT POSITION	SYNC PIN	INTERNAL OSCILLATOR SWITCHING FREQUENCY
Pins 1 and 2	SYNC = low	1.1MHz
Pins 1 and 3	SYNC = floating	1.45MHZ
Pins 1 and 4 (default)	SYNC = high	1.22MHz ±120kHz (spread-spectrum mode)
Pins 1 and 5	SYNC = external clock input	Synchronized to the incoming clock frequency

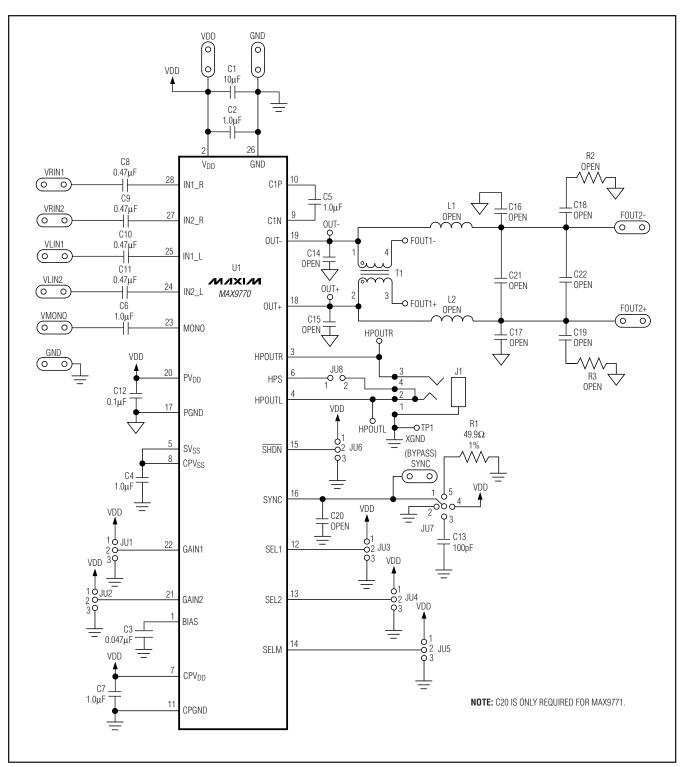


Figure 1. MAX9770 EV Kit Schematic

Evaluates: MAX9770/MAX9771

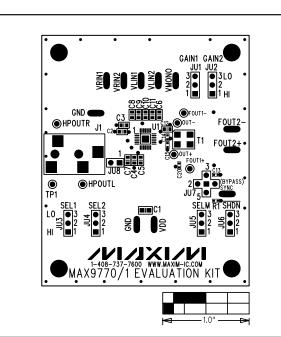


Figure 2. MAX9770 EV Kit Component Placement Guide— Component Side

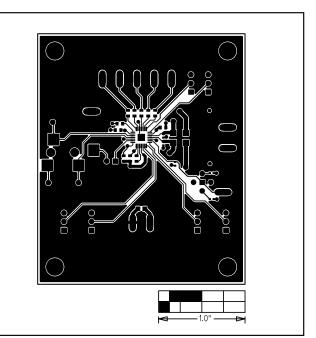


Figure 3. MAX9770 EV Kit PC Board Layout—Component Side

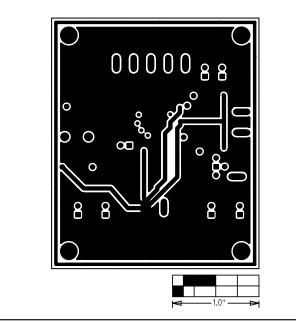


Figure 4. MAX9770 EV Kit PC Board Layout—Layer 2 (GND)

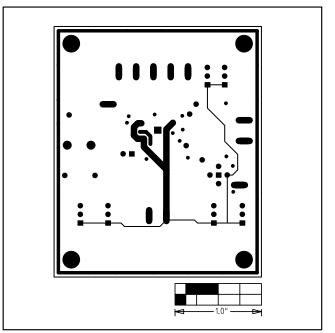


Figure 5. MAX9770 EV Kit PC Board Layout—Layer 3 (VDD)

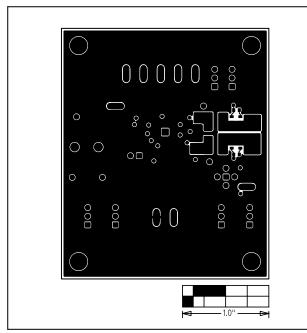


Figure 6. MAX9770 EV Kit PC Board Layout—Solder Side

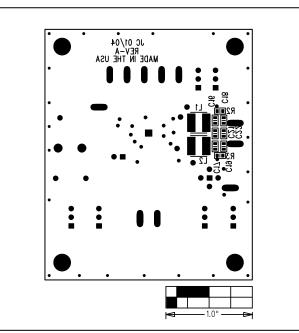


Figure 7. MAX9770 EV Kit Component Placement Guide— Solder Side

_ 7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.