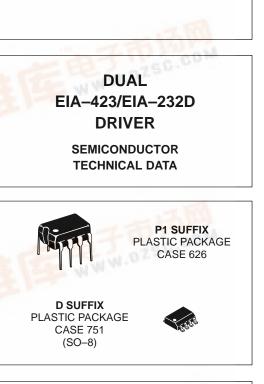
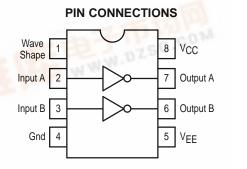
查询MC3488AD供应商

捷多邦,专业PCB打样工厂,24小时加急出货 Order this document by MC3488A/D

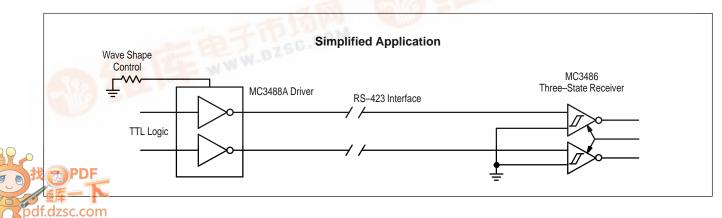

MOTOROLA

Dual EIA-423/EIA-232D Line Driver


The MC3488A dual is single–ended line driver has been designed to satisfy the requirements of EIA standards EIA–423 and EIA–232D, as well as CCITT X.26, X.28 and Federal Standard FIDS1030. It is suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from 1.0 μ s to 100 μ s by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limit transients below ground and output current limiting is provided in both output states.

The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility.

- PNP Buffered Inputs to Minimize Input Loading
- Short Circuit Protection
- Adjustable Slew Rate Limiting
- MC3488A Equivalent to 9636A
- Output Levels and Slew Rates are Insensitive to Power Supply Voltages
- No External Blocking Diode Required for VEE Supply
- Second Source μA9636A



MC3488A

ORDERING INFORMATION

	Device	Operating Temperature Range	Package		
ł	MC3488AP1	T _Δ = 0 to +70°C	Plastic DIP		
	MC3488AD	$IA = 0.10 \pm 70.0$	SO-8		

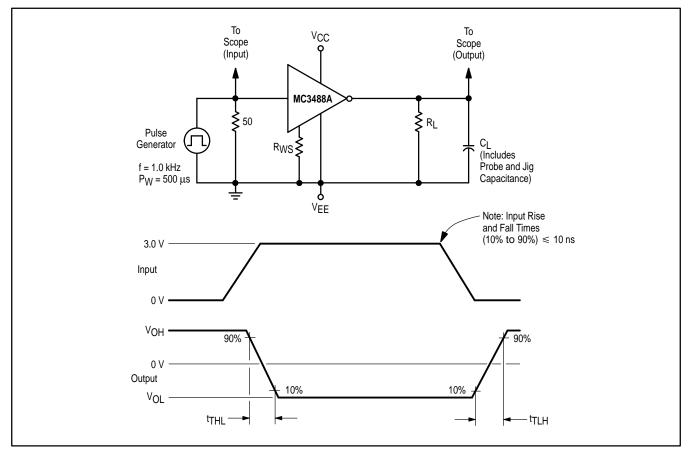
MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltages	VCC VEE	+ 15 – 15	V
Output Current Source Sink	IO + IO -	+ 150 - 150	mA
Operating Ambient Temperature	TA	0 to + 70	°C
Junction Temperature Range	ТJ	150	°C
Storage Temperature Range	T _{stg}	– 65 to + 150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	10.8 - 13.2	12 - 12	13.2 - 10.8	V
Operating Temperature Range	Τ _Α	0	25	70	°C
Wave Shaping Resistor	R _{WS}	10	-	1000	kΩ

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended operating conditions)


Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – Low Logic State	VIL	-	-	0.8	V
Input Voltage – High Logic State	VIH	2.0	-	-	V
Input Current – Low Logic State (V _{IL} = 0.4 V)	ΙL	- 80	-	-	μA
Input Current – High Logic State $(V_{IH} = 2.4 V)$ $(V_{IH} = 5.5 V)$	IIH1 IIH2			10 100	μA
Input Clamp Diode Voltage (I _{IK} = - 15 mA)	VIK	- 1.5	-	-	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VOL	- 6.0 - 6.0 - 6.0	- - -	- 5.0 - 5.0 - 4.0	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Voн	5.0 5.0 4.0	- - -	6.0 6.0 6.0	V
Output Resistance ($R_L \ge 450 \Omega$)	RO	-	25	50	Ω
Output Short–Circuit Current (Note 2) (V _{in} = V _{out} = 0 V) (V _{in} = V _{IH} (Min), V _{out} = 0 V)	IOSH IOSL	– 150 + 15	-	– 15 + 150	mA
Output Leakage Current (Note 3) (V _{CC} = V _{EE} = 0 V, $-6.0 V \le V_0 \le 6.0 V$)	I _{ox}	- 100	-	100	μA
Power Supply Currents $(R_W = 100 \text{ k}\Omega, R_L = \infty, V_{IL} \leq V_{In} \leq V_{IH})$	ICC IEE	_ _ 18		+ 18 _	mA

NOTES: 1. Devices should not be operated at these values. The "Electrical Characteristics" provide conditions for actual device operation. 2. One output shorted at a time. 3. No V_{EE} diode required.

TRANSITION TIMES (Unless otherwise noted, C_L = 30 pF, f = 1.0 kHz, V_{CC} = - V_{EE} = 12.0 V ± 10%, T_A = 25°C, R_L = 450 Ω . Transition times measured 10% to 90% and 90% to 10%)

Characteristic	Symbol	Min	Тур	Max	Unit
Transition Time, Low–to–High State Output $(R_W = 10 \text{ k}\Omega)$	tтLH	0.8	_	1.4	μs
$(R_W = 100 \text{ k}\Omega)$		8.0	-	14	
(R _W = 500 kΩ) (R _W = 1000 kΩ)		40 80	-	70 140	
Transition Time, High-to-Low State Output	tthL				μs
$(R_{W} = 10 \text{ k}\Omega)$ $(R_{W} = 100 \text{ k}\Omega)$		0.8 8.0	-	1.4 14	
$(R_W = 500 \text{ k}\Omega)$		40	-	70	
(R _W = 1000 kΩ)		80	-	140	

Figure 1. Test Circuit and Waveforms for Transition Times

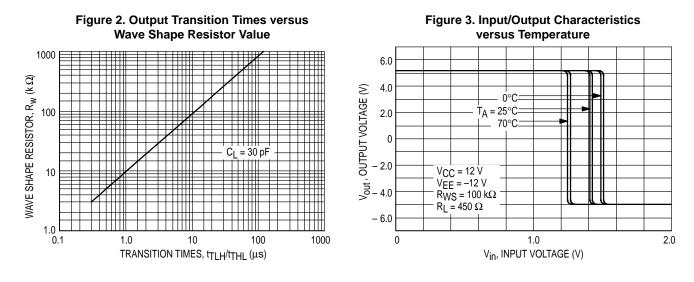
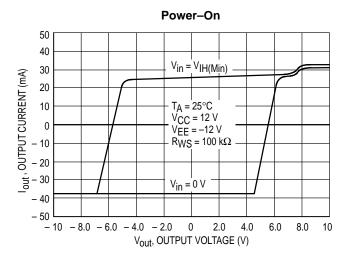



Figure 4. Output Current versus Output Voltage

0.10 0.08 $V_{CC} = V_{EE} = V_{in} = 0 V$ T_A = 25°C (No diode required at VEE Pin.) - 0.08 - 0.10 10 - 8.0 - 6.0 - 4.0 - 2.0 0 2.0 4.0 6.0 8.0 10 Vout, OUTPUT VOLTAGE (V)

Figure 5. Supply Current versus Temperature

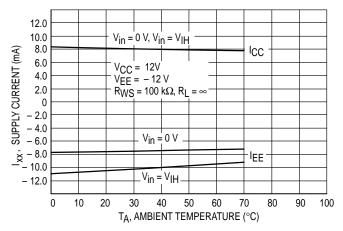
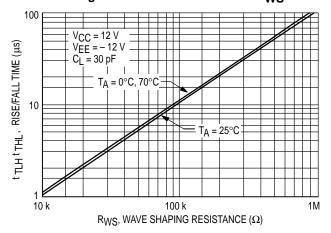
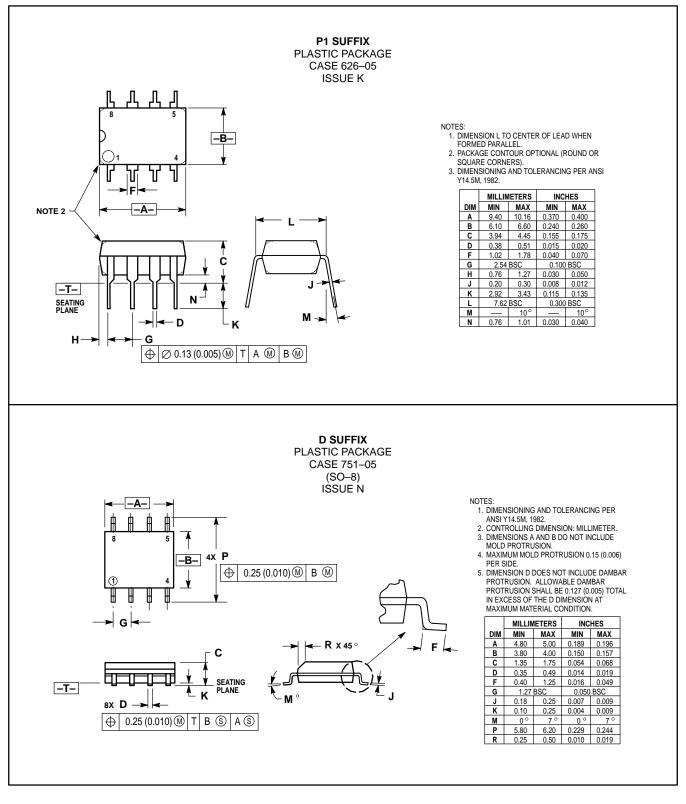




Figure 6. Rise/Fall Time versus RWS

Power-Off

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

