8958

Data Sheet **26300.5A**

VOICE COIL MOTOR DRIVER

Providing control and drive of the voice coil motor used for head positioning in disk drive applications, the A8958CLB is a full-bridge driver which can be configured so that its output current is a direct function of an externally applied control voltage or current. This linear current control function is supplemented by additional circuitry to protect the heads and the data disk during system failure or normal system shutdown.

The two ±800 mA driver outputs provide very-low saturation voltage drops and precise current control utilizing a single current-sensing resistor connected in series with the load. Under-voltage lockout disables the system in a controlled sequence if a fault condition occurs.

When activated by the under-voltage comparator, or a park command, the output power drivers change from a controlled current to a user-determined constant park voltage. Other features include a power ok flag, a limit input to force the outputs to their maximum level in either polarity, an over-riding output disable to shut down both power amplifiers and reduce quiescent supply current, and internal thermal shutdown which disables the load (but still allowing the head to be parked) in the event of excessive junction temperatures. The load is re-enabled when the junction temperature returns to a safe level.

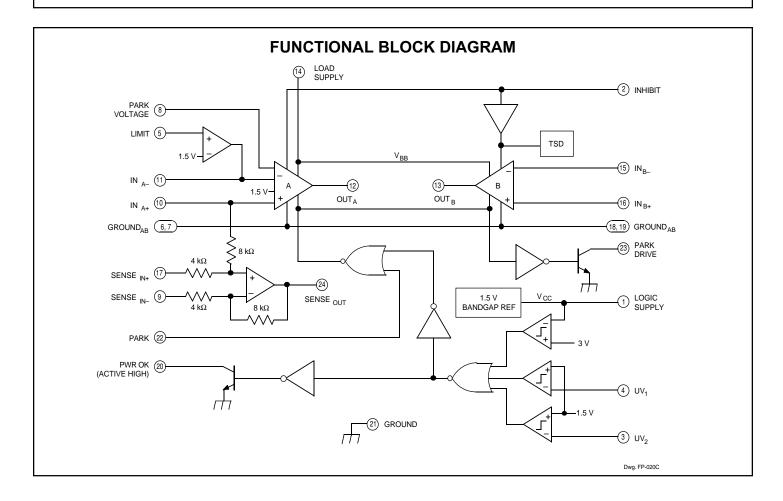
The A8958CLB is supplied in a 24-lead power SOIC for surface-mount applications. The copper batwing construction provides for maximum package power dissipation in a minimum package size. It is rated for continuous operation over the temperature range of 0°C to +70°C.

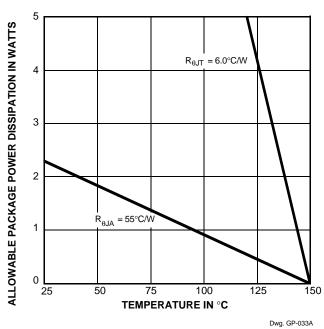
FEATURES

- Controlled-Velocity Head Parking
- Zero Deadband
- High Transconductance Bandwidth
- User-Adjustable Transconductance Gain
- ±800 mA Load Current
- Dual Under-Voltage Monitors with Flag and User-Selectable Trip Points
- Internal Thermal Shutdown Circuitry
- Replaces UC3175

LOGIC SUPPLY SENSE OUT PARK INHIBIT DRIVE PARK 22 21 GROUND PWR OK LIMIT 20 GROUND_{AB} GROUNDAB 19 GROUND_{AB} GROUND_{AB} 18 8 SENSE_{IN+} 17 **VOLTAGE** SENSE_{IN} 16 IN_{B+} 15 10 LOAD 14 SUPPLY OUT B OUT_A

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$


Dwg PP-054


Supply Voltages, V _{BB} and V _{CC}
Continuous 250 mA
Peak
Amplifier Input Voltage Range, V _{IN} 2.0 V to V _{CC}
Sense Input Voltage Range,
V _{SENSE IN}
Comparator and Digital Inputs,
V_{IN}
Power OK Output, V _{CEX} 20 V
I _C 30 mA
Output Clamp Diode Current,
I _F (pulsed) 1.0 A
Package Power Dissipation, PD See Graph
Operating Temperature Range,
T _A 0°C to +70°C
Junction Temperature, T _J 150°C*
Storage Temperature Range,
T _S 55°C to +150°C

* Fault conditions that produce excessive junction temperature will activate device thermal shutdown circuity. These conditions can be tolerated but should be avoided.

Always order by complete part number, e.g., **A8958CLB** .

8958 VOICE COIL MOTOR DRIVER

Limits

Max.

Units

Тур.

Min.

ELECTRICAL CHARACTERISTICS at T $_{\rm A}$ = +25°C, V $_{\rm CC}$ = V $_{\rm BB}$ = 12 V

Symbol

Logic Supply Voltage Range	V _{CC}	Operating	8.0	12	16	V	
Logic Supply UV Threshold	V _{CC}	High-to-low transition	<u> </u>	2.8	3.0	V	
Logic Supply UV Hysteresis	ΔV_{CC}		_	200	_	mV	
Supply Current	I _{BB}	V _{OUT} = 6 V, no load	_	2.0	_	mA	
	I _{CC}		_	23	_	mA	
Inhibited Supply Current	_	I _{BB} + I _{CC} , V ₂ ≥ 1.7 V	_	3.0	8.0	mA	
Thermal Shutdown Temp.	TJ		_	165	_	°C	
Thermal Shutdown Hysteresis	ΔT_J		_	8.0	_	°C	
Output Power Drivers							
Output Saturation Voltage	V_{SAT}	I _{OUT} = 250 mA	_	250	_	mV	
		I _{OUT} = 800 mA	_	450	_	mV	
		I _{OUT} = -250 mA	_	750	_	mV	
		I _{OUT} = -800 mA	_	950	_	mV	
Total Saturation Voltage	V_{SAT}	I _{LOAD} = 250 mA	_	1.0	1.4	V	
(Source + Sink)		I _{LOAD} = 800 mA	_	1.4	2.0	V	
Input Offset Voltage	V _{IO}	V _{CM} = 6 V	_	5.0	8.0	mV	
Input Offset Drift	ΔV_{IO}		_	_	25	μV/°C	
Input Bias Current	I _{IN}	Except IN _{A+} , V _{CM} = 6 V	_	-150	-500	nA	
		IN_{A+} to $SENSE_{IN+} = 12 \text{ k}\Omega$, $T_J = 25^{\circ}\text{C}$	69	84	105	μA/V	
Input Offset Current	I _{IO}	IN _B only, V _{CM} = 6 V	_	_	200	nA	
Differential Sense Input Current	I _{ID}	I _{OUT} = 5 mA	_	±300	_	μΑ	
		I _{OUT} = 500 mA	_	3.0		mA	
Large Signal Gain	A _{VS}	$V_{OUT} = 2 \text{ V to } 10 \text{ V}, I_{OUT} = \pm 500 \text{ mA}$	1.5	5.0	_	V/mV	
Slew Rate	SR		_	4.0	_	V/μs	
Unity Gain Bandwidth	BW	Amplifier A	0.5	1.0	1.7	MHz	
		Amplifier B	0.5	2.0	2.2	MHz	
Common-Mode Rejection	k _{CMR}	V _{CM} = 1 V to 10 V	70	90	_	dB	
Clamp Diode Forward Voltage	V_{F}	$I_F = 800 \text{ mA}, V_2 \ge 1.7 \text{ V}$	_	1.0	1.2	V	
High-Side Current Limit	I _{OUT}	T _J = 25°C	_	1.0	1.2	А	
Power Supply Rejection	k _{SVR}	$V_{CC} = 4 \text{ V to } 15 \text{ V}, V_{CM} = 1.5 \text{ V}$	70	90	_	dB	

Test Conditions

Negative current is defined as coming out of (sourcing) the specified device terminal.

Typical Data is for design information only.

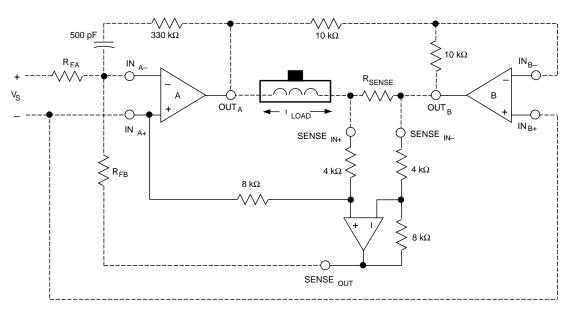
Characteristic

Continued next page...

8958 VOICE COIL MOTOR DRIVER

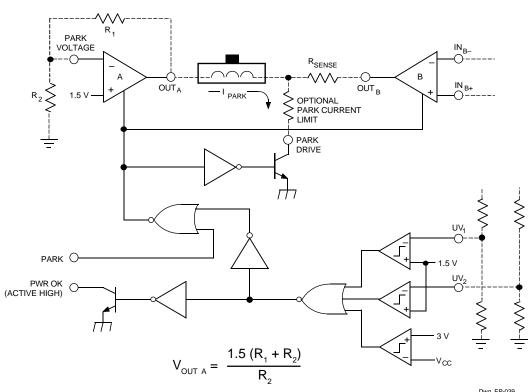
ELECTRICAL CHARACTERISTICS (continued)

				Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Current Sense Amplifier							
Input Offset Voltage	V _{IO}	V _{CM} = 6 V	_	_	2.0	mV	
Input Offset Drift	ΔV_{IO}	V _{CM} = 0 V to 12 V	1 —	_	3000	μV/V	
			<u> </u>	_	8.0	μV/°C	
Voltage Gain	A _{VS}	V _{ID} = -1 V to +1 V, V _{CM} = 6 V	1.95	2.00	2.05	_	
Output Saturation Voltage	V_{SAT}	V _{OUT} , I _{OUT(SINK)} = 1.5 mA	<u> </u>	300	500	mV	
		V _{CC} - V _{OUT} , I _{OUT} (SOURCE) = -1.5 mA	<u> </u>	400	700	mV	
Park Function							
PARK DRIVE Leakage Current	I _{CEX}	V _{CEX} = 20 V		_	100	μΑ	
PARK DRIVE Saturation Voltage	V _{CE(SAT)}	I _C = 200 mA	<u> </u>	300	500	mV	
PARK Input Threshold	V _{PARK}		0.7	1.1	1.7	V	
PARK Input Current	I _{PARK}	V _{PARK} = 1.7 V	_	_	100	μΑ	
PARK VOLTAGE Input Current	I _{PARK V}		_	-150	-500	nA	
Under-Voltage Protection			•				
UV Threshold	V_{UV}	Low-to-High Trans., Other Input = 6 V	1.48	1.50	1.52	V	
UV Threshold Hysteresis	ΔV_{UV}		15	25	45	mV	
UV Input Current	I _{UV}	V _{UV} = 1 V	1 —	-0.5	-1.5	μΑ	
PWR OK Saturation Voltage	V _{CE(SAT)}	$I_C = 5 \text{ mA}$	<u> </u>	_	450	mV	
PWR OK Leakage Current	I _{CEX}	V _{CEX} = 20 V	<u> </u>	_	5.0	μΑ	
Auxiliary Functions			•				
LIMIT Input Voltage	$V_{LIMIT(L)}$	OUT _A forced Low	0.7	0.8	_	V	
	V _{LIMIT(H)}	OUT _A forced High	1 –	2.2	2.3	V	
	V_{LIMIT}	Limit inactive	1.2	_	1.8	V	
		Open circuit	1.45	1.50	1.55	V	
LIMIT Input Resistance	R _{LIMIT}	V _{LIMIT} = 1.2 V to 1.8 V	<u> </u>	10	_	kΩ	
INHIBIT Input Threshold	V ₂		0.7	1.1	1.7	V	
INHIBIT Input Current	l ₂	V ₂ = 1.7 V	<u> </u>	_	200	μΑ	

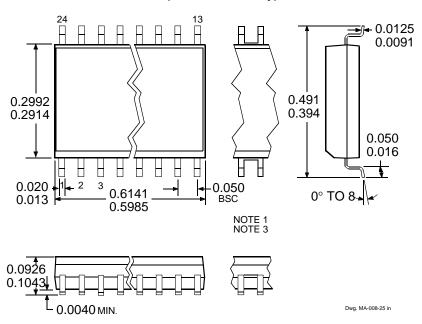

Negative current is defined as coming out of (sourcing) the specified device terminal.

Typical Data is for design information only.

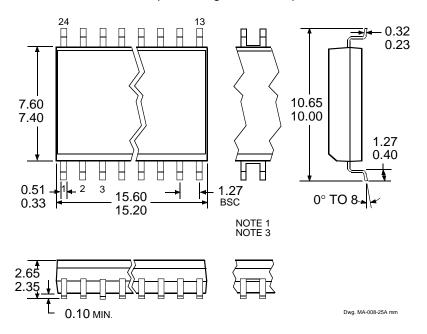
TERMINAL FUNCTIONS


Term.	Terminal Name	Function
1	LOGIC SUPPLY	V _{CC} ; logic supply voltage.
2	INHIBIT	An active-high logic input that inhibits the output stages without initiating a park.
3 & 4	UV ₁ and UV ₂	Under-voltage detection inputs. If not used, these terminals must be connected to the logic supply ($V_{\rm CC}$).
5	LIMIT	A tri-state input that forces the output of amplifier A into saturation in either direction, or allows normal linear operation.
6 & 7	GROUND _{AB}	Power amplifiers' ground and thermal heat sink.
8	PARK VOLTAGE	Auxiliary inverting input to power amplifier A.
9	SENSE _{IN} _	Inverting input to current sense error amplifer.
10	IN _{A+}	Non-inverting input to power amplifier A.
11	IN _A _	Inverting input to power amplifier A.
12	OUT _A	Power amplifier A output to voice coil motor.
13	OUT _B	Power amplifier B output to voice coil motor.
14	LOAD SUPPLY	V _{BB} ; load supply voltage.
15	IN _{B-}	Inverting input to power amplifier B.
16	IN _{B+}	Non-inverting input to power amplifier B.
17	SENSE _{IN+}	Non-inverting input to current sense error amplifer.
18 & 19	GROUND _{AB}	Power amplifiers' ground and thermal heat sink.
20	PWR OK	A logic low at this output indicates an under-voltage condition.
21	GROUND	Circuit reference.
22	PARK	An active-high logic input that activates the park function.
23	PARK DRIVE	Power transistor for retract current control on power down or park command.
24	SENSE _{OUT}	Output of current sense error amplifier.

CURRENT SENSING


Dwg. EP-034

PARKING FUNCTION


Dimensions in Inches

(for reference only)

Dimensions in Millimeters

(controlling dimensions)

NOTES: 1. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.

- 2. Lead spacing tolerance is non-cumulative.
- 3. Exact body and lead configuration at vendor's option within limits shown.

8958 VOICE COIL MOTOR DRIVER

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

