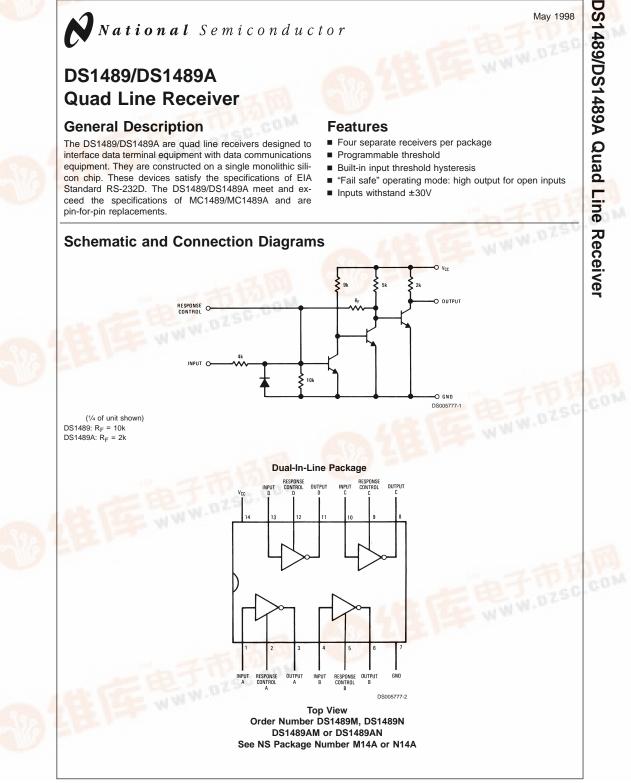
查询DS1489供应商

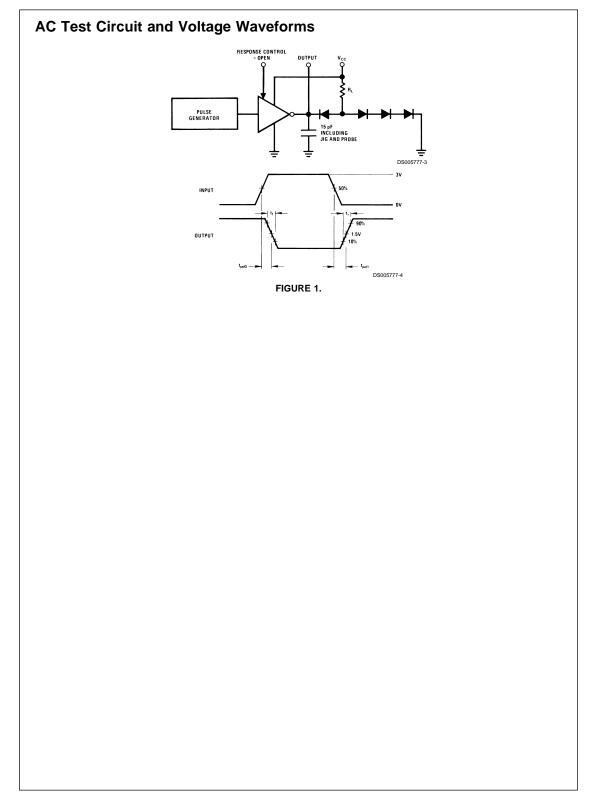
May 1998

National Semiconductor


DS1489/DS1489A **Quad Line Receiver**

General Description

The DS1489/DS1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA Standard RS-232D. The DS1489/DS1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements.


Features

- Four separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode: high output for open inputs
- Inputs withstand ±30V

© 1998 National Semiconductor Corporation DS005777

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	10V
Input Voltage Range	±30V
Output Load Current	20 mA
Power Dissipation (Note 3)	1W
Operating Temperature Range	0°C to +75°C

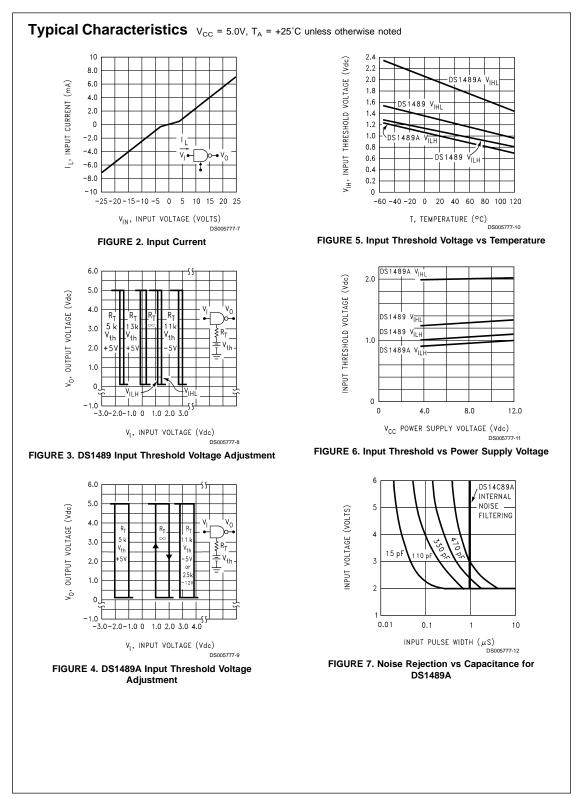
Storage Temperature Range	–65°C to +150°C		
Maximum Power Dissipation (Note 1) at	25°C		
Molded DIP Package	1207 mW		
SO Package	1042 mW		
Lead Temperature (Soldering, 4 sec.)	260°C		
Note 1: Derate molded DIP package 9.7 mW/'C above 25°C; derate SO package 8.33 mW/'C above 25°C.			

Electrical Characteristics (Notes 3, 4, 5)

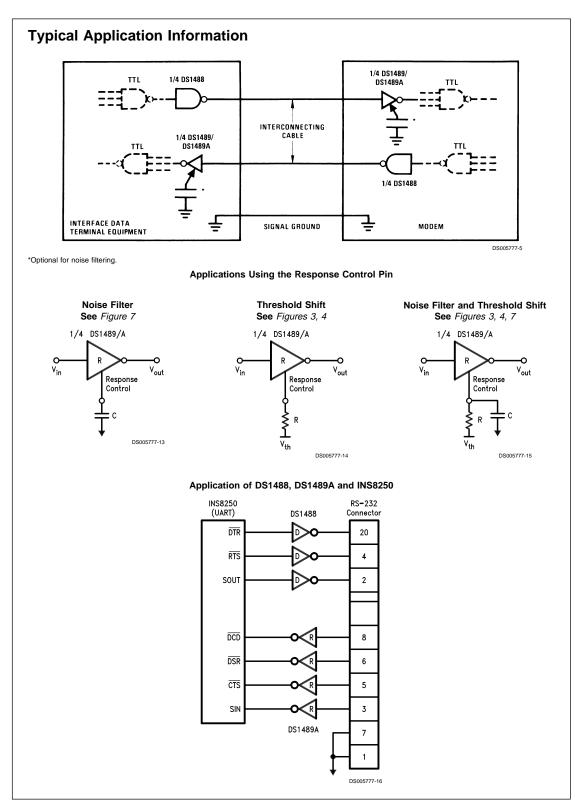
DS1489/DS1489A: The following apply for V_{CC} = 5.0V ±1%, 0°C \leq T_A \leq +75°C unless otherwise specified.

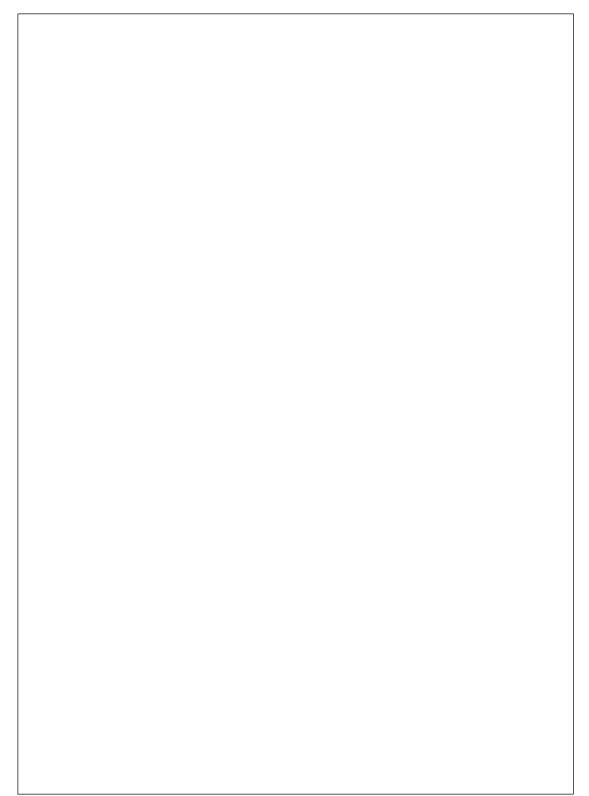
Symbol	Parameter		Conditions		Min	Тур	Max	Units
V _{TH}	Input High Threshold Voltage	$V_{OUT} \le 0.45V,$	DS1489	T _A = 25°C	1.0	1.25	1.5	V
		I _{OUT} = 10 mA			0.9		1.6	V
			DS1489A	T _A = 25°C	1.75	2.00	2.25	V
					1.55		2.40	V
V _{TL}	Input Low Threshold Voltage	$V_{OUT} \ge 2.5V, \qquad T_A = 25^{\circ}C$ $I_{OUT} = -0.5 \text{ mA}$		T _A = 25°C	0.75	1.00	1.25	V
					0.65		1.35	V
I _{IN}	Input Current	V _{IN} = +25V		+3.6	+5.6	+8.3	mA	
		$V_{IN} = -25V$			-3.6	-5.6	-8.3	mA
		$V_{IN} = +3V$ $V_{IN} = -3V$		+0.43	+0.53		mA	
				-0.43	-0.53		mA	
V _{OH}	Output High Voltage	I _{OUT} = -0.5 mA	= -0.5 mA V _{IN} = 0.75V		2.6	3.8	5.0	V
		Input = C		ו	2.6	3.8	5.0	V
Vol	Output Low Voltage	V _{IN} = 3.0V, I _{OUT} = 10 mA			0.33	0.45	V	
I _{sc}	Output Short Circuit Current	V _{IN} = 0.75V				-3.0		mA
I _{cc}	Supply Current	V _{IN} = 5.0V				14	26	mA
P _d	Power Dissipation	V _{IN} = 5.0V				70	130	mW

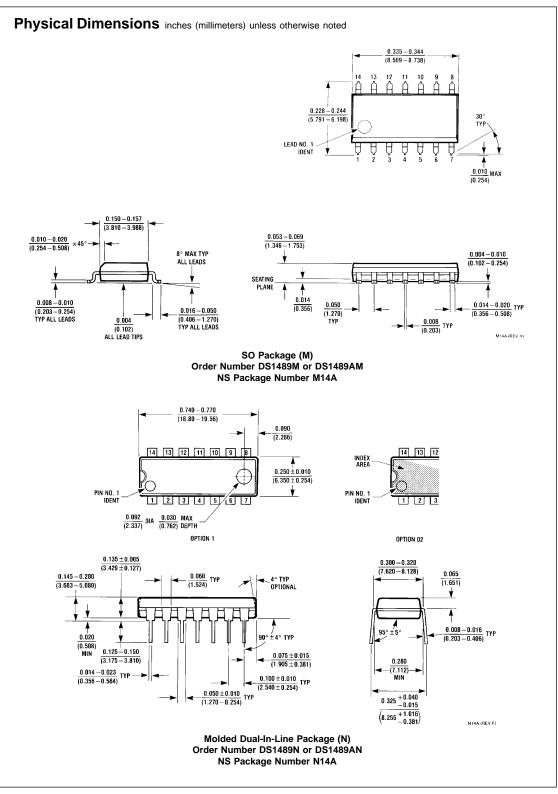
Switching Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1}	Input to Output "High"	R _L = 3.9k, (<i>Figure 1</i>) (AC Test Circuit)		28	85	ns
	Propagation Delay					
t _{pd0}	Input to Output "Low"	$R_{L} = 390\Omega$, (<i>Figure 1</i>) (AC Test Circuit)		20	50	ns
	Propagation Delay					
t _r	Output Rise Time	R _L = 3.9k, (<i>Figure 1</i>) (AC Test Circuit)		110	175	ns
t _f	Output Fall Time	$R_{L} = 390\Omega$, (<i>Figure 1</i>) (AC Test Circuit)		9	20	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 3: Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1489 and DS1489A.


Note 4: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown


as max or min on absolute value basis.


Note 5: These specifications apply for response control pin = open.

www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Corporation Americas Tel: 1-800- Fax: 1-800	272-9959	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58	National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
www.national.com		Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.