

=AIRCHIL

SEMICONDUCTOR

October 1987 **Revised January 1999**

CD40192BC • CD40193BC Synchronous 4-Bit Up/Down Decade Counter • Synchronous 4-Bit Up/Down Binary Counter

General Description

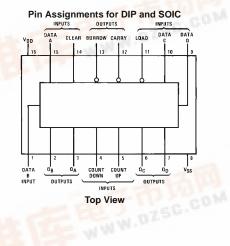
The CD40192BC and CD40193BC up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The CD40192BC is a BCD counter, while the CD40193BC is a binary counter.

Counting up and counting down is performed by two count inputs, one being held HIGH while the other is clocked. The outputs change on the positive-going transition of this clock.

These counters feature preset inputs that are enabled when load is a logical "0" and a clear which forces all outputs to "0" when it is at logical "1". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

All inputs are protected against damage due to static discharge by clamps to V_{DD} and V_{SS}.

Features

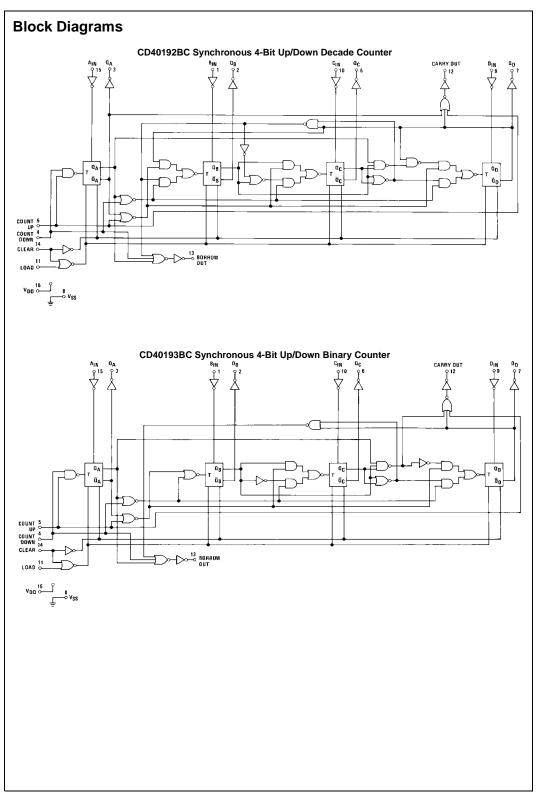

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Carry and borrow outputs for easy expansion to N-bit by cascading
- Asynchronous clear
- Equivalent to: MM74C192 and MM74C193

Ordering Code:


Order Number	Package Number	Package Description
CD40192BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD40193BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD40193BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram


Cascading Packages

Counter CD40192BC • CD40193BC Synchronous 4-Bit Up/Down Decade Counter • Synchronous 4-Bit Up/Down Binary

dzsc.com

Absolute Maximum Ratings(Note 1)

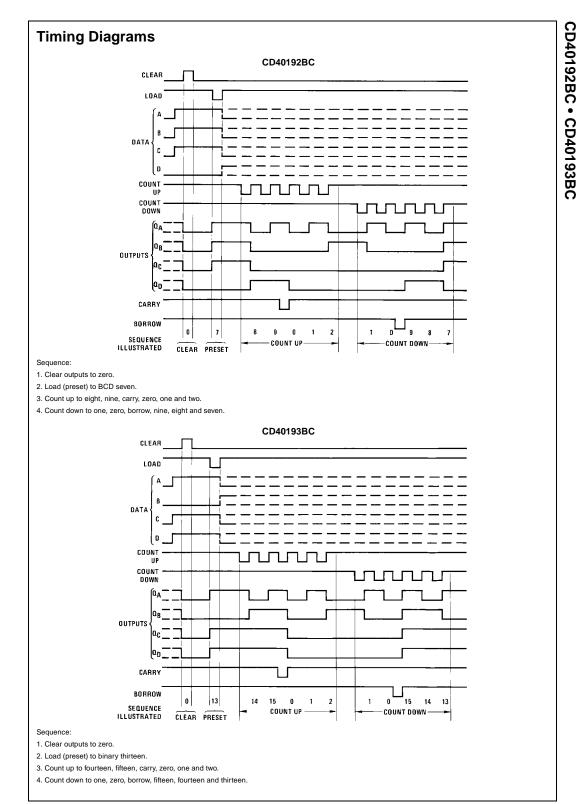
(Note 2)	
DC Supply Voltage (V _{DD}) Input Voltage (V _{IN})	-0.5 to +18 V_{DC} -0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

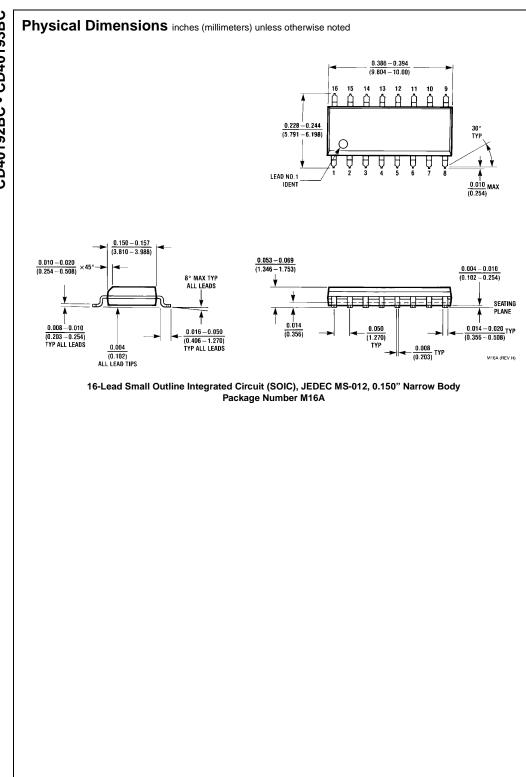
Recommended Operating Conditions (Note 2)

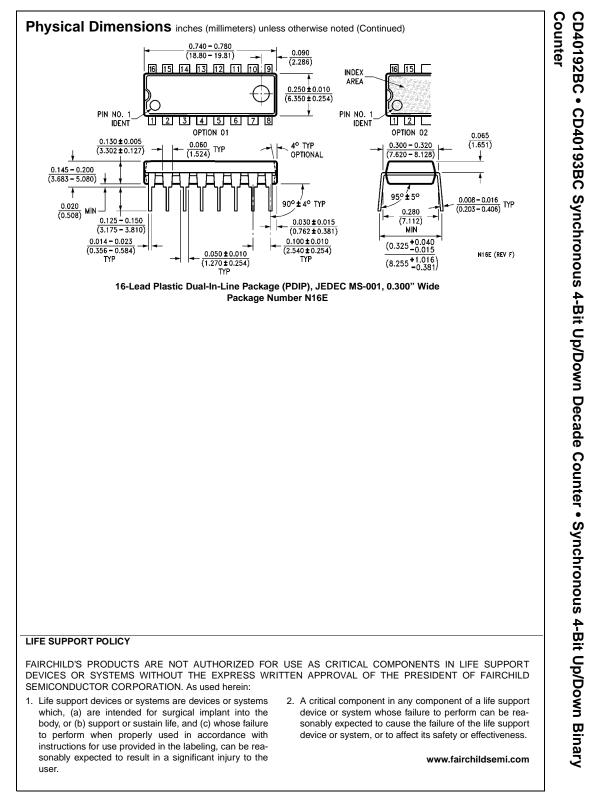
DC Supply Voltage (V _{DD})	3 to 15 V _{DC}
Input Voltage (V _{IN})	0 to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	
CD40192BC, CD40193BC	$-40^{\circ}C$ to $+85^{\circ}C$
Note 1: "Absolute Maximum Ratings" are those safety of the device cannot be guaranteed. The	

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply y that the devices should be operated at these limits. The "Recommended Operating Conditions" and Electrical Characteristics tables provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.


DC Electrical Characteristics (Note 3)


Symbol	Parameter	Conditions -40°C +25°C +	+25°C +85°C		Units					
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD}or V_{SS}$		20			20		150	μΑ
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		40			40		300	μΑ
		V_{DD} = 15V, V_{IN} = V_{DD} or V $_{SS}$		80			80		600	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05			0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95			4.95		V
	Output Voltage	$V_{DD} = 10V$	9.95		9.95			9.95		V
		$V_{DD} = 15V$	14.95		14.95			14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0			3.0		3.0	v
		V_{DD} = 15V, V_O = 1.5V or 13.5V		4.0			4.0		4.0	V
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0			7.0		V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ


Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: I_{OH} and I_{OL} are tested one output at a time.

	= 50 pF, $R_L = 200 \text{ k}\Omega$, input $t_r = t_f =$			-	L	
Symbol	Parameter	Conditions	Min	Тур	Max	Un
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		250	400	n
	from Count Up or	$V_{DD} = 10V$		100	160	n
	Count Down to Q	V _{DD} = 15V		80	130	n
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		120	200	n
	from Count Up to Carry	$V_{DD} = 10V$		50	80	n
		$V_{DD} = 15V$		40	65	n
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		120	200	n
	from Count Down	$V_{DD} = 10V$		50	80	n
	to Borrow	$V_{DD} = 15V$		40	65	n
t _{SU}	Time Prior to Load	$V_{DD} = 5V$		100	160	n
	That Data Must	$V_{DD} = 10V$		30	50	n
	Be Present	$V_{DD} = 15V$		25	40	n
t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		130	220	n
	from Clear to Q	$V_{DD} = 10V$		60	100	n
		$V_{DD} = 15V$		50	80	n
t _{PLH} or t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		300	480	n
	from Load to Q	$V_{DD} = 10V$		120	190	n
		$V_{DD} = 15V$		95	150	n
t _{TLH} or t _{THL}	Output Transition Time	$V_{DD} = 5V$		100	200	n
		$V_{DD} = 10V$		50	100	n
		$V_{DD} = 15V$		40	80	n
f _{CL}	Maximum Count Frequency	$V_{DD} = 5V$	2.5	4		М
		$V_{DD} = 10V$	6	10		M
		$V_{DD} = 15V$	7.5	12.5		М
t _{rCL} or t _{fCL}	Maximum Count Rise	$V_{DD} = 5V$	15			μ
	or Fall Time	$V_{DD} = 10V$	5			μ
		$V_{DD} = 15V$	1			μ
t _{WH} , t _{WL}	Minimum Count Pulse	$V_{DD} = 5V$		120	200	n
	Width	$V_{DD} = 10V$		35	80	n
		$V_{DD} = 15V$		28	65	n
t _{WH}	Minimum Clear	$V_{DD} = 5V$		300	480	n
	Pulse Width	$V_{DD} = 10V$		120	190	n
		$V_{DD} = 15V$		95	150	n
t _{WL}	Minimum Load	$V_{DD} = 5V$		100	160	n
	Pulse Width	$V_{DD} = 10V$		40	65	n
		$V_{DD} = 15V$		32	55	n
C _{IN}	Average Input Capacitance	Load and Data		5	7.5	р
		Inputs (A,B,C,D)				
		Count Up, Count		10	15	р
		Down and Clear				
C _{PD}	Power Dissipation Capacity	(Note 5)		100		р

