

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
Military	-55°C to +125°C
Commercial	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units	
Symbol	Falameter	Min	Nom	Max	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v	
V _{IH}	High Level Input Voltage	2			2			V	
V _{IL}	Low Level Input Voltage			0.8			0.8	V	
I _{OH}	High Level Output Current			-0.8			-0.8	mA	
I _{OL}	Low Level Output Current			16			16	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	
t _s (H) t _s (L)	Setup Time HIGH or LOW D_n to \overline{E}	5.0 18			5.0 18			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW D _n to Ē	0 5.0			0 5.0			ns	
t _s (H)	Setup Time HIGH, D_n to \overline{S}_n	8.0		-	8.0			ns	
t _h (L)	Hold Time LOW, D_n to \overline{S}_n	8.0			8.0			ns	
t _w (L)	E Pulse Width LOW	18			18			ns	
t _w (L)	MR Pulse Width LOW	18			18			ns	
t _{rec}	Recovery Time, $\overline{\text{MR}}$ to $\overline{\text{E}}$	0			0			ns	

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 mA$				-1.5	V	
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OI}$ $V_{IL} = Max$	_H = Max	2.4	3.4		V	
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OI}$ $V_{IH} = Min$	_ = Max		0.2	0.4	V	
lı	Input Current @ Max Input Voltage	$V_{CC} = Min, V_I$	= 5.5V			1	mA	
I _{IH} High Level Input Current		$V_{CC} = Max, V_I = 2.4V$				40	μA	
		Data Inputs				60	μι	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-1.6	mA	
		Data Inputs	Data Inputs			-2.7		
l _{OS}	Short Circuit	V _{CC} = Max	MIL	-20		-70	- mA	
	Output Current	(Note 2)	COM	-20		-70		
Icc	Supply Current	V _{CC} = Max				55	mA	

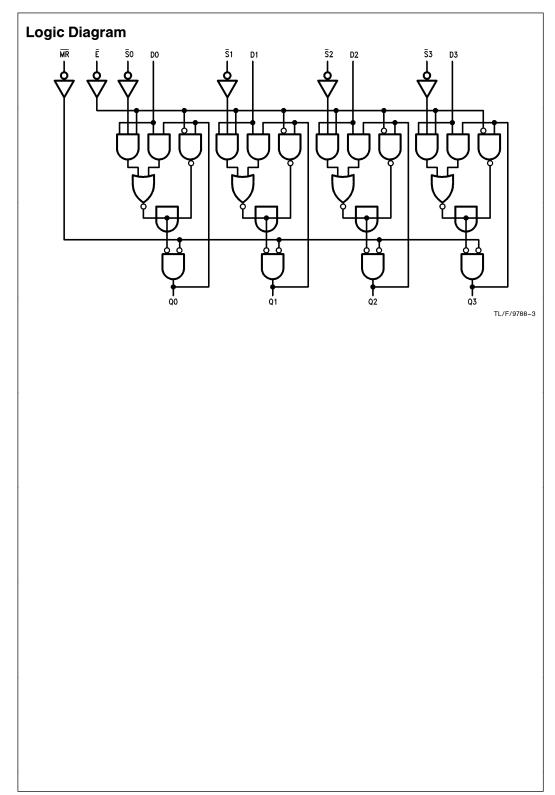
Symbol	Parameter	C _L =	15 pF	Units	
		Min	Max		
t _{PLH}	Propagation Delay		24	ns	
t _{PHL}	Ē to Q _n		24		
t _{PLH}	Propagation Delay		12	ns	
t _{PHL}	D _n to Q _n		24		
t _{PLH}	Propagation Delay		18		
	MR to Q _n		10	ns	
t _{PHL}	Propagation Delay		04		
	\overline{S}_n to Q_n		24	ns	

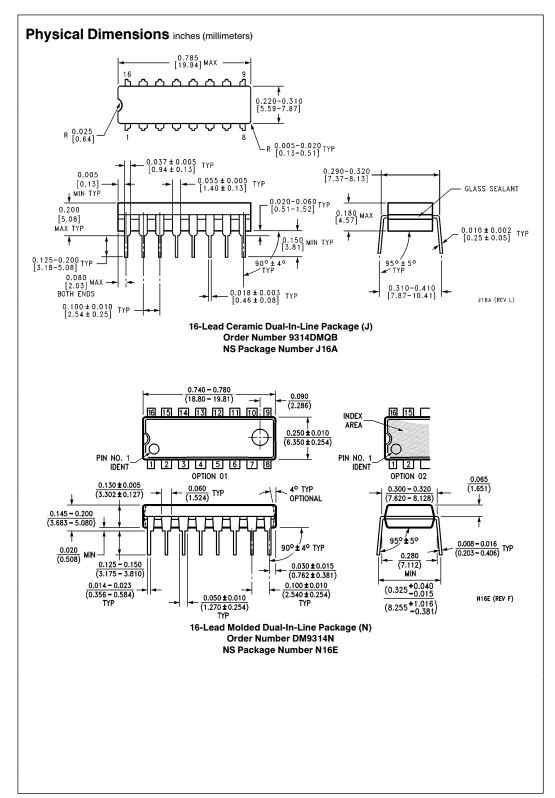
Functional Description

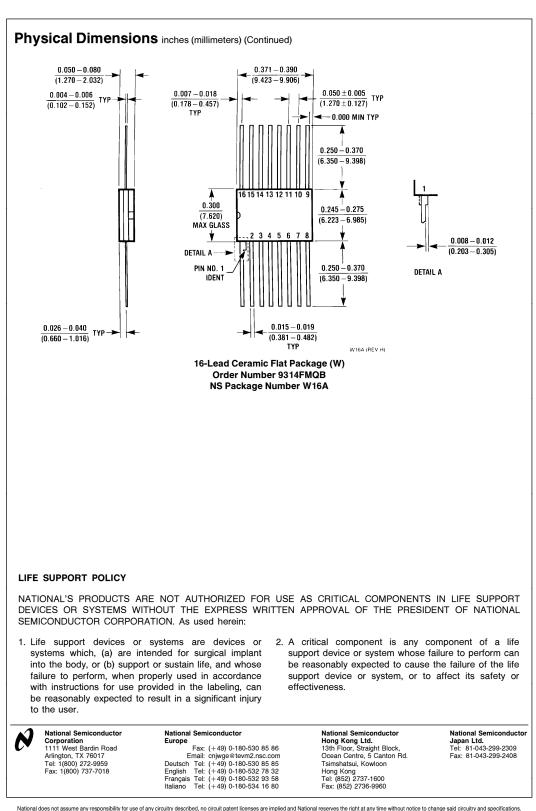
The '9314 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the \overline{S}_n and D_n inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes:

D-TYPE LATCH—For D-type operation the \overline{S} input of a latch is held LOW. While the common Enable is active the latch output follows the D input. Information present at the latch output is stored in the latch when the Enable goes HIGH.

SET/RESET LATCH—During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the D input, and can be set by a LOW on the \overline{S} input if the D input is HIGH. If both \overline{S} and D inputs are LOW, the D input will dominate and the latch will be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table.


Truth Table


MR	Ē	D	S	Qn	Operation
н	L	L	L	L	D Mode
н	L	н	L	н	
н	Н	Х	Х	Q _{n-1}	
н	L	L	L	L	R/S Mode
н	L	н	L	Н	
н	L	L	н	L	
н	L	н	н	Q _{n-1}	
н	Н	Х	Х	$egin{array}{c} Q_{n-1} \ Q_{n-1} \end{array}$	
L	Х	Х	Х	L	Reset


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

 Q_{n-1} = Previous Output State Q_n = Present Output State

