

Absolute Maximum Ratings	3	(Note)
--------------------------	---	--------

If Military/Aerospace specified dev please contact the National Sen Office/Distributors for availability an	niconductor Sales
Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
MIL	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.7	v
I _{OH}	High Level Output Current			-400	μA
I _{OL}	Low Level Output Current	-		4.8	mA
T _A	Free Air Operating Temperature	-55		125	°C
t _s (H)	Setup Time HIGH, D_n to \overline{E}_n	8			ns
t _h (H)	Hold Time HIGH, D_n to \overline{E}_n	1			ns
t _s (L)	Setup Time LOW, D_n to \overline{E}_n	18			ns
t _h (L)	Hold Time LOW, D_n to \overline{E}_n	4			ns
t _w (L)	\overline{E}_n Pulse Width LOW	32			ns
t _w (L)	MR Pulse Width LOW	30			ns
t _{rec}	Recovery Time, \overline{MR} to \overline{E}_n	10			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

			0	•	0 (,
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -10 \text{ mA}$	L .			-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, } I_{OH} = \text{Max,} \\ V_{IL} &= \text{Max, } V_{IH} = \text{Min} \end{split}$	2.4			V	
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, } I_{OL} = \text{Max,} \\ V_{IH} &= \text{Min, } V_{IL} = \text{Max} \end{split}$				0.3	V
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$	Inputs			20	μA
			Dn			30	μπ
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.3V$	Inputs			-400	μA
			Dn			-640	μΛ
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)		-2.5		-25	mA
ICC	Supply Current	V _{CC} = Max (Note 3)				29	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.

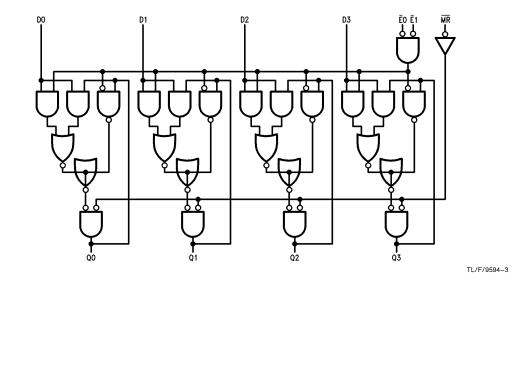
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

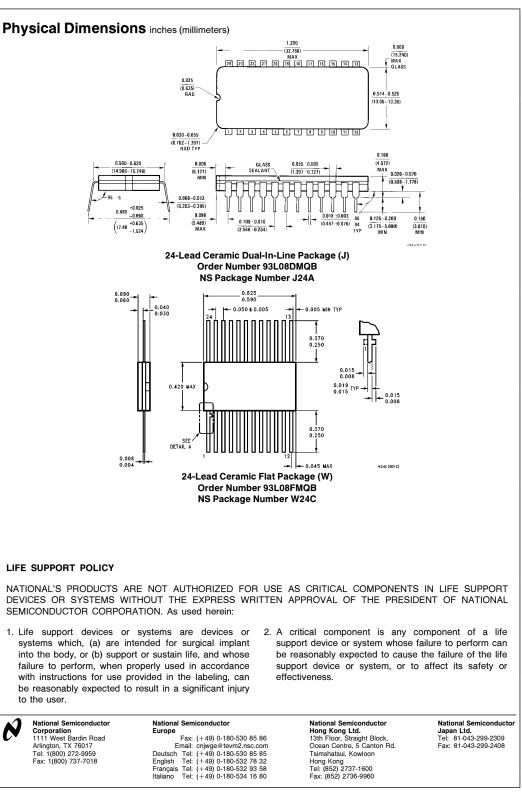
Note 3: $I_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics $I_{CC} = +5.0V, T_A = +25^{\circ}C$ (See Section 3 for waveforms and load configurations)						
Symbol	Parameter	C _L = 15 pF		C _L = 15 pF		Units
	Farameter	Min	Max	Onits		
t _{PLH} t _{PHL}	Propagation Delay En to Qn		45 38	ns		
t _{PLH} t _{PHL}	Propagation Delay Dn to Qn		27 29	ns		
t _{PHL}	Propagation Delay MR to Qn		30	ns		

Functional Description

Data can be entered into the latch when both of the enable inputs are LOW. As long as this logic condition exists, the output of the latch will follow the input. If either of the enable inputs goes HIGH, the data present in the latch at that time The master reset overrides all other input conditions and forces the outputs of all the latches LOW when a LOW signal is applied to the Master Reset input.


Truth	Table


MR	Ē0	Ē1	D	Qn	Operation
н	L	L	L	L	Data Entry
н	L	L	н	L	Data Entry
н	L	н	Х	Qn-1	Hold
н	н	L	х	Qn-1	Hold
н	н	н	х	Qn-1	Hold
L	Х	Х	х	L	Reset

 Q_{n-1} = Previous Output State Q_n = Present Output State H = HIGH Voltage Level L = LOW Voltage Level Voltage Level

X = Immaterial

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.