June 1989

Features

■ 2－input multiplexer provided at data input of each register
－Gated clock input circuitry
－Both true and complementary outputs provided from last bit of each register
－Asynchronous master reset common to both registers

Connection Diagram

TL／F／10200－1
Order Number 93L28DMQB or 93L28FMQB See NS Package Number J16A or W16A

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
$\mathrm{GND}=\operatorname{Pin} 8$

Absolute Maximum Ratings (Note)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MIL	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L28 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Current			-400	$\mu \mathrm{A}$
lOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$			ns
$t_{w}(L)$	$\overline{\text { MR Pulse Width with CP HIGH }}$	60			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width with CP LOW	70			ns

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{l}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	$\overline{\mathrm{MR}}$, Dx			20	$\mu \mathrm{A}$
			CP $(7,10)$			30	
			S			40	
			CP Com			60	
IIL	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$	$\overline{\mathrm{MR}}$, Dx			-400	$\mu \mathrm{A}$
			CP $(7,10)$			-600	
			S			-800	
			CP Com			-1200	
IOS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$		-2.5		-25	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				25.3	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for test waveforms and output load)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$f_{\text {max }}$	Maximum Shift Right Frequency	5.0		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{7} or \bar{Q}_{7}		$\begin{aligned} & 45 \\ & 80 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{7}		110	ns

Functional Description

The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal.

Each 8-bit shift register has a 2-input multiplexer in front of the serial data input. The two data inputs D0 and D1 are controlled by the data select input (S) following the Boolean expression
Serial data in: $S_{D}=$ SD0 + SD1
An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.

Shift Select Table

Inputs			Output
\mathbf{S}	D0	D1	Q7 $\left(\mathbf{t}_{\mathbf{n}+\mathbf{8}}\right)$
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{n}+8=$ Indicates state after eight clock pulse

Logic Diagram

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

Detail A

16-Lead Ceramic Flat Package (W)
Order Number 93L28FMQB
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

