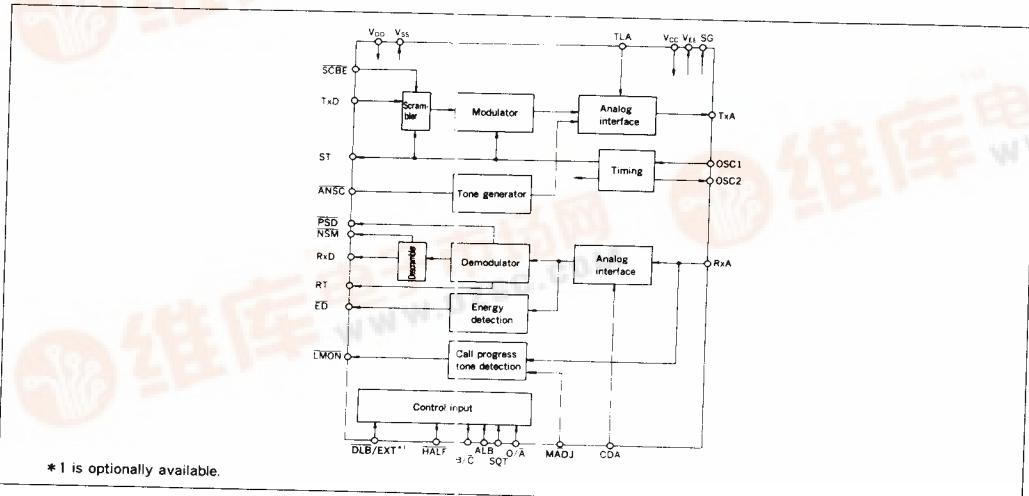


STC9492C Series

CMOS 1,200bps PSK SINGLE CHIP MODEM

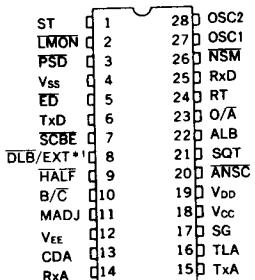
- Compatible with Bell212A (High speed)/CCITT V.22
- Tone Generator Incorporated
- Call Progress Tone Detection Function Provided

■ DESCRIPTION


The STC9492C Series is a Bell 212A (high speed)/CCITT V.22 compatible, single chip, 1,200 bps CMOS LSI for a PSK MODEM. The built-in additional functions include answer and guard tones generation functions and a call progress tone detection function.

The high quality switched capacitor circuits and the adaptive equalizing algorithm are adopted in the signal processing, so that they realize highly reliable data quality.

■ FEATURES


- Compatible with Bell 212A (high speed), CCITT V.22
- Built-in Tone Generator (2,225Hz/2,100Hz/1,800Hz)
- Call Progress Tone Detector On Chip
- Adaptive Equalizer On Chip
- 4.032MHz Crystal Oscillation Quartz oscillator and capacitors externally connected
- Test Function Analog Loop-back Test
Digital Remote Loop-back Test
- Low Power Consumption Operation : 120mW (Typ)
Power down : 10 μ W (Max)
- Input/Output Interface CMOS level
- Single Power Supply 5V \pm 10%
- Package 28-pin DIP (plastic)/28-pin SOP (plastic)

■ BLOCK DIAGRAM

* 1 is optionally available.

■PIN CONFIGURATION (This also applies to DIP and SOP.)

*1 Optionally available.

■PIN DESCRIPTION

Pin Name	Pin No.	I/O	Functions
ST	1	O	[Transmit timing output] Outputs a transmit timing signal synchronized with the internal operation.
LMON	2	O	[Call progress tone detection output] Detects call progress tones generated during line connection, and outputs their energy envelope.
PSD	3	O	[PSK signal detection output] When detects the PSK carrier in a receive signal, this produces low level.
Vss	4	—	[Vss supply for the digital section] 0V
ED	5	O	[Carrier detection output] When detects the appointed energy within receive band, this produces low level.
TxD	6	I* ¹	[Transmit data input] Inputs transmit data for PSK modulation. Mark : High level Space : Low level
SCBE	7	I*	[Scrambler control input] The low level input enables the scrambler active. This should be high level for transmitting non-scrambled data.
DLB	8 ^{*2}	I*	[Digital remote loop-back test input] The low level input sets a remote digital loop. RxD produces mark continuously during this test mode.
EXT		I*	[External transmit timing input] The external transmit timing can be input to this terminal. Tolerance : within $\pm 0.01\%$ of data transmit speed
HALF	9	I*	[1,200bps/600bps selection input] Selects the transmit speed. 1,200bps : High level 600bps : Low level
B/C	10	I*	[Bell/CCITT mode selection input] Controls answer tone or guard tone connected with Bell/CCITT mode. Bell : High level CCITT : Low level
MADJ	11	I	[Call progress tone detection level adjust] The call progress tone detection level can be adjusted by supplied voltage. When unused, this should be connected to SG, Vcc or VEE.
VEE	12	—	[VEE supply for the analog section] 0V

1 I has a built-in pull-up resistor.

*2 Optional selection

Pin Name	Pin No.	I/O	Functions
CDA	13	I/O	[Carrier detection level adjust] Can adjust a carrier detection level by potential difference with SG. (when opened, produces $\approx V_{SG} + 1.0V$)
RxA	14	I	[Receive analog input] Inputs the receive analog signal.
TxA	15	O	[Transmit analog output] Outputs the transmit analog signal.
TLA	16	I/O	[Transmit level adjust] Can adjust a transmit signal output level by potential difference with SG. (When opened, produces $\approx V_{SG} + 1.0V$)
SG	17	O	[Signal ground] Outputs a reference potential of an analog signal. (When opened, produces $\approx 2.5V$)
V _{CC}	18	—	[V _{CC} supply for the analog section] +5V
V _{DD}	19	—	[V _{DD} supply for the digital section] +5V
ANS ^C	20	I* ^{**}	[Answer tone control input] The low level input enables answer tone generation during SQT is high level.
SQT	21	I*	[Squelch transmitter] The high level input squelches the carrier transmitting.
ALB	22	I*	[Analog loop-back test input] The high level input leads to connection of modulated output to demodulated input, so that enables the analog loop-back test. Both ALB and SQT are made high, the power-down mode is established.
O/A	23	I*	[Originate or Answer mode selection input] Originate mode : High level Answer mode : Low level
RT	24	O	[Receive timing output] Outputs a receive timing signal.
RxD	25	O	[Receive data output] Outputs the PSK demodulated serial data. This produces high level continuously when PSD is high level or DLB is low level. Mark : High level Space : Low level
NSM	26	O	[Non-scrambled mark detection output] Outputs low level when 64 or more continuous mark signals are detected in the input of the descrambler.
OSC1	27	I	[Oscillation input/output]
OSC2	28	O	Connects a 4.032MHz crystal oscillator and capacitors.

! I has a built-in pull-up resistor.

■STC9492C SERIES

Name	Optional Selection (#8 pin)	Package
STC9492C _{ID}	DLB	28-pin DIP
STC9492M _{ID}		28-pin SOP
STC9492C _{IE}	EXT	28-pin DIP
STC9492M _{IE}		28-pin SOP

■ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Ratings	Unit
Supply voltage	V _{CC}		7	V
	V _{DD}		7	V
Input voltage	Analog input	V _{IA} * ¹	V _{EE} -0.3 to V _{CC} +0.3	V
	Digital input	V _{ID} * ²	V _{SS} -0.3 to V _{DD} +0.3	V
Power dissipation	P _D		500	mW
Storage temperature	T _{stg}		-65 to 150	°C
Soldering temperature and time	T _{sol}		260°C, 10s (at lead)	—

*1: TLA, CDA, RxA, MADJ

*2: OSC1, TxD, SQT, ALB, O/A, ANSC, SCBE, HALF, DLB, B/C, EXT

■RECOMMENDED OPERATING CONDITIONS

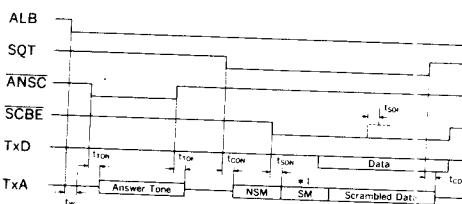
(f_{osc}=4.032MHz, V_{SS}=V_{EE}=0V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply voltage for analog section	V _{CC}	—	4.75	5.0	5.25	V
Supply voltage for digital section	V _{DD}	—	4.75	5.0	5.25	V
Analog input voltage	V _{IA}	—	V _{EE}	—	V _{CC}	V
Digital input voltage	V _{ID}	—	V _{SS}	—	V _{DD}	V
Operating temperature	T _{opr}	—	-10	25	70	°C
Oscillating frequency tolerance	Δf _{osc}	Crystal/External clock	-0.01	0	+0.01	%

■ELECTRICAL CHARACTERISTICS

●DC Electrical Characteristics

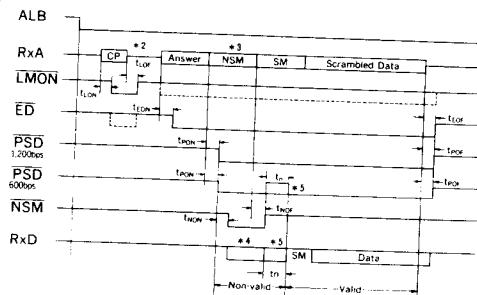
(V_{DD}=5.0V, V_{SS}=V_{EE}=0V, Ta=25°C)


Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Digital section operating current	I _{DD0}	SQT or ALB = "L"	—	3	5	mA
	I _{DDS}	SQT=ALB = "H"	—	—	1	μA
High level input voltage	V _{IH}	*1	3.5	—	V _{DD}	V
	V _{IL}		V _{SS}	—	1.5	V
High level input current	I _{IH}	*1	—	—	1	μA
	I _{IL}		5	10	30	μA
High level output current	I _{OH}	V _{OH} =4.5V* ²	—	3.5	—	mA
	I _{OL}		V _{OL} =0.5V* ²	—	3.5	mA
Analog section operating current	I _{CC0}	SQT or ALB = "L"	—	20	30	mA
	I _{CCS}	SQT=ALB = "H"	—	—	1	μA
Output DC impedance	Z _{SG}	SG	—	70	150	Ω
	Z _{TxA}	TxA	—	150	250	Ω
Reference voltage generator output impedance	Z _{TLA}	V _{TLA} -V _{SG} ≥1.0V	20	—	500	kΩ
	Z _{CDA}	V _{CDA} -V _{SG} ≥1.0V	20	—	500	kΩ
Input DC impedance	Z _{RxA}	RxA	5	—	—	MΩ
	Z _{MADJ}	MADJ	5	—	—	MΩ

*1 Digital input terminal except for OSC1. (pull-up resistor is built-in)

*2 ST, LMON, PSD, ED, RT, RxD, NSM

● AC Electrical Characteristics


○ Transmit

*1 The scramble start in Bell mode (B/C = "H") requires the training signal (voluntary serial data including "0") to TxD after SCBE → "L".

NSM : Non Scrambled Mark
SM : Scrambled Mark

○ Receive

*2 Call Progress Tone

*3 Non Scrambled Mark

*4 During NSM = "L"; RxD → "H" (fixed) when B/C = "H".

*5 RxD output or PSD output are invalid because the demodulator is capturing.

○ Transmitter

Delay time	Trigger signal	Symbol	Min	Typ	Max	Unit
Power-on	ALB or SQT → "L"	t_w	—	50	100	ms
Answer tone transmit	SQT = "H", ANSC → "L"	t_{TON}	—	—	2	ms
Answer tone stop	SQT = "H", ANSC → "H"	t_{TOF}	—	—	2	ms
Carrier transmit	SQT → "L"	t_{CON}	—	—	2	ms
Carrier stop	ANSC = "H", SQT → "H"	t_{COF}	—	—	2	ms
Scrambler start	SQT = "L", SCBE → "L"	t_{SON}	—	—	70 * ⁶	ms
Scrambler stop	SQT = "L", SCBE → "H"	t_{SOF}	—	—	10	ms

*6 In case of CCITT mode, 1,200 bps

○ Receiver

($f_{osc} = 4.032\text{MHz}$, $V_{DD} = V_{CC} = 5.0\text{V}$, $T_a = 25^\circ\text{C}$)

Delay time	Input signal	Symbol	Min	Typ	Max	Unit
Call progress tone detection time	Call progress tone	t_{LON}	—	—	150	ms
		t_{LOF}	—	—	150	ms
Carrier detection time	Signal within receive band	t_{EON}	—	—	20	ms
		t_{EOF}	—	40	70	ms
PSK energy detection time	Phase shifted signal (600 baud)	t_{PON}	—	200	300	ms
		t_{POF}	—	—	100	ms
Non-scrambled mark detection time	Non-scrambled mark	t_{NON}	—	—	60	ms
		t_{NOF}	—	—	10	ms
Settling time	Scrambled data	t_n	—	—	600	ms

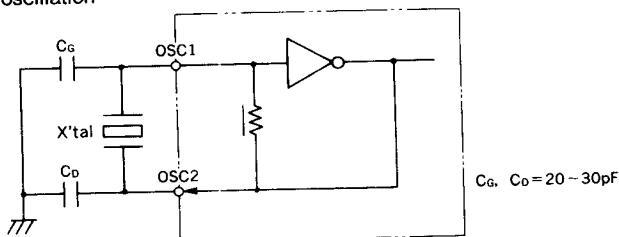
● Analog Characteristics

○ Transmitter

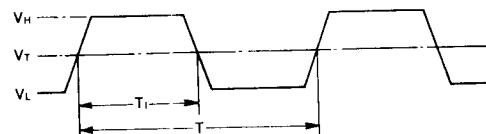
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Tone frequency	f_r	Bell Answer tone	2,205	2,225	2,245	Hz
		CCITT Answer tone	2,090	2,100	2,110	
		CCITT Guard tone	1,790	1,800	1,810	
Transmit level	P	Answer tone	-12.0	-10.5	-9.0	dBm
		PSK carrier	-13.5	-12.0	-10.5	
Unexpected transmit level	P_E	$f=4$ to 8kHz	—	—	P-20	dBm
		$f=8$ to 12kHz	—	—	P-40	
		$f \geq 12$ kHz	—	—	P-60	

($V_{CC}=5.0V$, $T_a=25^\circ C$, TLA is opened)

○ Receiver


($V_{CC}=5.0V$, $T_a=25^\circ C$, CDA is opened)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Allowable input range	DR	at Rx A	-40	—	-5	dBm
Carrier detection level	L_{ON}	OFF \rightarrow ON (On level)	-43	—	—	dBm
	L_{OFF}	ON \rightarrow OFF (Off level)	—	—	-48	dBm
Call progress tone detection level	L_H	Hysteresis width	1	2	—	dB
	L_D	$V_{EE} \leq V_{MADJ} \leq V_{CC}$	—	—	-32	dBm
	L_{AR}	L_D (Max) - L_D (Min)	10	—	—	dB


■ FUNCTIONS

● Oscillating Circuit

○ Crystal quartz oscillation

○ External clock into OSC1

Parameter	Symbol	Condition	Tolerance
Amplitude	V_H	$\geq V_{DD} - 1.0V$	—
	V_L	$\leq V_{SS} + 1.0V$	—
Frequency	$1/T$	4.032MHz	$\pm 0.01\%$
Duty	T_1/T	50%	$\pm 15\%$

● Operation Mode

ALB	SQT	Mode
High level	Low level	Normal mode (transmission enable)
	High level	Transmission disable mode
Low level	Low level	Analog loop-back test mode
	High level	Power-down mode

○ Power-down mode

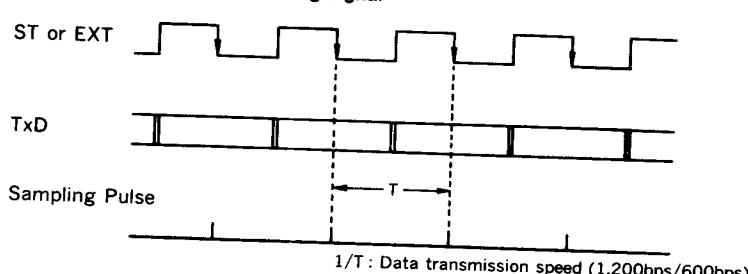
During both ALB and SQT are high level, oscillation stops and operating current is to be below $2\mu\text{A}$.

○ Analog loop-back test mode

In the analog loop-back test mode, the functional test (including LSI) should be easily done, because transmission data into TxD are sent to the demodulator through the modulator automatically and appear from RxD again.

During this mode, transmit buffer so operates that test signal can be monitored, and, input signal into RxD is ignored by the demodulator but call progress tone can be detected.

○ Transmission disable mode


In this mode, the transmitter stops its operation but the receiver operates. And the answer tone should be transmitted by ANSC being low level.

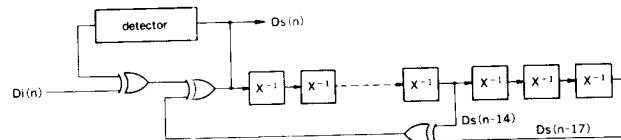
○ Normal mode

Both the transmitter and the receiver become active, the PSK modulated signal which has a center frequency of 1,200Hz or 2,400Hz (depend on O/A input) can be transmitted, and a $1,800 \pm 10\text{Hz}$ guard tone can be transmitted when ANSC = "L" and CCITT answer mode are selected.

● Transmitter

○ Relation between input data and transmit timing signal

In case of using an external transmit timing (EXT), the frequency tolerance of EXT should be less than $\pm 0.01\%$ of data transmission speed.


○ Scrambler

[Scrambler control]

Transmit data	SCBE	Algorithm
Scrambled	Low level	$Ds(n) = Di(n) + Ds(n-14) + Ds(n-17)$
Non-scrambled	High level	$Ds(n) = Di(n)$

- $Di(n)$; Input data (TxD)
- $Ds(n-k)$; Scrambler output (k is output data of k times before)
- + ; Logical addition (mod 2)

[Construction]

- X^{-1} ; 1 bit delay circuit
- detector ; In the CCITT mode ($B/\bar{C} = "L"$), if it detects 64 or more continuous mark data in the output of the scrambler, this inverts the polarity of the following input data. In the Bell mode ($B/\bar{C} = "H"$), the detector output becomes invalid, so that the training signal (voluntary serial data including "0") are required into TxD to start the scrambler.

○ Modulation

[Base-band modulation]

- 4-phase differential modulation

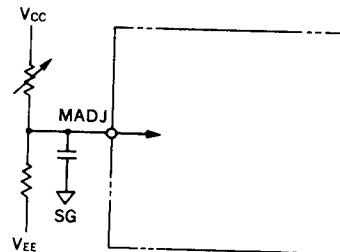
1,200bps	600bps	Phase shift (deg)
0 0	0	+ 90
0 1	—	+ 0
1 1	1	+270
1 0	—	+180

- Roll off characteristic 75% cosine roll off

[Transmit carrier frequency]

Originate mode $1,200\text{Hz} \pm 0.01\%$

Answer mode $2,400\text{Hz} \pm 0.01\%$

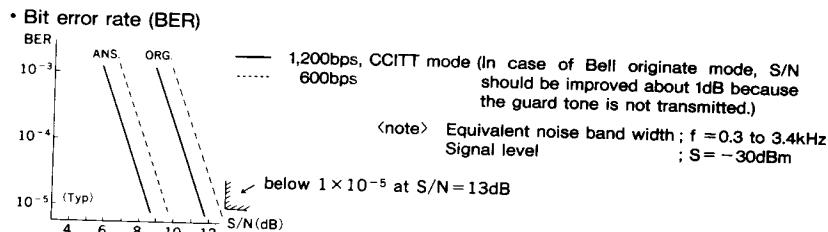

○ Tone Generator

Name	SQT	ANS	O/A	B/ \bar{C}	Frequency
Answer tone	"H"	"L"	—	"L"	$2,100\text{Hz} \pm 10\text{Hz}$
				"H"	$2,225\text{Hz} \pm 20\text{Hz}$
Guard tone	"L"	"H"	"L"	"L"	$1,800\text{Hz} \pm 10\text{Hz}$

● Receiver

○ Call progress tone detection

The definitions of the call progress tone are different in each country, so that an appropriate detection level can be adjusted by some external voltage through the MADJ terminal.



○ Demodulation

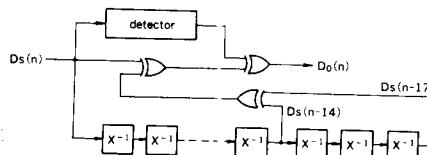
[Demodulated carrier frequency]

Mode	O/A	Carrier frequency	Tolerance
Originate	H	2,400Hz	± 0.01%
Answer	L	1,200Hz	± 0.01%

[Data reliability]

• Allowable range of the factor which makes the line characteristic worse

Factor	Symbol	Range	Unit
Frequency offset	Δf	± 7	Hz
Phase jitter	θ_j	± 20	deg

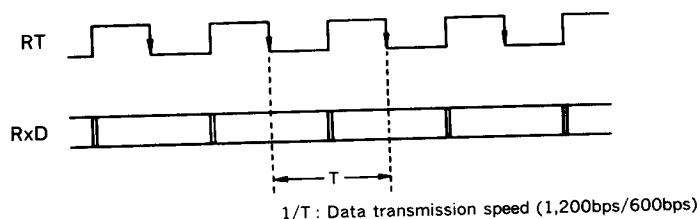

○ Descrambler

[Algorithm]

Do(n) = Ds(n) + Ds(n-14) + Ds(n-17)

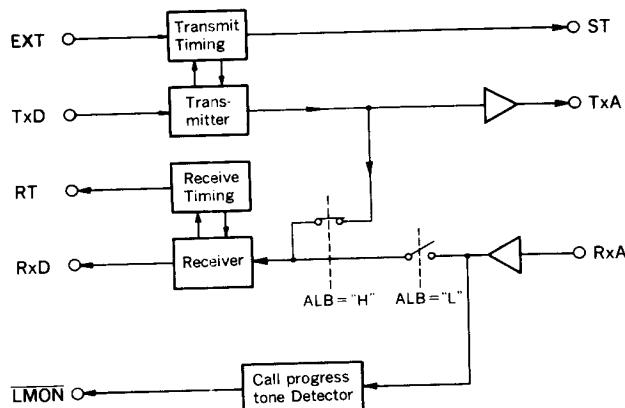
- Do(n) ; Output data (RxD)
- Ds(n-k) ; Descrambler input (k is input data of k times before)
- + ; Logical addition (mod 2)

[Construction]

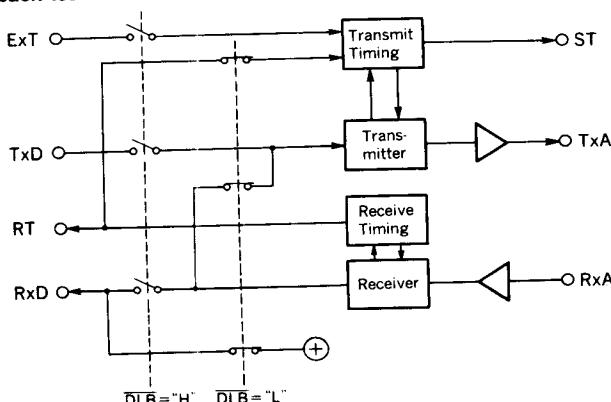


• x^{-1} : 1 bit delay circuit

• detector : In the CCITT mode ($B/\bar{C} = "L"$), if it detects 64 or more continuous mark data in the input of the descrambler, this inverts the polarity of the following output data and outputs low level to NSM.

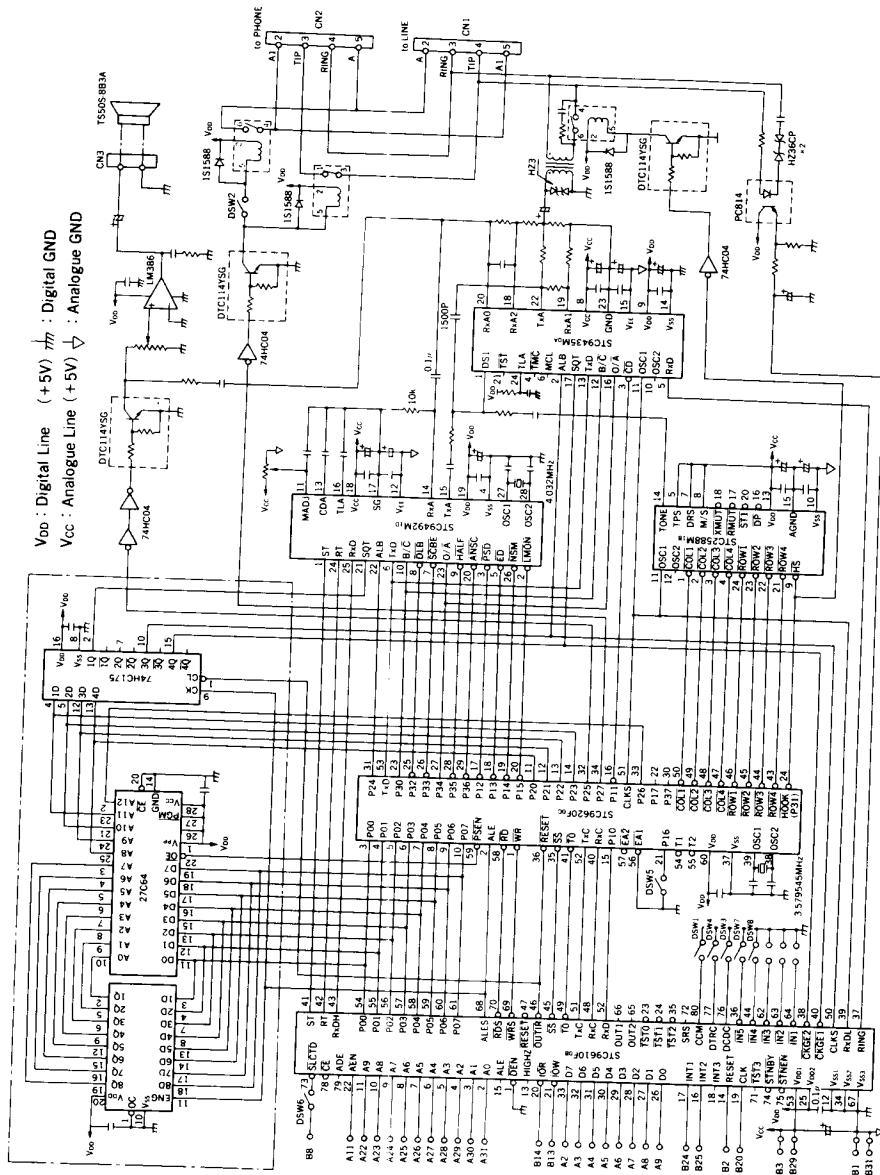

In the Bell mode ($B/\bar{C} = "H"$), the detector output is invalid for the descrambler, but valid for the NSM output.

○ Relation between output data (RxD) and receive timing output (RT)



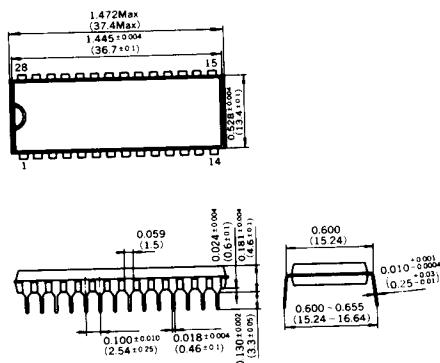
■ TEST FUNCTIONS

● Analog loop-back test



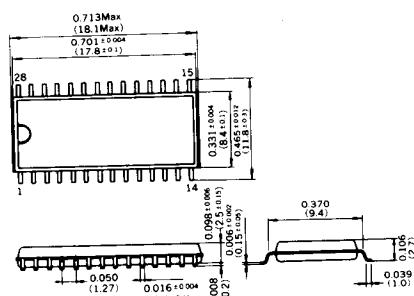
● Digital remote loop-back test

■ EXAMPLE OF APPLICATIONS


●Circuit for intelligent MODEM card

■ PACKAGE DIMENSIONS

C28


28-pin DIP

unit : inch
(mm)

M28-2

28-pin SOP

unit : inch
(mm)