

AIRCHIL

SEMICONDUCTOR

100395

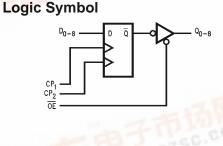
February 1990 Revised November 1999

00395 Low Power 9-Bit ECL-to-TTL Translator with Registers

Low Power 9-Bit ECL-to-TTL Translator with Registers **General Description** The 100395 is a 9-bit translator for converting F100K logic levels to TTL logic levels. A HIGH on the output enable (OE) holds the TTL outputs in a high impedance state. Two

Features

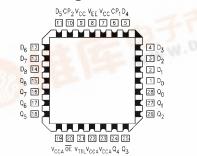
- 64 mA I_{OL} drive capability
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Registered outputs
- TTL outputs


Ordering Code:

potential, the outputs will go LOW.

system level testing.

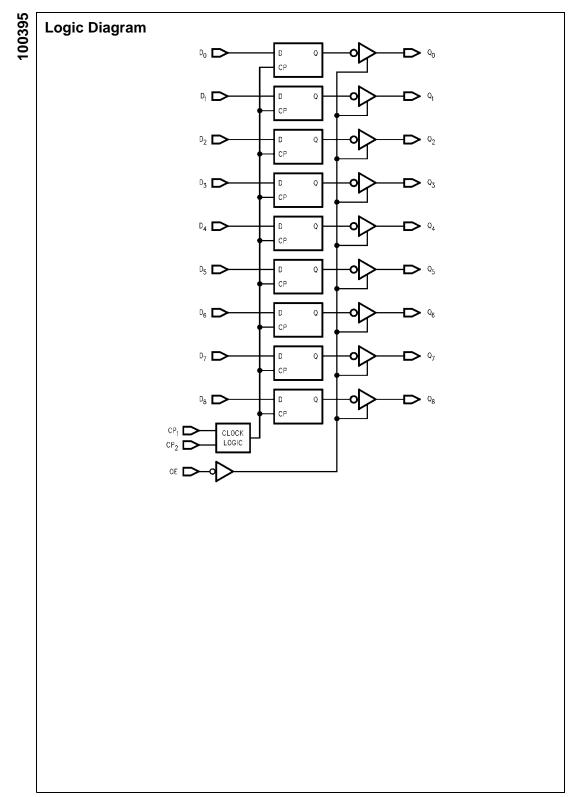
Order Number	Package Number	Package Description
100395QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
Devices also available	in Tana and Roal Specify	, by appending the suffix letter "X" to the ordering code



separate clock inputs are available for multiplexing and

The 100395 is designed with TTL 64 mA outputs for bus driving capability. All inputs have 50 k Ω pull down resistors. When the inputs are either unconnected or at the same

Connection Diagram



Pin Descriptions

Pin Names	Description
D ₀ –D ₈	Data Inputs (ECL)
Q ₀ –Q ₈	Data Outputs (TTL)
OE	Output Enable (ECL)
CP_1, CP_2	Clock Inputs (ECL)

Truth Table

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Maximum Junction Temperature (T_J)	+150°C
Case Temperature under Bias (T_C)	0°C to +85°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
V _{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V
ECL Input Voltage (DC)	V _{EE} to +0.5V
TTL Input Voltage	-0.5V to +7.0V
Output Current	
(DC Output HIGH)	+130 mA
ESD (Note 2)	≥ 2000V

Recommended Operating Conditions

Case Temperature (T _C)	0°C to +85°C			
Supply Voltage				
V _{EE}	-5.7V to -4.2V			
V _{TTL}	+4.5V to +5.5V			

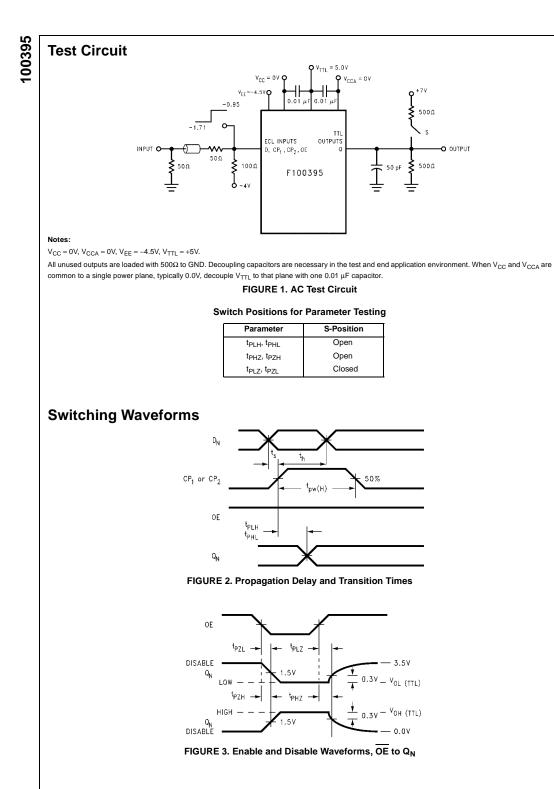
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

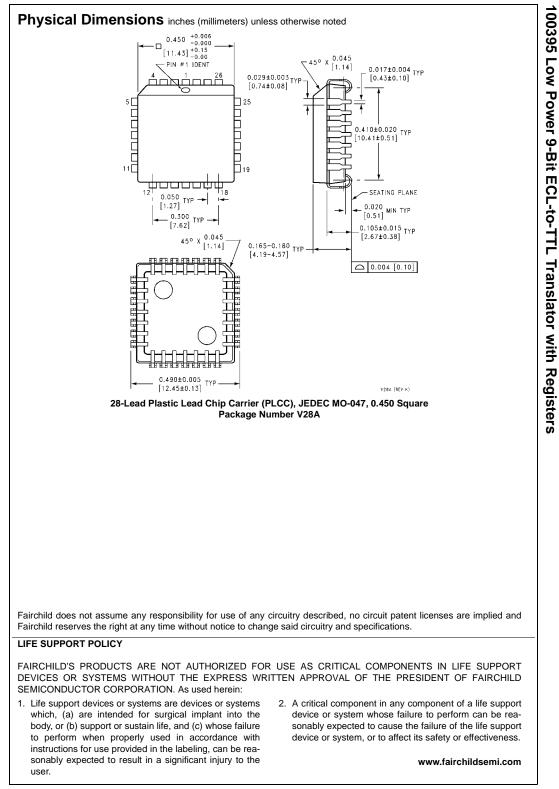
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND,~T_C = 0^\circ C$ to $+85^\circ C$


Symbol Parameter		Min	Тур	Мах	Units	Conditions		
V _{OH}	Output HIGH Voltage	2.4			V	$I_{OH} = -15 \text{ mA}$	V _{IN} = V _{IH} (Max)	
V _{OL}	Output LOW Voltage			0.55	V	I _{OL} = 64 mA	or V _{IL} (Min)	
VIH	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Si	gnal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Sig	gnal for All Inputs	
Ι _{ΙL}	Input LOW Current	0.5			μΑ	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH} (Max)		
I _{OZL}	3-STATE Current Output HIGH			-50	μΑ	$V_{OUT} = +0.4V$		
I _{OZH}	3-STATE Current Output LOW			+50	μΑ	$V_{OUT} = +2.7V$		
I _{CEX}	Output HIGH Leakage Current			250	μΑ	$V_{OUT} = V_{CC}$		
los	Output Short-Circuit Current	-100		-225	mA			
IEE	V _{EE} Power Supply Current	-67		-29	mA	Inputs OPEN		
I _{CCH}	V _{TTL} Power Supply Current HIGH			29	mA			
I _{CCL}	V _{TTL} Power Supply Current LOW			65	mA			
I _{CCZ}	V _{TTL} Power Supply Current 3-STATE			49	mA			


Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

Symbol	Parameter	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		T _C = +25°C		T _C = +85°C		Unite	O an distance
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	2.30	5.00	2.30	5.00	2.30	5.00	ns	Figures 1, 2
t _{PHL}	Clock to Output	3.00	5.60	3.00	5.60	3.40	6.40		
t _{PZL}	Output Enable Time	3.20	7.60	3.20	7.60	3.20	7.60	ns	Figures 1, 3
t _{PZH}	$\overline{OE}\downarrowtoQ_N$	2.40	5.60	2.40	5.60	2.40	5.60		
t _{PLZ}	Output Disable Time	3.20	7.60	3.20	7.60	3.20	7.60	ns	Figures 1, 3
t _{PHZ}	OE ↑ to Q _N	2.40	5.60	2.40	5.60	2.40	5.60		
t _H	Data to CP EN	1.5		1.5		1.5			Figures 1, 2
	Hold Time	1.5		1.5		1.5		ns	
ts	Data to CP EN	0.5		0.5		0.5		ns	Figures 1, 2
	Setup Time	0.5		0.5		0.5			
t _{PW} (H)	Clock Pulse Width	2.0		2.0		2.0		ns	Figures 1Figu

100395

