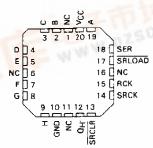
SDLS007

D2635, JANUARY 1981 - REVISED MARCH 1988

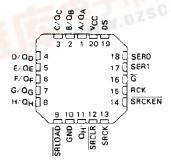
- 8-Bit Parallel Storage Register Inputs ('LS597)
- Parallel 3-State I/O, Storage Register Inputs, Shift Register Outputs ('LS598)
- Shift Register has Direct Overriding Load and Clear
- Accurate Shift-Frequency . . . DC to 20 MHz

description


The 'LS597 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8-bit shift register. Both the storage register and shift register have positive-edge triggered clocks. The shift register also has direct load (from storage) and clear inputs.

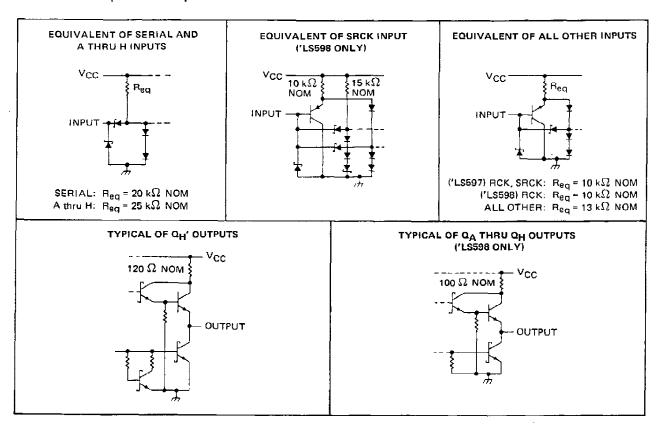
The 'LS598 comes in a 20-pin package and has all the features of the 'LS597 plus 3-state I/O ports that provide parallel shift register outputs and also has multiplexed serial data inputs.

SN54LS597 . . . J OR W PACKAGE SN74LS597 . . . N PACKAGE (TOP VIEW)

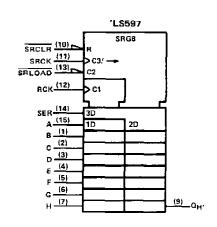

SN54LS597 . . . FK PACKAGE (TOP VIEW)

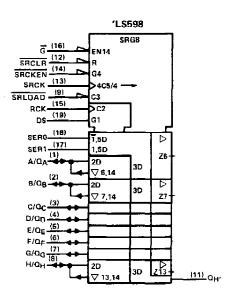
SN54LS598 . . . J OR W PACKAGE LS598 . . . DW OR N PACKAGE (TOP VIEW)

SN54LS598 . . . FK PACKAGE (TOP VIEW)



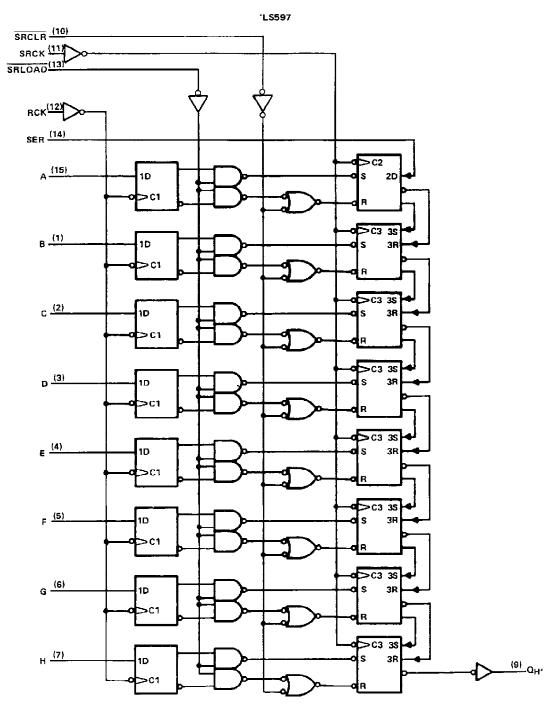
NC - No internal connection


.dzsc.com

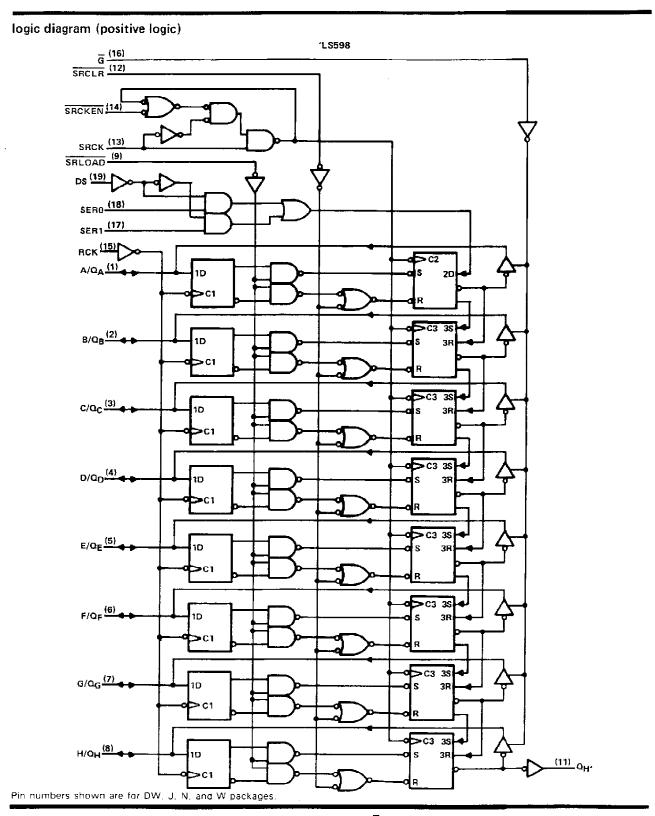


schematics of inputs and outputs

logic symbols†



[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.



logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

SN54LS598, SN74LS598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage (excluding I/O ports)	7 V
Off-state output voltage (including I/O ports)	5.5 V
Operating free-air temperature range: SN54LS597, SN54LS598	-55° C to 125° C
SN74LS597, SN74LS598	0°C to 70°C
Storage temperature range	-65° C to 150° C

NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions

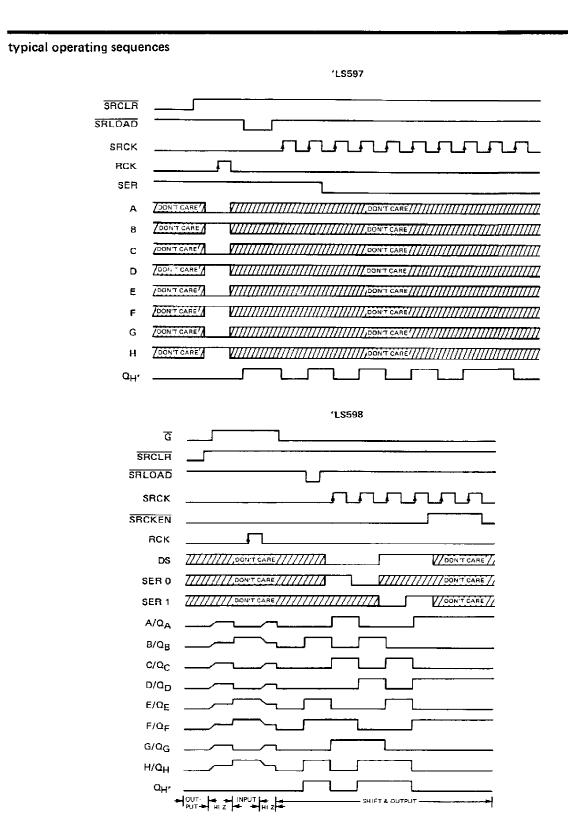
				•	' SN54LS'			SN74LS'			UNIT	
					MIN	NOM	MAX	MIN	NOM	MAX	CIVIT	
Vcc	Supply voltage	oltage					5.5	4.75	5	5.25	V	
VIН	High-level input v	oltage			2			2			٧	
VIL	Low-level input ve	oltage			•		0.7			0.8	V	
			α _H ′				- 1			_ 1	mΑ	
IOH High-level outpu		current	QA thru QH	, 'LS598 only		<u> </u>	- 1			- 2.6	"""_	
	I a la da cara d		σH,				8			16	6 mA	
IOL	Low-level output	current	Q _A thru Q _H	, 'L\$598 only	1		12			24	100	
fsck	Shift clock freque	епсу	/				20	0		20	MHz	
			SRCK	hīgh	15			15				
	Pulse duration		SHCK	low	35			35]	
t _w			RCK		20			20			ns	
			SRCLR SRLOAD		20			20]	
					40			40				
		Data before f	Data before RCK † DS before SRCK † ('LS598 only) SRCKEN low before SRCK † ('LS598 only)		20			20			1	
	-	DS before SF			30			30			1	
t _{su}	Setup time	SRCKEN ION			20			20				
		SRCLR inact	SRCLR inactive before SRCK 1					25			ns	
		SRLOAD ina	SRLOAD inactive before SRCK 1			-		30				
		RCK f before	RCK f before SRLOAD f (see Note 2)					40				
	SER before S		RCK t		20			20				
th	Hold time		0			0			ns			
TA	Operating free-air temperature						125	0		70	°c	

NOTE 2: The RCK 1 before SRLOAD 1 setup time ensures the data saved by RCK 1 will also be loaded into the shift register.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†				SN54LS	,	SN74LS'			UNIT	
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
		Vcc - MIN,	I _I = - 18 mA				- 1.5			- 1.5	V	
Voн	l				I _{OH} = - 1 mA	2.4	3.2					
	'LS598 Q		V _{CC} = MIN, V _{II} = MAX	AIH - 5 A'	IOH = - 2.6 mA				2.4	3.1		V
	Ω _H ′		VIL - WAX		IOH = - 1 mA	2.4	3.2		2.4	3.2		
	'LS598 C	١			I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
Vol	F2239 C		V _{CC} = MIN,	V _{1H} = 2 V,	IOL = 24 mA					0.35	0.5	v
VOL	0.7	V _{IL} ≃ MAX	IOL = 8 mA			0.25	0.4		0.25	0.4		
	ΩH,				IOL = 16 mA					0.35	0.5	
	'L\$598 C	`	VCC - MAX,	V _{IH} = 2 V,	VIL = MAX,			20			20	μД
lozh LS5	L3336 C	-2389 C	V _O = 2.7 V		•			20				
1	'LS598 Q		VCC = MAX, VIH =	V _{IH} = 2 V,	2 V, V _{IL} = MAX,			- 0.4			- 0.4	mA
lozt	L3336 C	ι	V _O = 0.4 V	<u></u>								
1.	′ L\$598 Q	1	V _{CC} = MAX		V ₁ = 5.5 V			0.1			0.1	mΑ
11	Others				V ₁ = 7 V			0.1			0.1	
ΉΗ			VCC = MAX.	V ₁ = 2.7 V				20			20	μА
	'L\$598 S	RCK						- 0.8			- Q.8	
ΙιL	SER, A T	A Thru H $V_{CC} = MAX$, $V_I = 0.4 V$					- 0.4			- 0.4	mA	
	Others	_						- 0.2			- 0.2	
l = = 8	'LS598 C	1	Vac = MAY	VoanV		- 30		- 130	- 30		– 130	mA
los§	Z8 OH,		$V_{CC} = MAX$, $V_O = 0 V$			- 20		- 100	- 20		– 100	
	'LS597	ГССН					35	53		35	53	
	F3331	CCL	V _{CC} = MAX,				35	53		35	53_	
Icc	'LS598	Іссн	All possible inp	uts grounded,			45	68		45	68	mΑ
		ICCL	All outputs ope	en			54	80		54		
		Iccz					56	85		56	85	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V, T}_{A} = 25^{\circ}\text{C}$

SNot more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, (see note 3)

PARAMETER	FROM	то				1.5597			'LS598		
	(INPUT)	(OUTPUT)	TEST CON	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
fmax	SRCK	a	$R_L = 667 \Omega$,	C _L = 45 pF	20	35		20	35		MHz
f _{max}	SRCK	QH'	$R_{\perp} = 1 k\Omega$,	C _L = 30 pF	20	35					MHz
^t PLH	SRCKT	QH'	R _L = 1 kΩ,	Cլ ∻ 30 pF		15	23		11	17	ns
[‡] PHL	SPCK1	QH'				20	30		15	23	ns
†PLH	SRLOAD↓	ΩH,				38	57		28	42	กร
tPHL	SRLOAD+	αH,				29	44		20	30	ns
[†] PHL	SRCLR#	α _H '				24	36	Ī	18	27	ns
^t PLH	RCK†	α _H ′	$R_L = 1 \text{ k}\Omega$.	C _L = 30 pF		41	60		32	48	ns
†PHL	RCK1	αH.	SRLOAD = L			32	48		24	36	nş
¹ PLH	SRCK1	a		C _L = 45 pF					12	18	ns
[†] PHL	SRCK1	Ω							19	28	ПŞ
[†] PLH	SRLOAD↓	Q							32	48	ns
†PHL	SRLOAD↓	a	R _L = 667 Ω,						27	40	П5
^T PHL	SRCLR↓	α							25	38	ns
[†] PZH	G↓	α							26	31	ns
†PZL	G∔	Ω							29	43	ns
t _{PHZ}	Gt	Ω	2 007.0	0 5 5					25	38	ns
tPLZ	Gt	Q	$A_L = 667 \Omega,$	CL = 5 pF					20	30	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright @ 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated