LTM4618 6A DC/DC μ Module Regulator with Tracking and Frequency Synchronization DESCRIPTION
The LTM ${ }^{\oplus} 4618$ is a complete 6A output switching mode DC/DC power supply in a $9 \mathrm{~mm} \times 15 \mathrm{~mm} \times 4.32 \mathrm{~mm}$ LGA package. Included in the package are the switching controller, power FETs, inductor and all support components. Operating over an input voltage range of 4.5 V to 26.5 V , the LTM4618 supports an output voltage range of 0.8 V to 5 V set by a single external resistor. Its high efficiency design delivers 6A continuous current (8A peak). Only a few input and output capacitors are needed.

High switching frequency and a current mode architecture enable a very fast transient response to line and load changes without sacrificing stability. The device supports frequency synchronization and output voltage tracking for supply rail sequencing. Burst Mode operation or pulseskipping mode can be selected for light load operations.

Fault protection features include overvoltage protection, overcurrent protection and foldback current limit for short-circuit protection.

The LTM4618 is Pb-free and RoHS compliant.
$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode and μ Module are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

$2.5 \mathrm{~V} / 6 \mathrm{~A} D / \mathrm{DC}$ Power μ Module ${ }^{\oplus}$ with 6 V to 26.5 V Input

Efficiency and Power Loss vs Load Current

ABSOLUTE MAXIMUM RATINGS

(Note 1)
VIN, SW.. -0.3 V to 28 V
INTV $_{\text {CC }}$, RUN, EXTV ${ }_{\text {CC }}$, PGOOD -0.3 V to 6 V
COMP, $\mathrm{V}_{\text {FB }}$.. 0.3 V to 2.7 V
MODE/PLLIN, TK/SS,
FREQ. \qquad -0.3 V to $\mathrm{INTV}_{\text {CC }}$
VOUT... 0.8 V to 5 V
Operating Junction Temperature Range
(Note 2)... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range................... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Peak Package Body Temperature $250^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTM4618EV\#PBF	LTM4618V	$84-$ Lead $(15 \mathrm{~mm} \times 9 \mathrm{~mm} \times 4.32 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTM4618IV\#PBF	LTM4618V	$84-$ Lead $(15 \mathrm{~mm} \times 9 \mathrm{~mm} \times 4.32 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

ELECTRICAL CHARACTERISTICS
The © denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2), $\mathrm{V}_{I N}=12 \mathrm{~V}$, per typical application in Figure 21.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V IN(DC)	Input DC Voltage	(Note 5)	\bullet	4.5		26.5	V
$\mathrm{V}_{\text {OUT(DC) }}$	Output Voltage Total Variation with Line and Load	$\begin{aligned} & \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F} \times 2, \mathrm{R}_{\text {FB }}=28.0 \mathrm{k} \Omega \\ & \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \mathrm{X} 7 \mathrm{R} \text { Ceramic } \\ & \text { MODE/PLLIN }=0 \mathrm{~V}, \mathrm{~V}_{\text {FREQ }}=2.4 \mathrm{~V} \\ & \left.\mathrm{~V}_{\text {IN }}=6 \mathrm{~V} \text { to } 26.5 \mathrm{~V} \text {, IOUT }=0 \mathrm{~A} \text { to } 6 \mathrm{~A} \text { (Note } 4\right) \end{aligned}$	\bullet	2.476	2.52	2.557	V
Input Specifications							
$\mathrm{V}_{\text {IN(UVLO }}$	Undervoltage Lockout Thresholds	VIntvcc Rising VIntvcc Falling		$\begin{aligned} & 2.00 \\ & 1.85 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.15 \end{aligned}$	V
$I_{\text {INRUSH(VIN) }}$	Input Inrush Current at Start-Up	$\begin{aligned} & \text { IOUT }=0 \mathrm{~A}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F} \times 2, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \\ & V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V} \\ & V_{\text {IN }}=26.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$		A A

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 2）， $\mathrm{V}_{I N}=12 \mathrm{~V}$ ，per typical application in Figure 21.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {（VIV）}}$	Input Supply Bias Current	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \\ & V_{\text {IN }}=26.5 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V}, I_{\text {OUT }}=0 \mathrm{~A} \\ & \text { Shutdown, RUN }=0, V_{\text {IN }}=26.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 26 \\ & 20 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\overline{\mathrm{I}_{\text {（VIV）}}}$	Input Supply Current	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=26.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, I_{\text {OUT }}=6 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.430 \\ & 0.675 \end{aligned}$		A
$\mathrm{INTV}_{\text {c }}$	Internal V ${ }_{\text {CC }}$ Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {RUN }}>2 \mathrm{~V}$ ，No Load		4.8	5	5.2	V
$\mathrm{V}_{\text {EXTVCC }}$	EXTV ${ }_{\text {CC }}$ Switchover Voltage	EXTV ${ }_{\text {CC }}$ Ramping Positive	\bullet	4.5	4.7		V
VLDO External	EXTV ${ }_{\text {cc }}$ Voltage Drop	INTV ${ }_{\text {CC }}=20 \mathrm{~mA}, \mathrm{~V}_{\text {EXTVCC }}=5 \mathrm{~V}$			50	100	mV
VEXTVCC Hysteresis	EXTV ${ }_{\text {CC }}$ Hysteresis				200		mV

Output Specifications

IOUT（DC）	Output Continuous Current Range	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$（ Note 4）		0	6	A
$\frac{\Delta V_{\text {OUT(INE) }}}{V_{\text {OUT }}}$	Line Regulation Accuracy	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \text { from } 6 \mathrm{~V} \text { to } 26.5 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \end{aligned}$	\bullet	0.02	0.04	\％N
$\frac{\Delta V_{\text {OUT(LOAD) }}}{V_{\text {OUT }}}$	Load Regulation Accuracy	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, 0$ to 6A（Note 4）	\bullet	0.3	0.6	\％
$\mathrm{V}_{\text {Out（AC）}}$	Output Ripple Voltage	$\begin{aligned} & \text { IOUT }=0 \mathrm{~A}, \mathrm{C}_{\text {OUT }}=100 \mathrm{FF} \times 3 \times 5 \mathrm{R} \text { Ceramic } \\ & V_{\text {IN }}=12 V, V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{\text {IN }}=26.5 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{f}_{\text {s }}$	Output Ripple Voltage Frequency	$\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {FREQ }}=1 \mathrm{INTV}$ CC		780		kHz
$\Delta \mathrm{V}_{\text {OUT（START）}}$	Turn－On Overshoot	$\begin{aligned} & C_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \times 5 \mathrm{R} \text { Ceramic } \\ & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \text { Iout }=0 \mathrm{~A} \\ & V_{\text {IN }}=12 V \\ & V_{\text {IN }}=26.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{t}_{\text {Start }}$	Turn－On Time	$\begin{aligned} & C_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \times 5 \mathrm{R} \text { Ceramic, } \\ & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \text { IOUT }=0 \mathrm{~A}, \text { TK/SS Capacitor }=0.01 \mu \mathrm{~F} \\ & V_{\text {IN }}=12 V \\ & V_{\text {IN }}=26.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.75 \\ & 0.70 \end{aligned}$		ms ms
$\triangle V_{\text {OUTLS }}$	Peak Deviation for Dynamic Load	$\begin{aligned} & \text { Load: } 0 \% \text { to } 50 \% \text { of Full Load } \\ & C_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \times 5 \mathrm{R} \text { Ceramic, } V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V} \end{aligned}$		15		mV
tsette $^{\text {dem }}$	Settling Time for Dynamic Load Step	$\begin{aligned} & \text { Load: } 0 \% \text { to } 50 \% \text { of Full Load } \\ & C_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \times 5 \mathrm{R} \text { Ceramic, } V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V} \end{aligned}$		10		$\mu \mathrm{s}$
IOUT（PK）	Output Current Limit wive	$\begin{gathered} C_{\text {OUT }}=100 \mu \mathrm{~F} \times 3 \times 5 \mathrm{R} \text { Ceramic } \\ V_{\text {IN }}=6 \mathrm{VV}, \mathrm{VOUT}_{\mathrm{OUT}} 2.5 \mathrm{~V} \\ V_{\text {IN }}=26.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$		A

Control Section

$\mathrm{V}_{\text {FB }}$	Error Amplifier Feedback Voltage	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$	\bullet	$\begin{aligned} & \hline 0.792 \\ & 0.788 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.808 \\ & 0.808 \end{aligned}$	V
$\mathrm{I}_{\text {FB }}$	Error Amplifier Feedback Current	（Note 3）			－10	－50	nA
$\mathrm{V}_{\text {OVL }}$	Feedback Voltage Lockout	Measured at $\mathrm{V}_{\text {FB }}$		0.84	0.86	0.88	V
TTK／S $^{\text {d }}$	Soft－Start Charge Current	$\mathrm{V}_{\text {TKIS }}=0 \mathrm{~V}$		0.9	1.3	1.7	$\mu \mathrm{A}$
$\mathrm{DF}_{\text {max }}$	Maximum Duty Factor	In Dropout（Note 3）			97		\％
$\mathrm{t}_{\text {ON（MIN）}}$	Minimum On－Time	（Note 3）			90		ns
$f_{\text {nom }}$	Nominal Frequency	$\mathrm{V}_{\text {frEQ }}=1.2 \mathrm{~V}$		450	500	550	kHz
flow	Lowest Frequency	$\mathrm{V}_{\text {FREQ }}=0 \mathrm{~V}$		210	250	290	kHz

ELECTRICAL CHARACTERISTICS The denones ste speaifications wiche paply wert he tull operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2), $\mathrm{V}_{I N}=12 \mathrm{~V}$, per typical application in Figure 21.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | UNITS

PGOOD Output

$V_{\text {PGL }}$	PGOOD Voltage Low	I PGOOD 2mA	0.1	0.3	V
$I_{\text {PGOOD }}$	PGOOD Leakage Current	$V_{\text {PGOOD }}=5 \mathrm{~V}$		± 2	$\mu \mathrm{~A}$
$V_{\text {PG }}$	PGOOD Trip Level	$V_{\text {FB }}$ with Respect to Set Regulated Voltage	$V_{\text {FB Ramping Negative }}$		
		$V_{\text {FB Ramping Positive }}$	-5	-7.5	-10
		5	7.5	10	$\%$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTM4618 is tested under pulsed load conditions such that $\mathrm{T}_{\mathrm{J}} \approx \mathrm{T}_{\mathrm{A}}$. The LTM4618E is guaranteed to meet performance specifications over the $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range. Specifications over the full $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4618I is guaranteed to meet specifications over the full
operating junction temperature range. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors.
Note 3: 100\% tested at wafer level only.
Note 4: See Output Current Derating curves for different $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and T_{A}.
Note 5: For input voltages less than 6 V , tie the $\mathrm{V}_{I N}, I I_{T V} V_{C C}$ and EXTV $_{C C}$ together. The LTM4618 will operate from 5 V inputs, but $\mathrm{V}_{\text {IN }}, ~ I N T V$ CC and EXTV $_{\text {CC }}$ need to be tied together.

TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs Load Current with Different Mode Settings
（ 12 V to 3.3 V ）

2．5V Transient Response

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$ AT 3A／ Ls LOAD STEP COUT $=2 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR $1 \times 100 \mu \mathrm{~F}$ 6．3V CERAMIC CAPACITOR $1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP

1．2V Transient Response

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$ AT 3A／$/$ S LOAD STEP COUT $=2 \times 22 \mu \mathrm{~F}$ 6．3V CERAMIC CAPACITOR $1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR $1 \times 220 \mu$ F SANYO POSCAP

3．3V Transient Response

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ AT 3A／ LS LOAD STEP COUT $=2 \times 22 \mu \mathrm{~F}$ 6．3V CERAMIC CAPACITOR $1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP

1．5V Transient Response

$V_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ AT 3A／$/$ S LOAD STEP $\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR $1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR $1 \times 220 \mu$ SANYO POSCAP

5V Transient Response

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ AT 3A／$/ \mathrm{s}$ LOAD STEP
COUT $=2 \times 22 \mu \mathrm{~F}$ 6．3V CERAMIC CAPACITOR
$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC CAPACITOR
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC,
$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC AND
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP
$\mathrm{C}_{\text {SOFT-START }}=0.1 \mu \mathrm{~F}$

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC,
$1 \times 100 \mu \mathrm{~F}$ 6.3V CERAMIC AND
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP
CSOFTSTART $=0.1 \mu \mathrm{~F}$

Short-Circuit Protection,
$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC,
$1 \times 100 \mu \mathrm{~F}$ 6.3V CERAMIC AND
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP

Short-Circuit Protection,
$\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ AND $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$
COUT $=2 \times 22 \mu \mathrm{~F}$ 6.3V CERAMIC,
$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMIC AND
$1 \times 220 \mu \mathrm{~F}$ SANYO POSCAP

PIn fUnCTIOnS

NC（A1）：No Connect．Leave floating．
FREQ（A2）：Frequency Selection Pin．An internal low pass filter is tied to this pin．The frequency can be selected from 250 kHz to 780 kHz by setting a voltage from this pin to SGND．A programming resistor divider can be used to set the operating frequency．See the Applications Information section．

MODE／PLLIN（A3）：Mode Selection or External Synchroni－ zation Pin．Tying this pinto INTV ${ }_{C C}$ enables pulse－skipping operation．Tying this pin low enables forced continuous mode operation．Burst Mode operation is enabled by float－ ing the pin．A clock on the pin will force the controller into forced continuous mode of operation and synchronize to the internal oscillator．The programming DC voltage has to be removed for clock synchronization．
PGND（BANK 2：A4，B4，D4－D7，E1－E7，F1－F7，G1－G7， H1－H7，J5－J7，K5，K7，L5－L7，M5－M7）：Power ground pins for both input and output returns．

VIN（BANK 1：A5－A7，B5－B7，C5－C7）：Power Input Pins． Apply input voltage between these pins and PGND pins． Recommend placing input decoupling capacitance directly between $\mathrm{V}_{\text {IN }}$ pins and PGND pins．
TK／SS（B1）：Output Voltage Tracking and Soft－Start Pin．An internal soft－start current of $1.3 \mu \mathrm{~A}$ charges the soft－start capacitor．See the Applications Information section．

RUN（B2）：Run Control Pin．A voltage above 1.35 V on this pin turns on the module．Forcing this pin below 1．1V will shut down the output．The RUN pin has a $1 \mu \mathrm{~A}$ pull－ up current source that increases to $10 \mu \mathrm{~A}$ as the RUN pin voltage reaches 1.5 V and up to compliance．Therefore the pin can be left floating for normal operation．A maximum of 6 V can be applied to the pin．A voltage divider can be used for a UVLO function．See the Applications Informa－ tion section．

SGND（B3，C2 and C3）：Signal Ground Pin．Return ground path for all analog and low power circuitry．Tie a single connection to PGND．See applications for details．
COMP（C1）：Current control threshold and error ampli－ fier compensation point．The module has been internally compensated for most I／O ranges．
EXTV CC（C4）：External Voltage Input．Bypasses the internal INTV ${ }_{C C}$ LDO and powers the internal circuitry and MOSFET drivers．If a 5 V source is available，the internal LDO is disabled，and the power dissipation is lower，especially at higher input voltages．See the Applications Information section．
$V_{\text {FB }}$（D1）：The negative input of the error amplifier．Inter－ nally，this pin is connected to $\mathrm{V}_{\text {OUT }}$ with a $60.4 \mathrm{k} \Omega$ precision resistor．Different output voltages can be programmed with an additional resistor between $V_{F B}$ and SGND pins． See applications for details．

PGOOD（D2）：Output Voltage Power Good Indicator．Open－ drain logic output that is pulled to ground when the output voltage is not within $\pm 7.5 \%$ of the regulation point．
INTV ${ }_{\text {CC }}$（D3）：Internal 5V Regulator Output．This pin is for additional decoupling of the 5 V internal regulator．
V $_{\text {OUT }}$（BANK 3：J1－J4，K1－K4，L1－L4，M1－M4）：Power Out－ put Pins．Apply output load between these pins and PGND pins．Recommend placing output decoupling capacitance directly between these pins and PGND pins．
SW（K6）：Switching Node of the Circuit．This pin is used to check the switching frequency．Leave pin floating．A resistor－capacitor snubber can be placed from SW to PGND to eliminate high frequency switch node ringing． See the Applications Information section．

SIMPLIFIGD BLOCK DIAGRAM

Figure 1. Simplified LTM4618 Block Diagram

DECOUPLING $R \in Q U I R \in \mathbb{R} \in \mathbb{T} S T_{A}=25^{\circ}$. Use figure 1 coniguration.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | UNITS

OPERATION

Power Module Description

The LTM4618 is a standalone non－isolated switching mode DC／DC power supply．It can deliver up to 6A（DC current） output with few external input and output capacitors．This module provides precisely regulated output voltages pro－ grammable via external resistors from 0．8VDC to 5．0VDC over 4.5 V to 26.5 V input voltages．The typical application schematic is shown in Figure 21．For $\leq 6 \mathrm{~V}$ inputs，connect $\mathrm{V}_{\text {IN }}$ ，INTV ${ }_{\text {CC }}$ and EXTV ${ }_{\text {CC }}$ together．
The LTM4618 has an integrated constantfrequency current mode regulator and built－in power MOSFET devices with fast switching speed．The typical switching frequency is 750 kHz ．

With current mode control and internal feedback loop compensation，the LTM4618 module has sufficient stabil－ ity margins and good transient performance with a wide range of output capacitors，even with all ceramic output capacitors．

Current mode control provides cycle－by－cycle fast current limit and current foldback in a short－circuit condition．Pull－ ing the RUN pin below 1．1V forces the controller into its shutdown state，by turning off both MOSFETs．The TK／SS pin can be used for programming the output voltage ramp and voltage tracking during start－up．See the Applications Information section．

The LTM4618 is internally compensated to be stable over all operating conditions．The Linear Technology μ Module Power Design Tool will be provided for transient and stability analysis．The $\mathrm{V}_{\text {FB }}$ pin is used to program the output voltage with a single external resistor to ground． Multiphase operation can be easily employed with the synchronization control．
High efficiency at light loads can be accomplished with selectable Burst Mode or pulse－skipping mode operations using the MODE／PLLIN pin．Efficiency graphs are provided for light load operation in the Typical Performance Char－ acteristics section．

APPLICATIONS InFORMATION

The typical LTM4618 application circuit is shown in Figure 21. External component selection is primarily determined by the maximum load current and output voltage.

$\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratios

There are restrictions in the maximum $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ stepdown ratio that can be achieved for a given input voltage. One of the restrictions is the minimum on-time $\mathrm{t}_{\mathrm{ON}(\mathrm{min})}$, which is the smallest time duration that the LTM4618 can operate. Make sure that the operating on-time is larger than the minimum on-time as shown in the equation below. See the Thermal Considerations and Output Current Derating sections in this data sheet for the current restrictions. $\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}$ is approximately 90 ns , guardband to 110 ns .

$$
\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}<\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \bullet f}
$$

Output Voltage Programming

The PWM controller has an internal 0.8 V reference voltage. As shown in the Block Diagram, a 60.4 k internal feedback resistor connects $\mathrm{V}_{\text {OUT }}$ to the $\mathrm{V}_{\text {FB }}$ pin. Adding a resistor $\mathrm{R}_{\text {FB }}$ from the $V_{\text {FB }}$ pin to SGND programs the output voltage:

$$
V_{\text {OUT }}=0.8 \mathrm{~V} \cdot \frac{60.4 \mathrm{k}+\mathrm{R}_{\text {FB }}}{\mathrm{R}_{\mathrm{FB}}}
$$

Table 1. $\mathrm{V}_{\text {FB }}$ Resistor Table vs Various Output Voltages

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	0.8	1	1.2	1.5	1.8	2.5	3.3	5
$\mathbf{R}_{\text {FB }}(\mathbf{k} \Omega)$	Open	243	121	69.8	48.7	28.7	19.1	11.5

Input Capacitors

The LTM4618 module should be connected to a low ACimpedance DC source. One $1.5 \mu \mathrm{~F}$ input ceramic capacitor is included inside the module. Additional input capacitors are only needed if a large load step is required up to the 6 A level. A $47 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ surface mount aluminum electrolytic bulk capacitor can be used for more input bulk capacitance. This bulk input capacitor is only needed if the input source impedance is compromised by long inductive leads, traces or not enough source capacitance. If low impedance power planes are used, then this $47 \mu \mathrm{~F}$ capacitor is not needed.

For a buck converter, the switching duty-cycle can be estimated as:

$$
D=\frac{V_{\text {OUT }}}{V_{\text {IN }}}
$$

Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as:

$$
\mathrm{I}_{\mathrm{CIN}(\mathrm{RMS})}=\frac{\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}}{\eta} \cdot \sqrt{\mathrm{D} \cdot(1-\mathrm{D})}
$$

In the above equation, η is the estimated efficiency of the power module. One $10 \mu \mathrm{~F}$ ceramic input capacitor is typically rated for 2A of RMS ripple current, so the RMS input current at the worst case 6A maximum current is about 3 A . If a low inductance plane is used to power the device, then two $10 \mu \mathrm{~F}$ ceramic capacitors are enough for the output at 6A load and no external input bulk capacitor is required. The input RMS ripple current can be cancelled by paralleling multiple LTM4618 power modules out of phase, allowing the use of fewer input capacitors. Application Note 77 explains the details.

APPLICATIONS InFORMATION

Output Capacitors

The LTM4618 is designed for low output voltage ripple noise．The bulk output capacitors defined as $\mathrm{C}_{\text {out }}$ are chosen with low enough effective series resistance（ESR）to meet the output voltage ripple and transient requirements． Cout can be a low ESR tantalum capacitor，a low ESR polymer capacitor or ceramic capacitor．The typical output capacitance range is from $100 \mu \mathrm{Fto} 300 \mu \mathrm{~F}$ ．Additional output filtering may be required by the system designer if further reduction of output ripple or dynamic transient spikes is required．Table 4 shows a matrix of different outputvoltages and output capacitors to minimize the voltage droop and overshoot during a $3 \mathrm{~A} / \mu \mathrm{s}$ transient．The table optimizes the total equivalent ESR and total bulk capacitance to optimize the transient performance．Stability criteria are considered in the Table 4 matrix，and the Linear Technology μ Module Power Design Tool is available for stability analysis．Mul－ tiphase operation will reduce effective output ripple as a function of the number of phases．Application Note 77 discusses this noise reduction versus output ripple cur－ rent cancellation，but the output capacitance should be considered carefully as a function of stability and transient response．The Linear Technology μ Module Power Design Tool can calculate the output ripple reduction as the number of implemented phases increases by N times．

Mode Selections and Phase－Locked Loop

The LTM4618 can be enabled to enter high efficiency Burst Mode operation，constant－frequency，pulse－skipping mode，or forced continuous conduction mode．To select the forced continuous operation，tie the MODE／PLLIN pin to ground．To select pulse－skipping mode of operation， tie the MODE／PLLIN pin to INTV ${ }_{C C}$ ．To select Burst Mode operation，float the pin．

A phase－locked loop（PLL）is available on the LTM4618 to synchronize the internal oscillator to an external clock source that is connected to the MODE／PLLIN pin．The incoming clock should be applied before the regulator＇s RUN pin is enabled．

Frequency Selection

The switching frequency of the LTM4618＇s controller can be selected using a DC voltage．If the MODE／PLLIN pin is not being driven by an external clock source，the FREQ pin can program the controller＇s operating frequency from 250 kHz to 780 kHz by connecting a resistor divider as shown in Figure 21．The typical frequency is 750 kHz ． But if the minimum on－time is reached，a lower frequency needs to be set to increase the turn－on time．Otherwise，a significant amount of cycle skipping can occur with cor－ respondingly larger ripple current and voltage ripple．

Figure 3．Relationship Between Switching Frequency and Voltage at the FREQ Pin

Frequency Synchronization

The MODE／PLLIN pin allows the LTM4618 to be synchro－ nized to an external clock（between 400 kHz to 780 kHz ） and the internal phase－locked loop allows the LTM4618 to lock onto input clock phase as well．The FREQ pin has the onboard loop filter for the PLL．The incoming clock must be applied before the RUN pin is enabled．For ap－ plications powering the clock source from the LTM4618＇s $I_{N T V}$ CC，the RUN pin has to be enabled in order to acti－ vate INTV ${ }_{\text {CC }}$ for the clock source．In this situation（see Figure 22）the TK／SS pin can be used to soft－start the regulator for 100 ms using $\mathrm{a} \approx 0.22 \mu \mathrm{~F}$ capacitor．This will allow the regulator to synchronize to the right frequency before the regulator＇s inductor ripple current peaks．

APPLICATIONS InFORMATION

The LTM4618 can be synchronized from 400 kHz to 780 kHz with an input clock that has a high level above 2.0 V and a low level below 0.8 V . The 400 kHz low end operation limit is put in place to limit inductor ripple current. See the Typical Applications section for synchronization examples. The LTM4618 minimum on-time is limited to about 90 ns . Guardband the on-time to 110ns. The on-time can be calculated as:

$$
t_{\mathrm{ON(MIN)}}=\frac{1}{\text { FREQ }} \cdot\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)
$$

Soft-Start and Tracking

LTM4618 has the ability to either soft-start by itself with a capacitor or track the output of an external supply. When the module is configured to soft-start by itself, a capacitor should be connected to its TK/SS pin. When the module is in the shutdown state, the TK/SS pin is actively pulled to ground.

Once the RUN pin voltage is above 1.22 V , the module powers up. Then a soft-start current of $1.3 \mu \mathrm{~A}$ starts to charge its soft-start capacitor. Note that soft-start or tracking is achieved not by limiting the maximum output current of the controller but by controlling the output ramp voltage according to the ramp rate on the TK/SS pin. Current foldback is disabled during this phase to ensure smooth soft-start or tracking. The soft-start or tracking range is defined as the voltage range from 0 V to 0.8 V on the TK/SS pin. The total soft-start time can be calculated as:

$$
\mathrm{t}_{\text {SOFT-START }}=\frac{0.8 \mathrm{~V} \cdot \mathrm{C}_{\mathrm{SS}}}{1.3 \mu \mathrm{~A}}
$$

Output voltage tracking can be programmed externally using the TK/SS pin. The master voltage is divided down with an external resistor divider that is the same as the slave's feedback divider to implement coincident tracking. The LTM4618 uses an accurate 60.4k resistor internally for the top feedback resistor. Figure 4 shows an example of coincident tracking.

$$
V_{\text {OUT(SLAVE) }}=\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \cdot \mathrm{V}_{\text {TRACK }}
$$

$V_{\text {TRACK }}$ is the track ramp applied to the slave's TK/SS pin. $V_{\text {TRACK }}$ has a control range of 0 V to 0.8 V . When the master's output is divided down with the same resistor values used to set the slave's output, then the slave will coincident track with the master until it reaches its final value. The master will continue to its final value from the slave's regulation point.

Ratiometric modes of tracking can be achieved by selecting different divider resistor values to change the output tracking ratio. The master output must be greater than the slave output for the tracking to work. Master and slave data inputs can be used to implement the correct resistor values for coincident or ratio tracking.

Figure 4. Output Voltage Coincident Tracking

Figure 5. Coincident Tracking Characteristics

APPLICATIONS InFORMATION

Slope Compensation

The module has already been internally compensated for all output voltages．The Linear Technology μ Module Power Design Tool will be provided for other control loop optimization．

RUN Pin

The RUN pin has a $1 \mu \mathrm{~A}$ pull－up current source that will enable the device in a float condition．A voltage divider can be used to enable a UVLO function using the RUN pin．See Figure 21.

Fault Conditions：Current Limit and Overcurrent Foldback

The LTM4618 has a current mode controller，which inher－ ently limits the cycle－by－cycle inductor current not only in steady－state operation，but also in transient．
To further limit current in the event of an overload condi－ tion，the LTM4618 provides foldback current limiting．If the output voltage falls by more than 40% ，then the maximum output current is progressively lowered to about 25% of its full current limit value．

Thermal Considerations and Output Current Derating

The thermal resistances reported in the Pin Configuration section of the data sheet are consistent with those param－ eters defined by JESD51－9 and are intended for use with finite element analysis（FEA）software modeling tools that leverage the outcome of thermal modeling，simulation， and correlation to hardware evaluation performed on a μ Module package mounted to a hardware test board—also defined by JESD51－9（＂Test Boards for Area Array Surface Mount Package Thermal Measurements＂）．The motivation for providing these thermal coefficients in found in JESD 51－12（＂Guidelines for Reporting and Using Electronic Package Thermal Information＂）．
Many designers may opt to use laboratory equipment and a test vehicle such as the demo board to anticipate the μ Module regulator＇s thermal performance in their ap－ plication at various electrical and environmental operating conditions to compliment any FEA activities．Without FEA software，the thermal resistances reported in the Pin Con－
figuration section are in－and－of themselves not relevant to providing guidance of thermal performance；instead，the derating curves provided in the data sheet can be used in a manner that yields insight and guidance pertaining to one＇s application－usage，and can be adapted to correlate thermal performance to one＇s own application．
The Pin Configuration section shows four thermal coef－ ficients explicitly defined in JESD 51－12；these coefficients are quoted or paraphrased below：
－θ_{JA} ，the thermal resistance from junction to ambi－ ent，is the natural convection junction－to－ambient air thermal resistance measured in a one cubic foot sealed enclosure．This environment is sometimes referred to as＂still air＂although natural convection causes the air to move．This value is determined with the part mounted to a JESD 51－9 defined test board， which does not reflect an actual application or viable operating condition．
－$\theta_{\text {JCbottom，}}$ the thermal resistance from junction to the bottom of the product case，is the junction－to－board thermal resistance with all of the component power dissipation flowing through the bottom of the pack－ age．In the typical μ Module，the bulk of the heat flows out the bottom of the package，but there is always heat flow out into the ambient environment．As a result，this thermal resistance value may be useful for comparing packages but the test conditions don＇t generally match the user＇s application．
－$\theta_{\text {Jctop }}$ ，the thermal resistance from junction to top of the product case，is determined with nearly all of the component power dissipation flowing through the top of the package．As the electrical connections of the typical μ Module are on the bottom of the pack－ age，it is rare for an application to operate such that most of the heat flows from the junction to the top of the part．As in the case of $\theta_{\mathrm{Jcbottom}}$ ，this value may be useful for comparing packages but the test condi－ tions don＇t generally match the user＇s application．
－θ_{JB} ，the thermal resistance from junction to the printed circuit board，is the junction－to－board thermal resistance where almost all of the heat flows through the bottom of the μ Module and into the board，and

APPLICATIONS InFORMATION

is really the sum of the $\theta_{\text {Jcbottom }}$ and the thermal resistance of the bottom of the part through the solder joints and through a portion of the board. The board temperature is measured at specified distance from the package, using a two sided, two layer board.
This board is described in JESD 51-9.
A graphical representation of the forementioned thermal resistances is given in Figure 6; blue resistances are contained within the μ Module, whereas green resistances are external to the μ Module.

As a practical matter, it should be clear to the reader that no individual or sub-group of the four thermal resistance parameters defined by JESD 51-12 or provided in the Pin Configuration section replicates or conveys normal operating conditions of a μ Module. For example, in actual board-mounted applications, never does 100\% of the device's total power loss (heat) thermally conduct exclusively through the top or exclusively through bottom of the μ Module—as the standard defines for $\theta_{\text {JCtop }}$ and $\theta_{\text {JCbottom }}$, respectively. In practice, power loss is thermally dissipated in both directions away from the package-granted, in the absence of a heat sink and airflow, a majority of the heat flow is into the board.

Within a SIP (System-In-Package) module, be aware there are multiple power devices and components dissipating power, with a consequence that the thermal resistances relative to different junctions of components or die are not exactly linear with respect to total package power loss. To reconcile this complication without sacrificing modeling
simplicity—but also, not ignoring practical realities—an approach has been taken using FEA software modeling along with laboratory testing in a controlled-environment chamber to reasonably define and correlate the thermal resistance values supplied in this data sheet: (1) Initially, FEA software is used to accurately build the mechanical geometry of the μ Module and the specified PCB with all of the correct material coefficients along with accurate power loss source definitions; (2) this model simulates a software-defined JEDEC environment consistent with JSED51-9 to predict power loss heat flow and temperature readings at different interfaces that enable the calculation of the JEDEC-defined thermal resistance values; (3) the model and FEA software is used to evaluate the μ Module with heat sinks and airflow; (4) having solved for and analyzed these thermal resistance values and simulated various operating conditions in the software model, a thorough laboratory evaluation replicates the simulated conditions with thermocouples within a controlled-environment chamber while operating the device at the same power loss as that which was simulated. An outcome of this process and due-diligence yields a set of derating curves provided in other sections of this data sheet. After these laboratory tests have been performed and correlated to the μ Module model, then the θ_{JB} and θ_{BA} are summed together to correlate quite well with the μ Module model with no air flow or heat sinking in a properly define chamber. This $\theta_{\mathrm{JB}}+\theta_{\mathrm{BA}}$ value is shown in the Pin Configuration section and should accurately equal the θ_{JA} value because approximately 100% of power loss flows from the junction through the board into ambient with no airflow or top mounted heat sink.

Figure 6. Graphical Representation of JESD51-12 Thermal Coefficients

APPLICATIONS InFORMATION

The 1.5 V and 3.3 V power loss curves in Figures 7 and 8 can be used in coordination with the load current derating curves in Figures 9 to 16 for calculating an approximate θ_{JA} thermal resistance for the LTM4618 with various heat sinking and air flow conditions．The power loss curves are taken at room temperature，and are increased with multiplicative factors according to the ambient tempera－ ture．These approximate factors are： 1 for $40^{\circ} \mathrm{C}$ ； 1.05 for $50^{\circ} \mathrm{C}$ ； 1.1 for $60^{\circ} \mathrm{C}$ ； 1.15 for $70^{\circ} \mathrm{C}$ ； 1.2 for $80^{\circ} \mathrm{C}$ ； 1.25 for $90^{\circ} \mathrm{C} ; 1.3$ for $100^{\circ} \mathrm{C} ; 1.35$ for $110^{\circ} \mathrm{C}$ and 1.4 for $125^{\circ} \mathrm{C}$ ． The derating curves are plotted with the output current starting at 6 A and the ambient temperature at $40^{\circ} \mathrm{C}$ ．The output voltages are 1.5 V ，and 3.3 V ．These are chosen to include the lower and higher output voltage ranges for correlating the thermal resistance．Thermal models are derived from several temperature measurements in a con－ trolled temperature chamber along with thermal modeling analysis．The junction temperatures are monitored while ambient temperature is increased with and without air flow．The power loss increase with ambient temperature change is factored into the derating curves．The junctions are maintained at $120^{\circ} \mathrm{C}$ maximum while lowering output current or power with increasing ambient temperature． The decreased output current will decrease the internal module loss as ambient temperature is increased．The monitored junction temperature of $120^{\circ} \mathrm{C}$ minus the ambient operating temperature specifies how much mod－ ule temperature rise can be allowed．As an example，in Figure 11 the load current is derated to $\sim 5 \mathrm{~A}$ at $\sim 85^{\circ} \mathrm{C}$ with

Figure 7．Power Loss at $1.5 \mathrm{~V}_{\text {OUt }}$
no air flow or heat sink and the power loss for the 12 V to 1.5 V at 5 A output is about 1.7 W ．The 1.7 W loss is calcu－ lated with the $\sim 1.4 \mathrm{~W}$ room temperature loss from the 12 V to 1.5 V power loss curve at 5 A ，and the 1.2 multiplying factor at $85^{\circ} \mathrm{C}$ ambient．If the $85^{\circ} \mathrm{C}$ ambient temperature is subtracted from the $115^{\circ} \mathrm{C}$ junction temperature，then the difference of $30^{\circ} \mathrm{C}$ divided 1.7 W equals a $17^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{JA}}$ thermal resistance．Table 2 specifies a $16^{\circ} \mathrm{C} / \mathrm{W}$ value which is very close．Table 2 and Table 3 provide equivalent thermal resistances for 1.5 V and 3.3 V outputs with and without air flow and heat sinking．The derived thermal resistances in Tables 2 and 3 for the various conditions can be multiplied by the calculated power loss as a function of ambient temperature to derive temperature rise above ambient， thus maximum junction temperature．Room temperature power loss can be derived from the efficiency curves in the Typical Performance Characteristics section and adjusted with the above ambient temperature multiplica－ tive factors．The printed circuit board is a 1.6 mm thick four layer board with two ounce copper for the two outer layers and one ounce copper for the two inner layers．The PCB dimensions are $95 \mathrm{~mm} \times 76 \mathrm{~mm}$ ．The BGA heat sink is listed in Table 3.

Safety Considerations

The LTM4618 modules do not provide isolation from $\mathrm{V}_{\text {In }}$ to $V_{\text {OUT }}$ There is no internal fuse．If required，a slow blow fuse with a rating twice the maximum input current needs to be provided to protect each unit from catastrophic failure．

Figure 8．Power Loss at $3.3 \mathrm{~V}_{\text {Out }}$

APPLICATIONS InFORMATION

Figure 9. $5 \mathrm{~V}_{\text {IN }}$ to $1.5 \mathrm{~V}_{\text {OUt }}$ without Heat Sink

Figure $12.12 \mathrm{~V}_{\text {IN }}$ to $1.5 \mathrm{~V}_{\text {OUT }}$ with Heat Sink

Figure $10.5 \mathrm{~V}_{\text {IN }}$ to $1.5 \mathrm{~V}_{\text {OUT }}$ with Heat Sink

Figure 13. $12 \mathrm{~V}_{\text {IN }}$ to $3.3 \mathrm{~V}_{\text {OUT }}$ without Heat Sink

Figure $11.12 \mathrm{~V}_{\text {IN }}$ to $1.5 \mathrm{~V}_{\text {OUT }}$ without Heat Sink

Figure 14. $12 \mathrm{~V}_{\text {IN }}$ to $3.3 \mathrm{~V}_{\text {OUT }}$ with Heat Sink

Figure $15.24 V_{\text {IN }}$ to $3.3 V_{\text {Out }}$ without Heat Sink

Figure $16.24 \mathrm{~V}_{\text {IN }}$ to $3.3 \mathrm{~V}_{\text {OUT }}$ with Heat Sink

APPLICATIONS INFORMATION

Table 2．1．5V Output

DERATING CURVE	$\mathbf{V}_{\text {IN }}(\mathbf{V})$	POWER LOSS CURVE	AIRFLOW（LFM）	HEAT SINK	$\Theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathrm{W}\right)$
Figures 9,11	5,12	Figure 7	0	None	16
Figures 9,11	5,12	Figure 7	Figure 7	200	None
Figures 9,11	5,12	Figure 7	0	None	12.2
Figures 10,12	5,12	Figure 7	BGA Heat Sink	15.2	
Figures 10,12	5,12	Figure 7	400	BGA Heat Sink	11.6
Figures 10,12	5,12	BGA Heat Sink	10.7		

Table 3．3．3V Output

DERATING CURVE	$\mathbf{V}_{\text {IN }}(\mathbf{V})$	POWER LOSS CURVE	AIRFLOW（LFM）	HEAT SINK	$\Theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
Figures 13,15	12,24	Figure 8	0	None	15
Figures 13,15	12,24	Figure 8	200	None	11.2
Figures 13,15	12,24	Figure 8	400	None	10.2
Figures 14,16	Figure 8	0	BGA Heat Sink	14.2	
Figures 14,16	Figure 8	200	BGA Heat Sink	10.6	
Figures 14,16	Figure 8	400	BGA Heat Sink	9.7	

Heat Sink Used： 15×9 Version of Aavid $\# 375424$ B000346

Table 4．Output Voltage Response vs Component Matrix（Refer to Figure 21）OA to 3A Load Step

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\begin{gathered} \mathrm{C}_{\mathrm{IN}} \\ \text { (CERAMIC) } \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{IN}} \\ \text { (BULK) } \end{gathered}$	Cout1 （CERAMIC）	$\begin{aligned} & \mathrm{C}_{\text {OUT2 }} \\ & \text { (BULK) } \end{aligned}$	COMP	$\begin{gathered} \text { C2 } \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \hline \text { FREQ } \\ & \text { (kHz) } \end{aligned}$	$\begin{array}{\|l} \hline \text { DROOP } \\ (\mathrm{mV}) \end{array}$	$\begin{gathered} \text { P-P DEVIATION } \\ (\mathrm{mV}) \end{gathered}$	RECOVERY TIME（ $\mu \mathrm{s}$ ）	LOAD STEP （A／$/ \mathrm{s}$ ）	$\begin{gathered} \mathbf{R}_{\mathrm{FB}} \\ (\mathrm{k} \Omega) \end{gathered}$
1	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F} \times 4$	None	None	100	400	38	76	35	3	242
1	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F} \times 2$	$220 \mu \mathrm{~F}$	None	None	400	35	70	35	3	242
1	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	470 $\mu \mathrm{F}$	None	None	400	30	60	35	3	242
1.2	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F} \times 4$	None	None	47	400	40	80	30	3	121
1.2	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 2$	$220 \mu \mathrm{~F}$	None	None	400	37	74	35	3	121
1.2	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	470 $\mu \mathrm{F}$	None	None	400	27	54	35	3	121
1.5	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 3$	None	None	47	500	48	96	36	3	68.1
1.5	$22 \mu \mathrm{~F} \times 2$	68uF	100 $\mu \mathrm{F}$	$220 \mu \mathrm{~F}$	None	None	500	40	80	36	3	68.1
1.5	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F}$	470 $\mu \mathrm{F}$	None	None	500	30	60	40	3	68.1
1.8	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 3$	None	None	47	500	52	104	36	3	48.7
1.8	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$	None	None	500	45	90	35	3	48.7
1.8	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 4$	None	None	47	500	50	100	35	3	48.7
2.5	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 3$	None	None	47	500	65	130	38	3	28
2.5	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 4$	None	None	None	600	75	150	35	3	28
2.5	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$	None	None	600	60	120	45	3	28
3.3	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F} \times 2$	None	None	22	600	90	180	36	3	19.1
3.3	$22 \mu \mathrm{~F} \times 2$	68uF	$100 \mu \mathrm{~F} \times 2$	None	None	47	600	80	160	40	3	19.1
5	$22 \mu \mathrm{~F} \times 2$	$68 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	None	None	47	600	150	300	40	3	11.5

APPLICATIONS INFORMATION

Figure 17. 6V to 26.5V Input, 3.3V at 6A Design, Meeting CISPR25 Conducted and CISPR22 Radiated EMI Solution

Figure 18. $\mathrm{V}_{\text {IN }} 26.5 \mathrm{~V}, \mathrm{~V}_{\text {Out }} 3.3 \mathrm{~V}, \mathrm{I}_{\text {OUt }} 5 \mathrm{~A}$, π Filter $20 \mu \mathrm{~F}$ to $0.22 \mu \mathrm{H}$ Vishay (1616BZ) to $20 \mu \mathrm{~F}$ CISPR25 Conducted Emissions

Figure 19. $\mathrm{V}_{\text {IN }} 26.5 \mathrm{~V}, \mathrm{~V}_{\text {OUt }} 3.3 \mathrm{~V}$, I IUUT 5 A , π Filter $20 \mu \mathrm{~F}$ to $0.22 \mu \mathrm{H}$ Vishay (1616 BZ) to $20 \mu \mathrm{~F}$ CISPR22 Radiated EMI Plots

APPLICATIONS InFORMATION

EMI Section

The LTM4618 has been evaluated for CISPR22 A and B Radiated EMI and CISPR25 Conducted EMI．The CISPR25 Conducted EMI test was performed with an input π filter as shown in Figure 17．An RC snubber circuit is optionally used from the SW pin to the PGND pinto improve the higher frequency attenuation and EMI limit guard band．Figure 18 shows the CISPR25 conducted emissions plot for 26.5 V input to 3.3 V output at 5 A load．Several conditions were evaluated，and Figure 18 results are from the worst－case condition．The input π filter is used to attenuate the reflected noise from the regulator input，and is primarily utilized when the power regulators are closed to the input power feed to a board，like the input power connectors．If the regulator design is placed out on the center of the system board，then the input π filter may not be needed because all of the extra board capacitance and the inductive planes will provide filtering for reflected emissions．If the system board has noise sensitive circuitry that is powered from the same voltage rail as the regulators are，then an input π filter is a good idea to keep regulator noise from cor－ rupting the noise sensitive circuitry on the system board． Figure 19 shows the CISPR22 B Radiated EMI plots．The input π filter is used to attenuate the reflected noise from propagating out onto the input power cables，thus pos－ sibly causing radiated EMI issues．An RC snubber circuit is optionally used from the SW pin to the PGND pin to improve the higher frequency attenuation and EMI limit guard band．A placeholder can accommodate the RSNUB and $C_{\text {SNUB }}$ components with 1.2Ω and 470pF．These components are probably not necessary，but can be used or adjusted to improve the radiated limit guard bands at the higher frequencies by attenuating any switch node ringing due to parasitic values in the high speed switching paths．It is important to follow the recommended layout guidelines and use good X5R or X7R ceramic capacitors to get good results．

Layout Checklist／Example

The high integration of LTM4618 makes the PC board layout very simple and easy．However，to optimize its electrical and thermal performance，some layout considerations are still necessary．
－Use large PCB copper areas for high current path， including $V_{\text {IN }}$ ，PGND and $V_{\text {OUT }}$ ．It helps to minimize the PCB conduction loss and thermal stress．
－Test points can be placed on signal pin for monitor－ ing during testing．
－Place high frequency ceramic input and output capacitors next to the $\mathrm{V}_{\text {IN }}$ ，PGND and $\mathrm{V}_{\text {OUT }}$ pins to minimize high frequency noise．
－Place a dedicated power ground layer underneath the unit．
－To minimize the via conduction loss and reduce mod－ ule thermal stress，use multiple vias for interconnec－ tion between top layer and other power layers．
－Do not put vias directly on the pad，unless they are capped．
－Use a separated SGND ground copper area for com－ ponents connected to signal pins．Connect the SGND to PGND underneath the unit．

Figure 20 gives a good example of the recommended layout．

Figure 20．Recommended PCB Layout Example

TYPICAL APPLICATIONS

Figure 21. Typical 6 V to $\mathbf{2 6 . 5 \mathrm { V }}$ Input, 2.5 V at 6 A Design, 500 kHz Operation

Figure 22. Two LTM4618 Parallel, 2.5V at 12A Design

TYPICAL APPLICATIONS

PACKAGE PHOTOGRAPH

PACKAGE DESCRIPTION

Pin Assignment Tables (Arranged by Pin Function)

PIN NAME	
A1	N/C
A2	FREQ
A3	MODE/PLLIN
A4	PGND
A5	$V_{\text {IN }}$
A6	$V_{\text {IN }}$
A7	$V_{\text {IN }}$
B1	TK/SS
B2	RUN
B3	SGND
B4	PGND
B5	$V_{\text {IN }}$
B6	$V_{\text {IN }}$
B7	$V_{\text {IN }}$
C1	COMP
C2	SGND
C3	SGND
C4	EXTV
C5	$V_{\text {IN }}$
C6	$V_{\text {IN }}$
C7	$V_{\text {IN }}$

PIN NAME	
D1	VFB
D2	PGOOD
D3	INTVCC
D4	PGND
D5	PGND
D6	PGND
D7	PGND
E1	PGND
E2	PGND
E3	PGND
E4	PGND
E5	PGND
E6	PGND
E7	PGND
F1	PGND
F2	PGND
F3	PGND
F4	PGND
F5	PGND
F6	PGND
F7	PGND

PIN NAME	
G1	PGND
G2	PGND
G3	PGND
G4	PGND
G5	PGND
G6	PGND
G7	PGND
H1	PGND
H2	PGNDD
H3	PGND
H4	PGND
H5	PGND
H6	PGND
H7	PGND
J1	VOUT
J2	VOUT
J3	VOUT
J4	VOUT
J5	PGND
J6	PGND
J7	PGND

PIN NAME	
K1	Vout
K2	Vout
K3	Vout
K4	Vout
K5	PGND
K6	SW
K7	PGND
L1	Vout
L2	Vout
L3	Vout
L4	VOUT
L5	PGND
L6	PGND
L7	PGND
M1	Vout
M2	Vout
M3	Vout
M4	Vout
M5	PGND
M6	PGND
M7	PGND

PACKAGE DESCRIPTION

TYPICAL APPLICATION

5 V Input, 2.5 V at 6 A Design, 500 kHz Operation

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTM4603	6A DC/DC μ Module Regulator with PLL and Output Tracking/Margining	4.5 V to 20 V Input, 0.6 V to 5 V Output, $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm}$ LGA Package
LTM4604A	4A DC/DC μ Module Regulator	2.375V to 5.5V Input, 0.8 V to 5 V Output, Tracking
LTM4608A	8A DC/DC μ Module Regulator	2.7V to 5.5V Input, 0.6V to 5V Output, PLL, Tracking
LTM4612	$36 \mathrm{~V}_{\text {IN }}$ DC/DC μ Module Regulator	4.5 V to 36V Input, 3.3V to 15V Output, PLL, Tracking, Margining
LTM4619	Dual 4A DC/DC μ Module Regulator	4.5V to 26.5V Input, Dual 0.8V to 5V Output, PLL, Tracking
LTM8025	$36 V_{\text {IN }}$, 3A DC/DC μ Module Regulator	$3.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V} ; 0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} ; 9 \mathrm{~mm} \times 15 \mathrm{~mm} \times 4.32 \mathrm{~mm}$ LGA Package

