查询PIC24HJ32GP304供应商

2009 Microchip Technology Inc.

sc.com

MICROCHIP

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Data Sheet

High-Performance, 16-bit Microcontrollers

Preliminary

查询PIC24HJ32GP304供应商

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

High-Performance, 16-bit Microcontrollers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)
- Up to 20 MIPS operation (at 3.0-3.6V):
 - High temperature range (-40°C to +140°C)

High-Performance CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 71 base instructions: mostly 1 word/1 cycle
- Flexible and powerful addressing modes
- Software stack
- 16 x 16 multiply operations
- · 32/16 and 16/16 divide operations
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- 8-channel hardware DMA
- Up to 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

On-Chip Flash and SRAM:

- Flash program memory (up to 128 Kbytes)
- Data SRAM (up to 8 Kbytes)
- Boot, Secure and General Security for program Flash

Timers/Capture/Compare/PWM:

- Timer/Counters, up to five 16-bit timers:
 - Can pair up to make two 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock and Calendar (RTCC):
 - Provides clock, calendar and alarm functions

Interrupt Controller:

- 5-cycle latency
- · Up to 45 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 35 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change for up to 31 pins
- Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- · All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

查ommunitationPMod如es苔

- 4-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C™:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[®] encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN[™] module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet™ addressing support
- Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 16-bit length)
 - 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

System Management:

- · Flexible clock options:
 - External, crystal, resonator and internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- Power-Up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to 13 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

Comparator Module:

• Two analog comparators with programmable input/output configuration

CMOS Flash Technology:

- Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- · Industrial and Extended temperature
- · Low power consumption

Packaging:

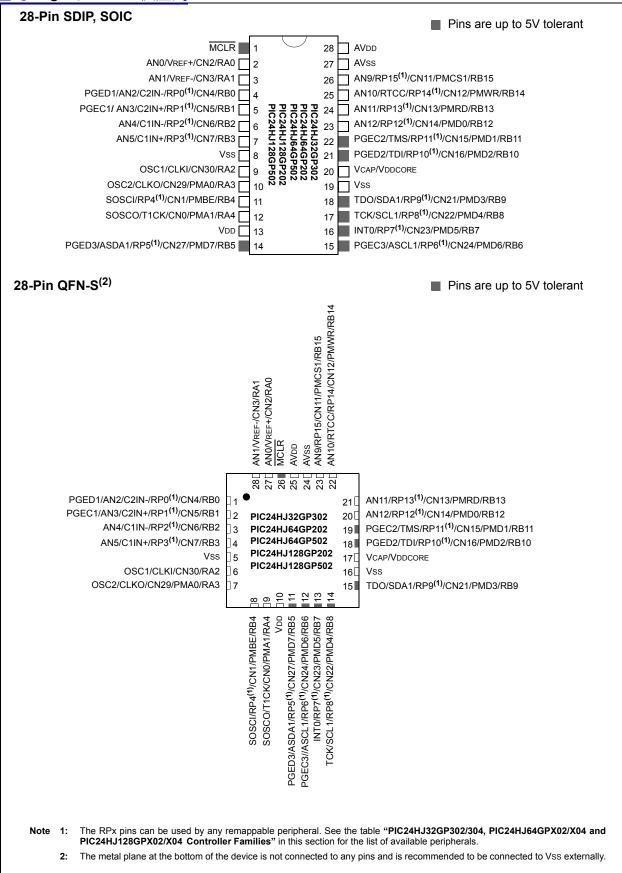
- 28-pin SDIP/SOIC/QFN-S
- 44-pin TQFP/QFN

Note: See the device variant tables for exact peripheral features per device.

查询**PIC24HJ32QR302/304**, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

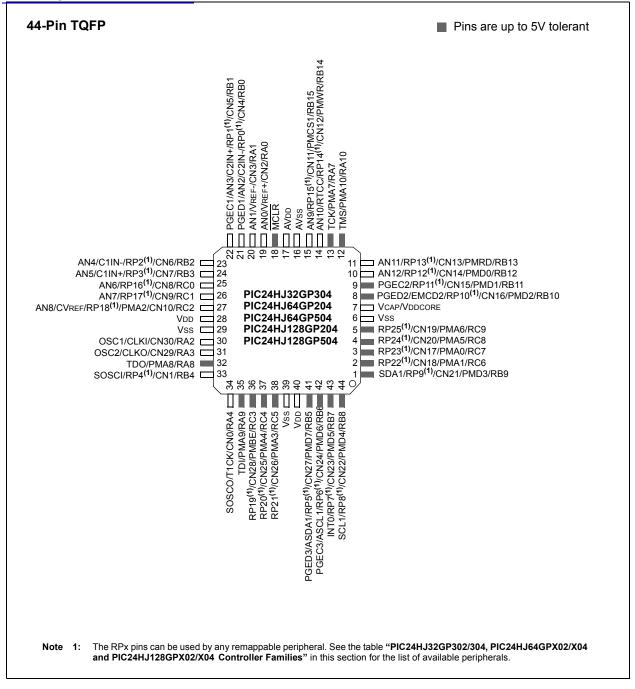
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Controller Families


					Re	ma	ppable	Per	iphe	ral						or)			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	UART	SPI	ECANTM	External Interrupts ⁽³⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
PIC24HJ128GP804	44	128	8	26	5	4	4	2	2	1	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ128GP802	28	128	8	16	5	4	4	2	2	1	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ128GP204	44	128	8	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ128GP202	28	128	8	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ64GP804	44	64	8	26	5	4	4	2	2	1	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ64GP802	28	64	8	16	5	4	4	2	2	1	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ64GP204	44	64	8	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ64GP202	28	64	8	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S
PIC24HJ32GP304	44	32	4	26	5	4	4	2	2	0	3	1	1	1	13	1/1	11	35	QFN TQFP
PIC24HJ32GP302 Note 1: RAM size	28	32	4	16	5	4	4	2	2	0	3	1	1	1	10	1/0	2	21	SDIP SOIC QFN-S

Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except PIC24HJ32GP302/304, which include 1 Kbyte of DMA RAM.

2: Only four out of five timers are remappable.

3: Only two out of three interrupts are remappable.


查前 Diagrams2GP304供应商

查询PincDiagrams3(Continued)

44-Pin QFN ⁽²⁾	Pins are up to 5V tolerant
VDD Vss OSC1/CLKI/CN30/RA2 OSC2/CLKO/CN29/RA3	4 10 AN12/RP12 ⁽¹⁾ /CN14/PMD0/RB12 5 9 PGEC2/RP11 ⁽¹⁾ /CN15/PMD1/RB11 6 PIC24HJ32GP304 8 PGED2/RP10 ⁽¹⁾ /CN16/PMD2/RB10 7 PIC24HJ64GP204 7 VcaP/Vdbcore 8 PIC24HJ128GP204 5 RP25 ⁽¹⁾ /CN19/PMA6/RC9 9 PIC24HJ128GP504 6 RP23 ⁽¹⁾ /CN20/PMA5/RC8 1 3 RP23 ⁽¹⁾ /CN17/PMA0/RC7 2 2 2 2
Note 1: The RPx pins can be used by ar PIC24HJ128GPX02/X04 Contr 2: The metal plane at the bottom of	remappable peripheral. See the table "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and Iler Families" in this section for the list of available peripherals.

查前的Diagrams2(Continued)

查询Table4ofjContents共应商

PIC2	4HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Product Families	5
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	15
3.0	CPU	19
4.0	Memory Organization	
5.0	Flash Program Memory	53
6.0	Resets	59
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	107
9.0	Oscillator Configuration	119
10.0	Power-Saving Features	129
11.0	I/O Ports	135
12.0	Timer1	161
13.0	Timer2/3 And TImer4/5 Feature	
14.0	Input Capture	
15.0	Output Compare	171
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit™ (I ² C™)	
18.0	Universal Asynchronous Receiver Transmitter (UART)	189
19.0	Enhanced CAN (ECAN™) Module	
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
21.0	Comparator Module	
22.0	Real-Time Clock and Calendar (RTCC)	
23.0	Programmable Cyclic Redundancy Check (CRC) Generator	
24.0	Parallel Master Port (PMP)	
25.0	Special Features	
26.0	Instruction Set Summary	
27.0	Development Support	
28.0	Electrical Characteristics	
	High Temperature Electrical Characteristics	
30.0	Packaging Information	333
	ndix A: Revision History	
Index	<	
	Nicrochip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
Prod	uct Identification System	355

查询PIC24HJ32GP304供应商

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

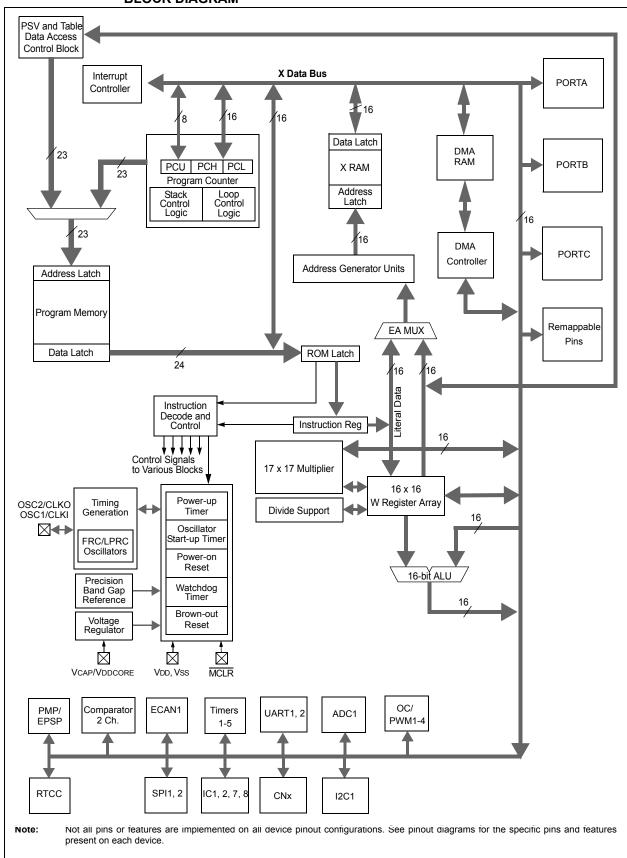
Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.


查询P.0C24HDEXICE40VERVIEW

- Note 1: This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

查询和B2EHJ32GP3和MOUT 商 DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN12	I	Analog		Analog input channels.
CLKI	1	ST/CMOS	No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CLKO	0	—	No	Always associated with OSC2 pin function.
OSC1 OSC2	 /O	ST/CMOS	No No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal
0002			110	Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	1	ST/CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
sosco	0	_	No	32.768 kHz low-power oscillator crystal output.
CN0-CN30	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC2	I	ST	Yes	Capture inputs 1/2
IC7-IC8	I	ST	Yes	Capture inputs 7/8.
OCFA	I	ST	Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
OC1-OC4	0	—	Yes	Compare outputs 1 through 4.
INT0	I	ST	No	External interrupt 0.
INT1	I	ST	Yes	External interrupt 1.
INT2	I	ST	Yes	External interrupt 2.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RA7-RA10	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.
T1CK	I	ST	No	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
T3CK	I	ST	Yes	Timer3 external clock input.
T4CK	I	ST	Yes	Timer4 external clock input.
T5CK	I	ST	Yes	Timer5 external clock input.
U1CTS	I	ST	Yes	UART1 clear to send.
U1RTS	0	—	Yes	UART1 ready to send.
U1RX		ST	Yes	UART1 receive.
U1TX	0	—	Yes	UART1 transmit.
U2CTS	I	ST	Yes	UART2 clear to send.
U2RTS	0	_	Yes	UART2 ready to send.
U2RX		ST	Yes	UART2 receive.
U2TX	0	_	Yes	UART2 transmit.
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.
SDI1		ST	Yes	SPI1 data in.
SDO1 SS1	0	— ст	Yes	SPI1 data out.
	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2		ST	Yes	SPI2 data in.
SDO2 SS2	0 I/O	ST	Yes Yes	SPI2 data out. SPI2 slave synchronization or frame pulse I/O.
				or output $Analog = Analog input P = Power$

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PowerO = OutputI = InputTTL = TTL input buffer

TABLE (21HJ3 RINOUTHO DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
TMS	Ι	ST	No	JTAG Test mode select pin.
ТСК	Ι	ST	No	JTAG test clock input pin.
TDI	Ι	ST	No	JTAG test data input pin.
TDO	0	-	No	JTAG test data output pin.
C1RX	I	ST	Yes	ECAN1 bus receive pin.
C1TX	0	_	Yes	ECAN1 bus transmit pin.
RTCC	0	_	No	Real-Time Clock Alarm Output.
CVREF	0	ANA	No	Comparator Voltage Reference Output.
C1IN-	Ι	ANA	No	Comparator 1 Negative Input.
C1IN+	Ι	ANA	No	Comparator 1 Positive Input.
C1OUT	0	-	Yes	Comparator 1 Output.
C2IN-	Ι	ANA	No	Comparator 2 Negative Input.
C2IN+	Ι	ANA	No	Comparator 2 Positive Input.
C2OUT	0	—	Yes	Comparator 2 Output.
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and
				Output (Master modes).
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10	0		No	Parallel Master Port Address (Demultiplexed Master Modes).
PMBE	ŏ	_	No	Parallel Master Port Byte Enable Strobe.
PMCS1	Õ	_	No	Parallel Master Port Chip Select 1 Strobe.
PMD0-PMPD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/
				Data (Multiplexed Master modes).
PMRD	0	—	No	Parallel Master Port Read Strobe.
PMWR	0		No	Parallel Master Port Write Strobe.
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC1	Ι	ST	No	Clock input pin for programming/debugging communication channel 1.
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.
PGEC2	I	ST	No	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3		ST	No	Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.
VCAP/VDDCORE	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	_	No	Ground reference for logic and I/O pins.
VREF+	Ι	Analog	No	Analog voltage reference (high) input.
VREF-	Ι	Analog	No	Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input

查询**?.0**C24I**GUIDELINES**后OR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

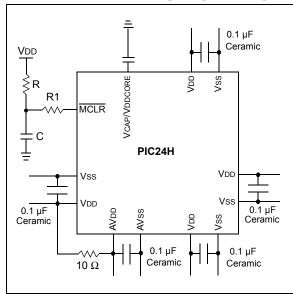
Getting started with the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VDDCORE
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used
 - (see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVss pins must be connected independent of the ADC voltage reference source.


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

查GURE 24社J32GP RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including MCUs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

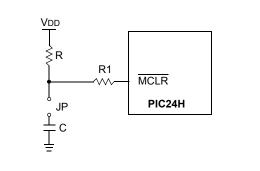
2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 28.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 25.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:


- Device Reset
- · Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

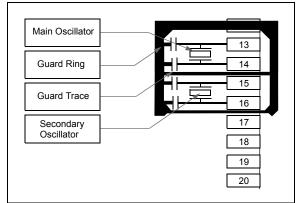
查询295C24H \$ \$ \$ R P 105 供应商

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements in the respective device information Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB[®] ICD 3 or MPLAB[®] REAL ICETM.

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.


- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- *"MPLAB[®] ICD 2 Design Advisory"* DS51566
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

查询PIOStillator Xal地区前 Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

查询3:0C24HGB24P304供应商

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70245) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

3.1 Overview

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

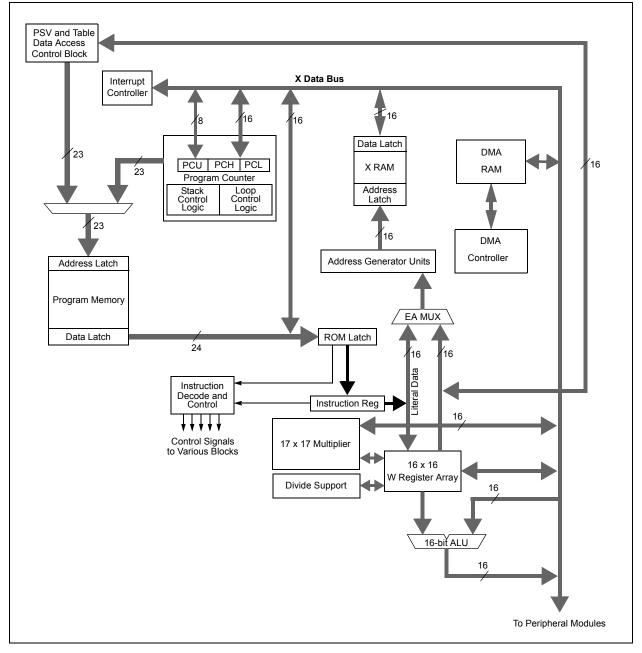
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

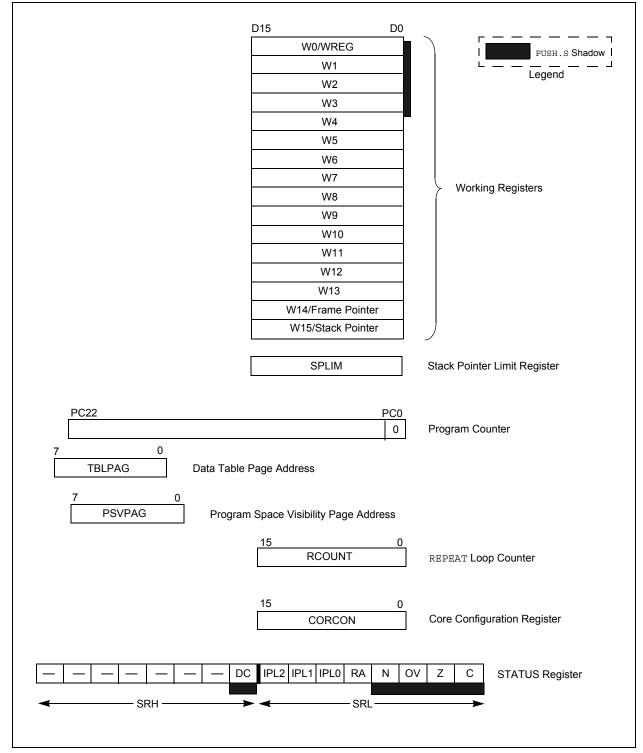
A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJ32GP302/ 304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/ X04 is shown in Figure 3-2.

3.2 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.


The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

查到PI(Special(MCU) Features


The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 features a 17-bit by 17bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

FIGURE 3-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 CPU CORE BLOCK DIAGRAM

查询**问 GURE 332**GP304 (印尼2由 J32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PROGRAMMER'S MODEL

SR: CPU STATUS REGISTER

查有PI(CRUJCOntrollRegisters

REGISTER 3-1:

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 DC bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽²⁾ R/W-0⁽²⁾ R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPI < 2:0 > (2)Ζ С RA Ν OV bit 7 bit 0 Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as '0' S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 **RA:** REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result) C: MCU ALU Carry/Borrow bit bit 0 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

查询REGISTER 252304 (CORCON: CORE CONTROL REGISTER

		-								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	_	—	—	—	—			
bit 15							bit 8			
r										
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0			
		<u> </u>		IPL3 ⁽¹⁾	PSV					
bit 7							bit 0			
Legend:		C = Clear onl	y bit							
R = Readabl	le bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set				
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimpler	mented bit, read	as '0'				
bit 15-4		Unimplemented: Read as '0'								
bit 3	IPL3: CPU Int	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽¹⁾								
	1 = CPU interrupt priority level is greater than 7									
	0 = CPU inter	0 = CPU interrupt priority level is 7 or less								
bit 2	PSV: Program	n Space Visibil	ity in Data Spa	ace Enable bit						
	ា = Program ទ	space visible ir	n data space							
	0 = Program s	space not visib	le in data spa	ce						

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

查询PIOArithmetics Logi 应脑it (ALU)

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.5.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

查询?.0C24HMEMORY 地路 GANIZATION

Note: This data sheet summarizes the features PIC24HJ32GP302/304. of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70238) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

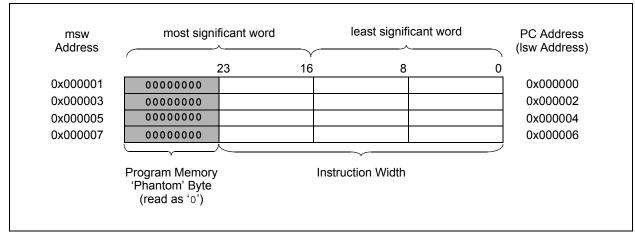
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is shown in Figure 4-1.

FIGURE 4-1:	PROGRAM MEMORY MAP FOR PIC24HJ32GP302/304, PIC24HJ64GPX02/X04
	AND PIC24HJ128GPX02/X04 DEVICES

	PIC24HJ32GP302/304	PIC24HJ64GPX02/X04	PIC24HJ128GPX02/X04
Ā	GOTO Instruction	GOTO Instruction	GOTO Instruction 0x000000 0x000002
	Reset Address	Reset Address	
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table 0x00000FE
	Reserved	Reserved	Reserved 0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table 0x000104 0x0001FE
pace	User Program Flash Memory (11264 instructions)	User Program	0x000200 0x0057FE
User Memory Space		(22016 instructions)	User Program Flash Memory (44032 instructions) 0x00ABFE
User	Unimplemented (Read '0's)	Unimplemented	0x00AC00
	(iteau 03)		0x0157FE 0x015800
		(Read 'o's)	Unimplemented (Read '0's) 0x7FFFE
ų.	Reserved	Reserved	0x800000 Reserved
Spac	Device Configuration	Device Configuration	OxF7FFFE Device Configuration 0xF80000
nory	Registers	<u>Registers</u>	Registers 0xF80017 0xF80018
Configuration Memory Space	Reserved	Reserved	Reserved
Configu	DEVID (2)	DEVID (2)	DEVID (2) 0xFEFFE 0xFF0000 0xFF0002
↓	Reserved	Reserved	Reserved 0xFFFFE

查询PIC24ROGRAM4供应的Y ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

查询#2C24HDataGAddress了新ace

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3 and Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.4.3 "Reading Data from Program Memory Using Program Space Visibility").

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement up to 8 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

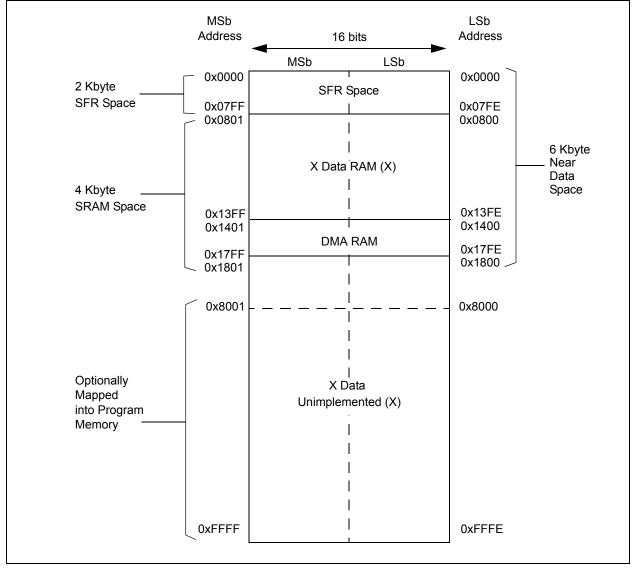
The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

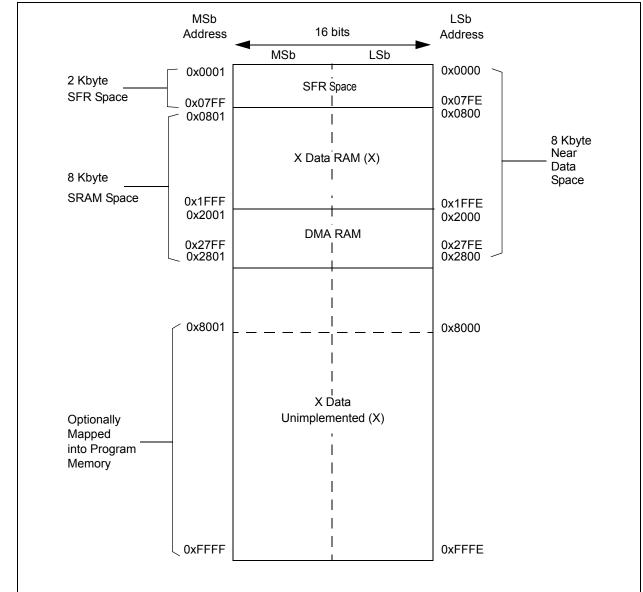
Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.


查265PIC24DMA2RAM004供应商

The PIC24HJ32GP302/304 devices contain 1 Kbytes of dual ported DMA RAM located at the end of X data space. The PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain 2 Kbytes of dual ported DMA RAM located at the end of X data space, and is a part of X data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.


When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note:	DMA RAM can be used for general	
	purpose data storage if the DMA function	
	is not required in an application.	

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJ32GP302/304 DEVICES WITH 4 KB RAM

查询**问QURE** 132GP304 (日本) AMEMORY MAP FOR PIC24HJ128GP202/204, PIC24HJ64GP202/204, PIC24HJ128GP502/504 AND PIC24HJ64GP502/504 DEVICES WITH 8 KB RAM

© 2009 Microchip Technology Inc.

StreptingBits<	KurdingBit 15Bit	Ē	TABLE 4-1:	CPU C	CPU CORE REGISTERS MAP	GISTER	S MAP													<u>查ì</u>
0000 Norking Regeter 0 0000 Norking Regeter 1 0000 Norking Regeter 1 0000 Norking Regeter 3 0001 Norking Regeter 3 0001 Norking Regeter 3 0001 Norking Regeter 3 0001 Norking Regeter 4 0010 Norking Regeter 4	0000 Nonking Register 1 Nonking Register 1 <th>e e</th> <th>SFR Addr</th> <th>Bit 15</th> <th>Bit 14</th> <th>Bit 13</th> <th>Bit 12</th> <th>Bit 11</th> <th>Bit 10</th> <th>Bit 9</th> <th>Bit 8</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> <th>Alf Resetts</th>	e e	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Alf Resetts
0001 ····································	0001 0002 0003 <th< td=""><td>0</td><td>0000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Rec</td><td>jister 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24</td></th<>	0	0000								Working Rec	jister 0								24
0006 ••••••••••••••••••••••••••••••••••••	0010 Notiving Register 5 Notiving Register 1 Notivin Notiving Regist	-	0002								Working Reç	jister 1								000
0000 Northong Register 4 Northong Register 4 Northong Register 4 Northong Register 7 Northong Register 1 Nor	0000	5	0004								Working Reç	jister 2								1000
000 000 <td>0000 Notiting Register 6 0000 Notiting Register 6 0000 Notiting Register 7 0000 Notiting Register 6 0000 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 1 0010 Notiting Register 1 0011 Notiting Register 1 0012 Notiting Register 1 0013 Notiting Register 1 0014 Notiting Register 1 0015 Notiting Register 1 0016 Notiting Register 1 0017 Notiting Register 1 0018 Notiting Register 1 0019 Notiting Register 1 0010 Notiting Register 1 0010 Notiting Register 1 0011 Notiting Register 1 0012 Notiting Register 1 0013 Notiting Register 1 0014 Notiting Register 1 0016 Notiting Register 1</td> <td>33</td> <td>0006</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Working Rec</td> <td>jister 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2G]</td>	0000 Notiting Register 6 0000 Notiting Register 6 0000 Notiting Register 7 0000 Notiting Register 6 0000 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 6 0010 Notiting Register 1 0010 Notiting Register 1 0011 Notiting Register 1 0012 Notiting Register 1 0013 Notiting Register 1 0014 Notiting Register 1 0015 Notiting Register 1 0016 Notiting Register 1 0017 Notiting Register 1 0018 Notiting Register 1 0019 Notiting Register 1 0010 Notiting Register 1 0010 Notiting Register 1 0011 Notiting Register 1 0012 Notiting Register 1 0013 Notiting Register 1 0014 Notiting Register 1 0016 Notiting Register 1	33	0006								Working Rec	jister 3								2 G]
0001	0001 Morking Register 5 Morking Register 5 Morking Register 7 Morking Register 7 Morking Register 7 Morking Register 7 Morking Register 1 Morkin 1 Morking Register 1	54	0008								Working Rec	jister 4								2000
0000 Morking Register 6 Morking Register 10 Morking Register 11 Morking Register 11 Morking Register 11 Morking Register 12 Morking R	0000 Norking Register 6 Norking Register 6 Norking Register 6 Norking Register 6 Norking Register 10 Norking Register 11 Norking	55	000A								Working Rec	jister 5								04
0000 Norking Register 7 Norking Register 10 Norking	00000 Morking Register 7 Morking Register 9 00101	90	000C								Working Rec	jister 6								
0010 Norking Register 9 Sealer 10 Sea	0010 0011 <th< td=""><td>57</td><td>000E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Rec</td><td>jister 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>000</td></th<>	57	000E								Working Rec	jister 7								000
0012 Morking Register 9 0014	0012 Morking Register 10 0014 Morking Register 10 0016 Morking Register 11 0017 Morking Register 12 0018 Morking Register 13 0017 Morking Register 13 0018 Morking Register 13 0019 Morking Register 13 0010 Morking Register 13 0011 Morking Register 13 0012 Morking Register 13 0013 Morking Register 13 0014 Morking Register 15 0015 Morking Register 15 0016 Morking Register 15 0017 Morking Register 15 0018 Morking Register 15 0019 Morking Register 15 002 Morking Register 15 002 Morking Register 15 003	8	0010								Working Reç	jister 8								000
0014 Working Register 10 0016	0014 Morking Register 10 Morking Register 11 Morkin Register 11 Mork	65	0012								Working Reç	jister 9								0000
0016 Working Register 13 0017 Working Register 13 0018 Working Register 13 0019 Morking Register 13 0010 Morking Register 14 0010 Morking Register 15 0011 Morking Register 15 0012 Morking Register 15 0013 Morking Register 15 0014 Morking Register 15 0015 Morking Register 15 0016 Morking Register 15 0017 Morking Register 15 0018 Morking Register 15 0019 Morking Register 15 0011 Morking Register 15 0011 Morking Register 15 0015 <	0016 Monking Register 13 Monking Register 14 Mon	310	0014							_	Vorking Reg	ister 10								0000
0018 Working Register 12 0014 Morking Register 13 0015 Morking Register 14 0016 Morking Register 15 0017 Morking Register 15 0018 Morking Register 15 0020 <	0018 Working Register 12 0014 Working Register 13 0015 Working Register 15 0016 Morking Register 15 0017 State Politer Limit Register 15 0018 Morking Register 15 0020 Vol Vol 003 Vol Vol Vol 004 Vol Vol Vol 004 Vol Vol Vol Vol 004 Vol Vol Vol Vol Vol 004 Vol Vol Vol Vol Vol Vol 004 Vol Vol Vol Vol	11	0016								Norking Reg	ister 11								0000
0012 Morking Register 13 0012 Image: 14 0012 Image: 15 0012 Image: 15 0012 Image: 15 0012 Image: 15 0013 Image: 15 0014 Image: 15 0015 Image: 15 002 Image: 15 003 Image: 15 003 Image: 15 003 Image: 16 1mage: 16 Image: 16 1mage: 16 <t< td=""><td>0014 Working Register 13 0015 </td><td>312</td><td>0018</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>Vorking Reg</td><td>ister 12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></t<>	0014 Working Register 13 0015	312	0018							1	Vorking Reg	ister 12								0000
001C Morking Register 14 001C 001C 001C 001 001C 01 001C 01 010C 01 <td>001C Monking Register 14 0 01C Image: 15 0 01C Image: 16 0 01C</td> <td>313</td> <td>001A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>Vorking Reg</td> <td>ister 13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	001C Monking Register 14 0 01C Image: 15 0 01C Image: 16 0 01C	313	001A							1	Vorking Reg	ister 13								0000
0 01E Monking Register 15 0 020 Partial P	0 01E Morking Register 15 0 020 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 021 0 023 0 021 0 024 0 02 0 025 0 02 0 024 0 0 0 025 0 0 0 026 0 0 0 021 0 0 0 022 0 0 0 023 0 0 0 024 0 0 0 02 0 0 0 02 0 0 0 02 0 0 0 02 0 0 0 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>314</td> <td>001C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>Vorking Reg</td> <td>ister 14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	314	001C							1	Vorking Reg	ister 14								0000
002 Base: Pointer Limit Register 002 Pointer Limit Register 003	002 Stack Pointer Limit Register Stack Pointer	315	001E							1	Vorking Reg	ister 15								0800
002E Program Counter Low Word Register 0030 Program Counter High Byte Register 0030 Program Counter High Byte Register 0030 Program Counter High Byte Register 0031 Program Counter High Byte Register 0032 Program Counter High Byte Register 0034 Program Memory Visibility Page Address Pointer Register 0035 Program Memory Visibility Page Address Pointer Register 0036 Program Memory Visibility Page Address Pointer Register 0037 Program Memory Visibility Page Address Pointer Register 0038 Program Memory Visibility Page Address Pointer Register 0038	002E Program Counter Low Word Register 0030 Program Counter High Byte Register 0030 Program Counter High Byte Register Program Counter High Byte Register 0031 Program Counter High Byte Register Image: Program Counter High Byte Register Image: Program Counter High Byte Register <t< td=""><td></td><td>0020</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Stac</td><td>k Pointer Lin</td><td>nit Register</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></t<>		0020							Stac	k Pointer Lin	nit Register								XXXX
0030 Frogram Counter High Byte Register 0032 Frogram Counter High Byte Register 0032 0034 0034	0030 Frogram Counter High Byte Register 0032 Table Page Address Pointer Register 0032 Table Page Address Pointer Register 0032 0032 0034 </td <td></td> <td>002E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Program</td> <td>Counter Low</td> <td>/ Word Regis</td> <td>ster</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>		002E							Program	Counter Low	/ Word Regis	ster							0000
0032 Table Page Address Pointer Register 0034 Table Page Address Pointer Register 0034 Program Memory Visibility Page Address Pointer Register 0036 D D PL PL PL PC 0042 D D PL PL PL PL PL PC <	0032 Table Page Address Pointer Register 0034 <td></td> <td>0030</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td>-</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td>1</td> <td></td> <td></td> <td>Prograi</td> <td>n Counter H</td> <td>ligh Byte Re</td> <td>gister</td> <td></td> <td></td> <td>0000</td>		0030	Ι	Ι	Ι	-	Ι	Ι	Ι	1			Prograi	n Counter H	ligh Byte Re	gister			0000
0034 Program Memory Visibility Page Address Pointer Register 0036	0034 Program Memory Visibility Page Address Pointer Register 0036 0042 0- 0- 0 2 2 2 0042 0- 0- 0- 0- 0 2 0 2 </td <td>Q</td> <td>0032</td> <td>Ι</td> <td>Ι</td> <td> </td> <td>-</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td> </td> <td></td> <td></td> <td>Table P</td> <td>age Addres</td> <td>s Pointer Re</td> <td>gister</td> <td></td> <td></td> <td>0000</td>	Q	0032	Ι	Ι		-	Ι	Ι	Ι				Table P	age Addres	s Pointer Re	gister			0000
Repeat Loop Counter Register DC PL1 PL0 RA N OV Z C DC PL2 IPL1 IPL0 RA N OV Z C	0036 Repeat Loop Counter Register 0042 DC IPL IPL N OV Z C DC 0 0044 DC IPL IPL IPL N OV Z C DC 0 0044	PSVPAG	0034	Ι	Ι			-	Ι	1	1		Progr	am Memory	Visibility Pa	ge Address I	Pointer Reg	gister		0000
10042 - - - - - - DC IPL0 RA N OV Z C 1 0044 - - - - - - - - 2 C T 1 0044 - - - - - - - 1	0042 - - - - - DC IPL0 RA N OV Z C 0044 - - - - - - - - - - - C PSV Z PSV Z C PSV Z PSV Z C PSV Z PSV Z PSV Z	INT	0036							Repe	at Loop Cour	nter Register								XXXX
N 0044 -	N 0044 -		0042	I	Ι		I	I			DC	IPL2	IPL1	IPL0	RA	z	OV	Z	С	0000
0052 – – – Disable Interrupts Counter Register	0052 — — Disable Interrupts Counter Register x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	NO	0044	Ι	Ι	Ι	-	Ι	Ι	Ι		Ι	Ι	Ι		IPL3	PSV	Ι	-	0000
		Ļ	0052	Ι	Ι						Disable	e Interrupts (Counter Re	gister						XXXX

查询PI	C24	J3	2G	P3	04	供应商	ets	00
	All C2	000	000				All Resets	0000
302	Bit 0	CNOIE	CN16IE	CN0PUE	CN16PUE	304	Bit 0	CNOIE
1J32GP	Bit 1	CN1IE	I	CN1PUE	I	1.32GP	Bit 1	CN1IE
PIC24	Bit 2	CN2IE		CN2PUE	Ι	PIC24	Bit 2	CN2IE
502 AND	Bit 3	CN3IE	I	CN3PUE	I	504 AND	Bit 3	CN3IE
GP202/(Bit 4	CN4IE	I	CN4PUE	I	GP204/!	Bit 4	CN4IE
:24HJ64	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE	:24HJ64	Bit 5	CN5IE
502, PIC	Bit 6	CN6IE	CN22IE	CN6PUE	CN22PUE	504, PIC	Bit 6	CN6IE
3GP202/	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE	simal. 3GP204/	Bit 7	CN7IE
24HJ128	Bit 8	I	CN24IE	I	CN24PUE	24HJ128	Bit 8	CN8IE
OR PIC:	Bit 9	I	I	I	I	es are shown	Bit 9	CN9IE
ER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302	Bit 10		Ι	I	Ι	¹⁰ . Reset values are shown in hexadecimal. ER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304	Bit 10	CN10IE
	Bit 11	CN11IE	CN27IE	CN11PUE	CN27PUE	read as '0'. EGISTEF	Bit 11	CN11IE
CHANGE NOTIFICATION REGIST	Bit 12	CN12IE	Ι	CN12PUE	Ι	own value on Reset, — = unimplemented, read as CHANGE NOTIFICATION REGIST	Bit 12	CN12IE
DTIFICA	Bit 13	CN13IE	CN29IE	CN13PUE	CN29PUE	et, — = unir DTIFICA	Bit 13	CN13IE
NGE NO	Bit 14	CN14IE	CN30IE	CN14PUE	CN30PUE	alue on Res	Bit 14	CN14IE
	Bit 15	CN15IE	Ι	CN15PUE CN14PUE CN13PUE CN12PUE CN11PU	Ι	unkn	Bit 15	CN15IE
4-2:	SFR Addr	0060	0062	0068	006A	4-3:	SFR Addr	0900
TABLE 4-2:	SFR Name	CNEN1	CNEN2	CNPU1	CNPU2	Legend: × = TABLE 4-3:	SFR Name	CNEN1

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

0000

CN0PUE CN16PUE

CN1PUE CN17PUE

CN2PUE CN18PUE

CN4PUE CN20PUE

CN5PUE CN21PUE

CN6PUE CN22PUE

CN7PUE CN23PUE

CN8PUE CN24PUE

CN9PUE CN25PUE

CN11PUE CN27PUE

CN12PUE CN28PUE

CN13PUE CN29PUE

CN14PUE CN30PUE

-CN15PUE

> CNPU1 CNPU2

CN27IE

CN28IE

CN29IE

CN30IE

0062 0068 006A

CNEN2

CN26IE CN10PUE CN26PUE

CN20IE

CN21IE

CN22IE

CN23IE

CN24IE

CN25IE

CN19IE CN3PUE CN19PUE

0000

CN16IE

CN17IE

CN18IE

<u>查</u> 〕	Bit 1 Bit 0 All	OSCFAIL - 000	INT1EP INT0EP 000	IC1IF INTOIF 000	MI2C1IF SI2C1IF 000	SPI2IF SPI2EIF 000	1	U1EIF - 00000	IC1IE INTOIE 000	MI2C1IE SI2C1IE 00000	SPI2IE SPI2EIE 0000	0000	U1EIE - 0000	INT0IP<2:0> 4444	DMA0IP<2:0> 4444	T3IP<2:0> 4444	U1TXIP<2:0> 0444	SI2C1IP<2:0> 4444	INT1IP<2:0> 4404	DMA2IP<2:0> 4444	T5IP<2:0> 4444	SPI2EIP<2:0> 4444	DMA3IP<2:0> 0004	0440	0440	4440	DMA6IP<2:0> 0444	4444	
	Bit 2 E	STKERR OS	INTZEP IN	OC1IF IC	CMIF MI3	C1RXIF ⁽¹⁾ SF	I	U2EIF U	OC1IE IC	CMIE MI2	C1RXIE ⁽¹⁾ SF		UZEIE U	IIOTNI	DMA0	T3IP	U1TXI	SI2C11	INT1I	DMA2	T5IP	SPI2EI	DMA3I		-		DMA6I		
	Bit 3	ADDRERR	-	∃IIL	CNIF	C1IF ⁽¹⁾	I	CRCIF	T11E	CNIE	C1IE ⁽¹⁾	-	CRCIE	-	I	I	I	I	I	-	-	-		-		-		VECNUM<6:0>	
	Bit 4	MATHERR	I	DMA0IF	INT1IF	DMA3IF	I	DMA6IF	DMA0IE	INT1IE	DMA3IE	Ι	DMA6IE			^		^	I				Ι		~		~	VEC	
	Bit 5	DMACERR	Ι	IC2IF	Ι	I	I	DMA7IF	IC2IE	-	-	Ι	DMA7IE	IC1IP<2:0>	IC2IP<2:0>	SPI1EIP<2:0>	AD1IP<2:0>	MI2C1IP<2:0>	I	OC3IP<2:0>	INT2IP<2:0>	SPI2IP<2:0>	-	PMPIP<2:0>	DMA5IP<2:0>	U1EIP<2:0>	DMA7IP<2:0>		
	Bit 6	DIVOERR	I	OC2IF	IC7IF	I	I	C1TXIF ⁽¹⁾	OC2IE	IC7IE		Ι	C1TXIE ⁽¹⁾					2	I]]		
	Bit 7	Ι	I	T2IF	IC8IF	I	I	I	T2IE	IC8IE	Ι	Ι	I	I	I	I	I	I	I	Ι	I	Ι	Ι	I	Ι	Ι	Ι	Ι	simal.
	Bit 8	I	I	T3IF	DMA2IF	I	I	I	T3IE	DMA2IE	Ι	I	I	^0	~0	^0	< <u>0</u> :	<u>^</u>	<u>^</u>	<0	<0:	(1)<(Ι	<0:	<0	<0)>(1)		"0'. Reset values are shown in hexadecimal.
	Bit 9	I		SPI1EIF	0C3IF				SPI1EIE	OC3IE				OC1IP<2:0>	OC2IP<2:0>	SPI1IP<2:0>	DMA1IP<2:0>	CMIP<2:0>	IC7IP<2:0>	0C4IP<2:0>	U2RXIP<2:0>	C1RXIP<2:0> ⁽¹⁾		DMA4IP<2:0>	RTCIP<2:0>	U2EIP<2:0>	C1TXIP<2:0> ⁽¹⁾	ILR<3:0>	s are show
er map	Bit 10	I	1	SP111F	OC4IF		1	1	SPI1IE	OC4IE	Ι	1	1									0	Ι				0	ILR	eset value
EGISTE	Bit 11	Ι	Ι	U1RXIF	T4IF	Ι	Ι	Ι	U1RXIE	T4IE	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
LLER R	Bit 12	I	I	U1TXIF	T5IF				U1TXIE	T5IE	Ι	Ι	I			^					^	(Ι	I	Ι	•	Ι	I	— = unimplemented, read as
ONTRO	Bit 13	I	Ι	AD1IF	INT2IF	PMPIF	DMA5IF	I	AD1IE	INT2IE	PMPIE	DMA5IE	Ι	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	I	CNIP<2:0>	IC8IP<2:0>	T4IP<2:0>	U2TXIP<2:0>	C1IP<2:0> ⁽¹⁾	Ι	Ι	Ι	CRCIP<2:0>	Ι	Ι	= unimple
INTERRUPT CONTROLLER REGISTER MAP	Bit 14	Ι	DISI	DMA1IF	U2RXIF	DMA4IF	RTCIF	Ι	DMA1IE	U2RXIE	DMA4IE	RTCIE	Ι				I				ר	0	Ι	Ι	Ι		Ι	Ι	
INTER	Bit 15	NSTDIS	ALTIVT	I	U2TXIF	ļ	ļ	I	I	U2TXIE	Ι	I	I		I	I	I	I	I	I	Ι	I	Ι	I	Ι	I	Ι	1	x = unknown value on Reset,
4-4:	SFR Addr	0080	0082	0084	9800	0088	008A	008C	0094	9600	8600	A000	D600	00A4	00A6	00A8	00AA	00AC	00AE	00B0	00B2	00B4	00B6	00BA	00C2	00C4	0006	00E0	IN = X
TABLE 4-4:	SFR Name	INTCON1	INTCON2	IFS0	IFS1	IFS2	IFS3	IFS4	IEC0	IEC1	IEC2	IEC3	IEC4	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC6	IPC7	IPC8	IPC9	IPC11	IPC15	IPC16	IPC17	INTTREG	Legend:

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

SFR Mame SFR Addr Bit 15 Bit 15 TMR1 0100 100 1 TMR1 0100 100 1 PR1 0102 100 1 TICON 0104 TON 1 TMR2 0106 1 1 TMR3HLD 0108 1 1 TMR33 0106 1 1 PR2 010C 1 1 PR3 010E 1 1 T3CON 0110 1 1 T3CON 0110 1 1	4 Bit 13														P1
1 0100 1 0102 0102 1 0102 0104 100 1 2 0106 1 1 3HLD 0108 1 1 1 3 0103 1 1 1 0103 1 1 1 1 0104 1 1 1 1 0105 1 1 1 1 0105 1 1 1 1 0110 1 1 1 1 1		Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	C24
0102 0102 N 0104 TON 2 0106 TON 3 0106 1 3 0108 1 3 0103 1 0105 1 1 3 0104 1 0105 1 1 N 0105 1 N 0107 1 N 0110 1 N 1010 1						Timer1 Register	Register								J _X XXXX
N 0104 TON 2 0106 70 3HLD 0106 3 31 0108 10 3 0100 10 010C 10 10 010E 100 10 010 010C 10 0110 TON 0112						Period Register 1	egister 1								20 1913-1914
2 0106 33 0108 33 0103 0103 0103 0103 0103 010	TSIDL	I	I	I	1	I	I	TGATE	TCKPS<1:0>	1:0>	I	TSYNC	TCS	I	P0000
3HLD 0108 3 010A 010C 010C 010C 010 010 0110 010						Timer2 Register	Register								04
3 010A 010C 010C 010C 010C 010C 010C 010C				Time	er3 Holding F	Register (for	32-bit timer	Timer3 Holding Register (for 32-bit timer operations only)	(ylı						HXXXXX
010C 010E 010E 010E 010E 010E 010E 010E						Timer3 Register	Register								N X X X
010E 0N 0110 TON 012 TON						Period Register 2	egister 2								FFF.
0110 TON 0112 TON						Period R	Period Register 3								FFF
0112	TSIDL	I		I	I	I	I	TGATE	TCKPS<1:0>	1:0>	T32	I	TCS	I	0000
	TSIDL	Ι	Ι		1	1		TGATE	TCKPS<1:0>	1:0>		Ι	TCS		0000
TMR4 0114						Timer4 Register	Register								XXXX
TMR5HLD 0116				Time	er5 Holding F	Register (for	32-bit timer	Timer5 Holding Register (for 32-bit timer operations only)	(ylı						XXXX
TMR5 0118						Timer5 Register	Register								XXXX
PR4 011A						Period R	Period Register 4								FFFF
PR5 011C						Period R	Period Register 5								FFFF
T4CON 011E TON	TSIDL	Ι	Ι	I	1	I	I	TGATE	TCKPS<1:0>	1:0>	T32	I	TCS	I	0000
T5CON 0120 TON	TSIDL	Ι	Ι	Ι	Ι	I		TGATE	TCKPS<1:0>	1:0>	Ι	Ι	TCS	I	0000
unkn	set, — = unim	plemented, r	read as 'o'. F	'o'. Reset values are shown in hexadecimal.	are shown i	in hexadeci	mal.								
TABLE 4-6: INPUT CAPTURE REGISTER MAP	TURE RE	GISTER	MAP												
SFR SFR Bit 15 Bit 14 Name Addr	4 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF 0140						Input 1 Capture Register	ure Register								XXXX
IC1CON 0142 — — —	ICSIDL		1				ICTMR	ICI<1:0>	<0	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF 0144					-	Input 2 Capt	Input 2 Capture Register								XXXX
IC2CON 0146 — — —	ICSIDL	Ι	I	1		Ι	ICTMR	ICI<1:0>	-C	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF 0158					_	Input 7 Capture Register	ure Register								XXXX
IC7CON 015A	ICSIDL	I		I	1	I	ICTMR	ICI<1:0>	4	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF 015C	i					Input 8Capt	Input 8Capture Register		·		-				XXXX
IC8CON 015E — — —	ICSIDL		1				ICTMR	ICI<1:0>		ICOV	ICBNE		ICM<2:0>		0000

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

© 2009 Microchip Technology Inc.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04
--

	OUTF	PUT CON	OUTPUT COMPARE REGISTER M	EGIST	ER MAP												
	SFR Bit 15 Addr	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0180						Outp	ut Compare	Output Compare 1 Secondary Register	y Register							XXXX
	0182							Output Cor	Output Compare 1 Register	ister							HJ xxxx
	0184 —	Ι	OCSIDL			1		1		1		OCFLT	OCTSEL		OCM<2:0>		0000
	0186						Outp	ut Compare	Output Compare 2 Secondary Register	y Register							XXXX
	0188							Output Cor	Output Compare 2 Register	ister							XXXX
	018A —	Ι	OCSIDL				1	I	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
5	018C						Outp	ut Compare	Output Compare 3 Secondary Register	y Register							XXXX
<u> </u>	018E							Output Cor	Output Compare 3 Register	ister							XXXX
Σ	0190 —	Ι	OCSIDL	I	I	I	I	I	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
1 2	0192	-					Outp	ut Compare	Output Compare 4 Secondary Register	y Register							XXXX
1 2	0194							Output Cor	Output Compare 4 Register	ister							XXXX
	0196 —	Ι	OCSIDL				1	I	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
Ac	SFR Bit 15 Addr	5 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	0 Bit 9	9 Bit 8	8 Bit 7	7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0200				I							Receiv	Receive Register				0000
	0202		I	I	I							Transn	Transmit Register				00FF
2	0204 —		Ι								Baud I	Baud Rate Generator Register	tor Register				0000
5	0206 I2CEN		I2CSIDL	SCLREL	- IPMIEN	4 A10M	M DISSLW	LW SMEN	EN GCEN	N STREN	N ACKDT	T ACKEN	RCEN	PEN	RSEN	SEN	1000
	0208 ACKSTAT	AT TRSTAT	 			BCL	- GCSTAT	TAT ADD10	10 IWCOL	1 I2COV	A_D_Y	۵.	S	R_W	RBF	TBF	0000
	020A —		I								Addre	Address Register					0000
2	020C –		I	I	I						Address	Address Mask Register	er				0000
ш	x = unknown value on Reset, —	ue on Reset		emented, r	ead as 'o'. F	Reset valu	les are shov	= unimplemented, read as '0'. Reset values are shown in hexadecimal.	decimal.								
TABLE 4-9:	UAR	T1 REGI	UART1 REGISTER MAP	٩													
ω×	SFR Bit 15 Addr	5 Bit 14	4 Bit 13	Bit 12	Bit 11	Bit 10	0 Bit9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0220 UARTEN	 	NSIDL	IREN	RTSMD		UEN1	UENO	WAKE	LPBACK	K ABAUD	D URXINV	/ BRGH	PDSE	PDSEL<1:0>	STSEL	0000
č	0222 UTXISEL1	EL1 UTXINV	V UTXISEL0		UTXBRK	K UTXEN	N UTXBF	F TRMT		URXISEL<1:0>	ADDEN	N RIDLE	PERR	FERR	OERR	URXDA	0110
C'	0224 —		I	Ι	I			UTX8				UART Tran	UART Transmit Register				XXXX
12	0226 —			Ι				URX8				UART Rece	UART Received Register				0000
18																	

Baud Rate Generator Prescaler x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. 0226 0228

Legend: U1BRG

0000 0000

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

0000

FRMDLY

查询PIC24IIJ32GP304供应商

TABLE 4-10: UART2 REGISTER MAP	UART2 REGISTER MAP	REGISTER MAP	ER MAP	-	-	-	-	-	-	_		Ī				_	_	PIG
SFR Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 3 Bit 7 Bit 6 Addr Bit 45 Bit 12 Bit 11 Bit 10 Bit 9 Bit 3 Bit 7 Bit 6	Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 10 Bit 9 Bit 8 Bit 7	Bit 9 Bit 8 Bit 7	Bit 8 Bit 7	Bit 7		Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0230 UARTEN – USIDL IREN RTSMD – UEN1 UEN0 WAKE LPBACK	– USIDL IREN RTSMD – UEN1 UEN0 WAKE	USIDL IREN RTSMD - UEN1 UEN0 WAKE	. IREN RTSMD UEN1 UEN0 WAKE	RTSMD UEN1 UEN0 WAKE	- UEN1 UEN0 WAKE	UEN1 UEN0 WAKE	UEN0 WAKE	WAKE		LPBACK	$\overline{}$	ABAUD	URXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
0232 UTXISEL1 UTXINV UTXISEL0 - UTXBRK UTXEN UTXBF TRMT URXISEL<1:0>	UTXINV UTXISEL0 - UTXBRK UTXEN UTXBF TRMT	UTXINV UTXISEL0 - UTXBRK UTXEN UTXBF TRMT	- UTXBRK UTXEN UTXBF TRMT	UTXBRK UTXEN UTXBF TRMT	UTXEN UTXBF TRMT	UTXBF TRMT	TRMT		URXISEL<1:0>	-<1:0>	-	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0234 — — — — — — — — UTX8								UTX8				U/	UART Transmit Register	lit Register				XXXX
0236 – – – – – – – URX8								URX8				'n	UART Receive Register	e Register				0000
0238 Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Baud Rate Generator Prescaler	Rate Generator Prescaler	erator Prescaler	ler								0000
Legend: x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal. TABLE 4-11: SPI1 REGISTER MAP						st values are shown in hexadecimal.	re shown in hexadecimal.	n hexadecimal.	imal.									
SFR Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 39 Bit 7 Bit 6	Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 7	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 10 Bit 9 Bit 8 Bit 7	Bit 9 Bit 8 Bit 7	Bit 8 Bit 7	Bit 7	Bit 7	Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0240 SPIEN - SPISIDL SPISIDL - SPIROV	- SPISIDL	· SPISIDL								SPIROV		1	I	Ι	Ι	SPITBF	SPIRBF	0000
0242 – – – DISSCK DISSDO MODE16 SMP CKE SSEN CKP	DISSCK DISSDO MODE16 SMP CKE SSEN	- DISSCK DISSDO MODE16 SMP CKE SSEN	DISSCK DISSDO MODE16 SMP CKE SSEN	DISSDO MODE16 SMP CKE SSEN	MODE16 SMP CKE SSEN	SMP CKE SSEN	SMP CKE SSEN	SSEN		СКР		MSTEN		SPRE<2:0>		PPRE<1:0>	<1:0>	0000
											ſ							

SP11BUF	0248	SPI1 Transmit and Receive Buffer Register
Legend:	x = unkno	iown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal.

--FRMPOL

- SPIFSD

FRMEN

0244

SPI1CON2

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	e SFR B Addr B	Bit 15	Bit 14	Bit 13 Bit 12	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9		Bit 8 Bit 7		Bit 6	Bit 5 Bit 4 Bit 3	Bit 4		Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT 0260 SPIEN	0260	SPIEN	I	SPISIDL	I	I	I	1	I	I	SPIROV	I	I	I	I	SPITBF SPIRBF	SPIRBF	0000
SPI2CON1 0262	0262	1	I	1	DISSCK	DISSDO	DISSDO MODE16 SMP		CKE	SSEN	CKP MSTEN	MSTEN		SPRE<2:0>		PPRE	PPRE<1:0>	0000
SPI2CON2 0264 FRMEN SPIFSD FRMPOL	0264	FRMEN	SPIFSD	FRMPOL	I		Ι		I	I	I	I	I	I	Ι	FRMDLY	I	0000
SPI2BUF 0268	0268							SPI2 Transi	mit and Rec	SPI2 Transmit and Receive Buffer Register	Register							0000
Legend:	× = unkno	wn value oi	-egend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	unimplemer	ited, read a	is '0'. Rese	t values are	shown in I	hexadecim	.le								

查试	ĴPĨ Ċ	24	HJ	<u>32</u>	GP	30	4伊	ŧE		5]
	All Resets	XXXX	0000	0000	0000	0000	0000	0000	0000	0000	
	Bit 0		DONE	ALTS		CH123NA<1:0> CH123SA		PCFG0	CSS0	<0	
	Bit 1		SAMP	BUFM		NA<1:0>	^	PCFG1	CSS1	DMABL<2:0>	
	Bit 2		ASAM			CH123	CH0SA<4:0>	PCFG2	CSS2		
2GP302	Bit 3		MASMIS	SMPI<3:0>	<7:0>	Ι	0	PCFG3	CSS3	-	
C24HJ3	Bit 4		-	SMPI	ADCS<7:0>	Ι		PCFG4	CSS4	I	
AND PI	Bit 5					Ι	Ι	PCFG5	CSS5	I	
202/502	Bit 6		SSRC<2:0>	Ι		Ι	Ι	Ι	Ι	I	
1128GP2	Bit 7	ADC Data Buffer 0	0,	BUFS		Ι	CHONA	Ι	Ι	I	imal.
PIC24HJ	Bit 8	ADC Da	FORM<1:0>	CHPS<1:0>		CH123SB		Ι	Ι	I	'0'. Reset values are shown in hexadecimal
2/502,	Bit 9		FORN	CHPS		CH123NB<1:0>		PCFG9	CSS9		s are shown
64GP20	Bit 10		AD12B	CSCNA	SAMC<4:0>	CH123N	CH0SB<4:0>	PCFG11 PCFG10 PCFG9	CSS10	I	seset value
IC24HJ	Bit 11		Ι	Ι	S	Ι	C	PCFG11	CSS11		
P FOR P	Bit 12		ADDMABM	Ι		Ι		PCFG12	CSS12	Ι	\mathbf{x} = unknown value on Reset, — = unimplemented, read as
ER MA	Bit 13		ADSIDL	^	Ι	Ι	Ι	Ι	Ι	Ι	— = unimp
REGIST	Bit 14		-	VCFG<2:0>	-	Ι	-	Ι	Ι		on Reset,
ADC1 F	Bit 15		ADON	-	ADRC	Ι	CHONB	Ι	Ι	I	own value
3: /	Addr	0300	0320	0322	0324	0326	0328	032C	0330	0332	<pre>< = unkn</pre>
TABLE 4-13: ADC1 REGISTER MAP FOR PIC24HJ64GP202/502, PIC24HJ128GP202/502 AND PIC24HJ32GP302	File Name	ADC1BUF0	AD1CON1	AD1CON2	AD1CON3	AD1CHS123	AD1CHS0	AD1PCFGL	AD1CSSL	AD1CON4	regend:

ADC1 REGISTER MAP FOR PIC24HJ64GP204/504, PIC24HJ128GP204/504 AND PIC24HJ32GP304 TABLE 4-14:

File Name Addr	Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ADC Data Buffer 0								XXXX
AD1CON1	0320	ADON	I	ADSIDL	ADDMABM	I	AD12B	FORM	FORM<1:0>		SSRC<2:0>		I	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	>	VCFG<2:0>	_	I	I	CSCNA	CHPS	CHPS<1:0>	BUFS	I		SMPI<3:0>	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	I	I		Ś	SAMC<4:0>						ADCS<7:0>	<7:0>				0000
AD1CHS123	0326	Ι	Ι	Ι	I		CH123NB<1:0>		CH123SB	I	Ι		I	I	CH123N	CH123NA<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB	I	1		Ċ	CH0SB<4:0>			CHONA	I	I		Ū	CH0SA<4:0>	^		0000
AD1PCFGL	032C	I	I	I	PCFG12	PCFG11	PCFG11 PCFG10 PCFG9	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	Ι	I	I	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	Ι	Ι	Ι	Ι	Ι		Ι	I	I	Ι		I	Ι		DMABL<2:0>	۸	0000
l occord.			on Decet	- mini-		0, oc pe		are chow	perced at a	imal								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

询PI	C24 Reset		2G 8	P	04				0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	Bit 0	MODE<1:0>						MODE<1:0>																												
	Bit 1	MODE						MODE																												
	Bit 2	I						I																								I				
	Bit 3	I	IRQSEL<6:0>					Ι	IRQSEL<6:0>					Ι	IRQSEL<6:0>																					
t	Bit 4	<1:0>	뜨				9:0>	<1:0>	R				9:0>	<1:0>	Ē				9:0>	<1:0>	R				9:0>	<1:0>	R				9:0>	<1:0>	Ы			
	Bit 5	AMODE<1:0>					CNT<9:0>	AMODE<1:0>																												
	Bit 6	I						I						I						I						Ι						Ι				
	Bit 7	I	I	STA<15:0>	STB<15:0>	PAD<15:0>		I	Ι	STA<15:0>	STB<15:0>	PAD<15:0>		I	I	STA<15:0>	STB<15:0>	PAD<15:0>		I	I	STA<15:0>	STB<15:0>	PAD<15:0>		I	I	STA<15:0>	STB<15:0>	PAD<15:0>			I	STA<15:0>	STB<15:0>	
	Bit 8	I	ļ	S.	S.	Ы		I		S.	S.	/d			I	S.	S.	Ы				S.	S.	/d		Ι		S.	S.	Ρ/				S.	S.	
	Bit 9	I	I					I	Ι					I	I					I	I					Ι	I						I			
	Bit 10	I	I				I	I	1				I	I	I				I	I	I				1	Ι	I				Ι		I			Icminoloxid
	Bit 11	NULLW	I				I	NULLW						NULLW	I					NULLW						NULLW						NULLW				ed ni nwod
•	Bit 12	HALF	I				I	HALF						HALF	I					HALF						HALF					Ι	HALF	I			a ore actiles
DMA REGISTER MAP	Bit 13	DIR	ļ				I	DIR						DIR	I					DIR						DIR						DIR				, Daeat ,
REGIST	Bit 14	SIZE	I				I	SIZE						SIZE	I					SIZE						SIZE						SIZE				ad read as
DMA F	Bit 15	CHEN	FORCE				I	CHEN	FORCE				I	CHEN	FORCE				I	CHEN	FORCE				Ι	CHEN	FORCE				Ι	CHEN	FORCE			= Intimulemented read as '0' Reset values are shown in
-15:	Addr	0380	0382	0384	0386	0388	038A	038C	038E	0390	0392	0394	0396	0398	039A	039C	039E	03A0	03A2	03A4	03A6	03A8	03AA	03AC	03AE	03B0	03B2	03B4	03B6	03B8	03BA	03BC	03BE	03C0	03C2	1
TABLE 4-15 :	File Name	DMA0CON	DMA0REQ	DMA0STA	DMA0STB	DMA0PAD	DMA0CNT	DMA1CON	DMA1REQ	DMA1STA	DMA1STB	DMA1PAD	DMA1CNT	DMA2CON	DMA2REQ	DMA2STA	DMA2STB	DMA2PAD	DMA2CNT	DMA3CON	DMA3REQ	DMA3STA	DMA3STB	DMA3PAD	DMA3CNT	DMA4CON	DMA4REQ	DMA4STA	DMA4STB	DMA4PAD	DMA4CNT	DMA5CON	DMA5REQ	DMA5STA	DMA5STB	

© 2009 Microchip Technology Inc.

Bit 0Bit 3Bit 3Bit 4Bit 3Bit 3Bit 3Bit 4Bit 3Bit 4Bit 4	DMA REGISTER MAP (CONTINUED)
CNT<9:0-	Bit 12 Bit 11
CNT<69.0> AMODE<1:0> MODE<1:0> AMODE<1:0> MODE<1:0> MODE<1:0> RQSEL<6:0> MODE<1:0> MODE<1:0> RQSEL<6:0> MODE<1:0> MODE<1:0> AMODE<1:0> AMODE<1:0> AMODE<1:0>	
- AMODE<1:0> - - MODE<1:0> IROSEL<6:0> IROSEL IROSEL IROSEL IROSEL IROSEL IROSEL IROSEL IROSEL IROSEL	
IRQSEL<6:0> CNT<9:0> CNT<9:0> CNT<9:0> AMODE<1:0> AMODE<1:0> IRQSEL<6:0> IRQSEL<6:0> CNT<9:0> CNT<9:0> IRQSEL<6:0> CNT<9:0> CNT<9:0> CNT<9:0	HALF NULLW
- CNT<9:0> - AMODE<1:0> - AMODE<1:0> - MODE<1:0> - MODE<1:0> - - MODE<1:0> - - - MODE<1:0> - - - - MODE<1:0> - - - - - MODE<1:0> - - - - - - - - - - - - - - - - <td< td=""><td> </td></td<>	
CNT<9:0> CNT<9:0> AMODE<1:0> MODE<1:0> IRQSEL<6:0> MODE<1:0> IRQSEL<6:0> MODE<1:0> XWCOL6 XWCOL5 XWCOL3 XWCOL6 XWCOL5 XWCOL3 XWCOL2 PPST6 PPST5 PPST3 PPST3	
CNT<9:05 AMODE<1:05 MODE<1:05 IRQSEL<6:05	
CNT-80:0- AMODE<1:0- MODE<1:0- AMODE<1:0-	
- AMODE<1:0> - MODE<1:0> IRQSEL<6:0> IRQSEL IRQSER IRQ	·
IRQSEL<6:0> RQSEL<6:0> NUCOL6 XWCOL5 XWCOL6 XWCOL3 PPST6 PPST3 PPST6 PPST3	HALF NULLW
CNT<9:0> XWCOL6 XWCOL3 XWCOL1 XWCOL1 PPST6 PPST5 PPST3 PPST2 PPST0	- -
CNT<9:0> XWCOL6 XWCOL5 XWCOL3 XWCOL3 XWCOL3 XWCOL3 PPST6 PPST5 PPST3 PPST2 PPST1 PPST0	
CNT<9:0> XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 PPST6 PPST5 PPST3 PPST2 PPST1 PPST0	
CNT<9:0> XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL1 XWCOL0 PPST6 PPST5 PPST4 PPST3 PPST2 PPST0	
xwcol6 xwcol5 xwcol4 xwcol3 xwcol1 xwcol0 PPST6 PPST5 PPST4 PPST3 PPST2 PPST0 PPST0	
PPST7 PPST6 PPST5 PPST3 PPST2 PPST1 PPST0 DSADR<15:0>	PWCOL4 PWCOL3 PV

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Rese ts
C1CTRL1	0400	1	Ι	CSIDL	ABAT	I		REQOP<2:0>	_0		OPMODE<2:0>	<u>:</u> 0>	1	CANCAP		Ι	NIN	0480
C1CTRL2	0402		I	I	I		I	I	I	I		1			DNCNT<4:0>			2000
C1VEC	0404	1	Ι	1			FILHIT<4:0>	6		1				ICODE<6:0>	4			000
C1FCTRL	0406	Ó	DMABS<2:0>	6		Ι				Ι		Ι			FSA<4:0>			30
C1FIFO	0408	I	Ι			FBF	FBP<5:0>			1				FNRE	FNRB<5:0>			10000
C1INTF	040A	1	I	TXBO	TXBP	RXBP	TXWAR	R RXWAR	R EWARN	IVRIF	WAKIF	F ERRIF		FIFOIF	RBOVIF	RBIF	TBIF	000
C1INTE	040C	1	Ι	1		1		1	Ι	IVRIE	WAKIE	E ERRIE	1	FIFOIE	RBOVIE	RBIE	TBIE	
C1EC	040E				TERRCNT	SNT<7:0>							RERRCNT<7:0>	JT<7:0>				0000
C1CFG1	0410	I	Ι	I					Ι	NLS	SJW<1:0>			BRP	BRP<5:0>			0000
C1CFG2	0412		WAKFIL	I	I			SEG2PH<2:0>	<0;	SEG2PHTS	TS SAM		SEG1PH<2:0>	2:0>		PRSEG<2:0>		0000
C1FEN1	0414	FLTEN15 FLTEN14	FLTEN14	FLTEN13	8 FLTEN12	E FLTEN11	1 FLTEN10	0 FLTEN9	9 FLTEN8	FLTEN7	FLTEN6	16 FLTEN5	5 FLTEN4	FLTEN3	FLTEN2	FLTEN1 FLTEN0	FLTENO	FFFF
C1FMSKSEL1	0418	F7MSK<1:0>	<<1:0>	F6M	F6MSK<1:0>	F5N	F5MSK<1:0>	F4M:	F4MSK<1:0>	F3M5	F3MSK<1:0>	F2M	F2MSK<1:0>	F1MS	F1MSK<1:0>	F0MSK<1:0>	<1:0>	0000
C1FMSKSEL2	041A	F15MSK<1:0>	K<1:0>	F14M	F14MSK<1:0>	F13N	F13MSK<1:0>	F12M	F12MSK<1:0>	F11M	F11MSK<1:0>	F10N	F10MSK<1:0>	F9MS	F9MSK<1:0>	F8MSK<1:0>	<1:0>	0000
Legend: —= TABLE 4-17:	unir	Iemented, I SAN1 R	read as 'o	. Reset val	 unimplemented, read as '0'. Reset values are shown ECAN1 REGISTER MAP WHEN C 	wn in hexa I C1CTI	nplemented, read as 'o'. Reset values are shown in hexadecimal. ECAN1 REGISTER MAP WHEN C1CTRL1.WIN	0 	OR PIC:	(FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504)	(GP502)	(504 AN	D PIC24	HJ64GF	⊃502/50	4		
File Name A	Addr B	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
04	0400- 041E							See	definition	See definition when WIN =	×=							
C1RXFUL1 04	0420 RX	RXFUL15 R)	RXFUL14 F	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2 04	0422 RX	RXFUL31 R)	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1 04	0428 RX	RXOVF15 R>	RXOVF14 F	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2 04	042A RX	RXOVF31 R>	RXOVF30 F	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON 04	0430 T.	TXEN1 T	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI<1:0>	<1:0>	TXEN0	TXABT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI<1:0>	<1:0>	0000
C1TR23CON 04	0432 T.	TXEN3 T	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI<1:0>	<1:0>	TXEN2	TXABT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI<1:0>	<1:0>	0000
C1TR45CON 04	0434 T.	TXEN5 T	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI<1:0>	'l<1:0>	TXEN4	TXABT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI<1:0>	l<1:0>	0000
C1TR67CON 04	0436 T.	TXEN7 T	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI<1:0>	1<1:0>	TXEN6	TXABT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI<1:0>	l<1:0>	0000
C1RXD 04	0440								Received Data Word	Data Word								хххх
C1TXD 04	0442								Transmit Data Word)ata Word								XXXX

© 2009 Microchip Technology Inc.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	See definition when WIN = x	VIN = x							
C1BUFPNT1	0420		F3BP<3:0>	3:0>			F2BP<3:0>	<3:0>			F1BP<3:0>	<3:0>			F0BP<3:0>	:3:0>		320000
C1BUFPNT2	0422		F7BP<3:0>	3:0>			F6BP<3:0>	<3:0>			F5BP<3:0>	<3:0>			F4BP<3:0>	:3:0>		0000
C1BUFPNT3	0424		F11BP<3:0>	<3:0>			F10BP<3:0>	<3:0>			F9BP<3:0>	<3:0>			F8BP<3:0>	3:0>		0000
C1BUFPNT4	0426		F15BP<3:0>	<3:0>			F14BP<3:0>	<3:0>			F13BP<3:0>	<3:0>			F12BP<3:0>	<3:0>		0000
C1RXM0SID	0430				SID<10:3>	10:3>					SID<2:0>			MIDE	I	EID<17:16>	16>	XXXX
C1RXM0EID	0432				EID<15:8>	15:8>							EID<7:0>	<0:				XXXX
C1RXM1SID	0434				SID<10:3>	10:3>					SID<2:0>			MIDE	I	EID<17:16>	16>	
C1RXM1EID	0436				EID<15:8>	15:8>							EID<7:0>	<0:				XXXX
C1RXM2SID	0438				SID<10:3>	10:3>					SID<2:0>			MIDE	I	EID<17:16>	16>	XXXX
C1RXM2EID	043A				EID<15:8>	15:8>							EID<7:0>	<0:				XXXX
C1RXF0SID	0440				SID<10:3>	10:3>					SID<2:0>			EXIDE	I	EID<17:16>	16>	XXXX
C1RXF0EID	0442				EID<15:8>	15:8>							EID<7:0>	<0:				XXXX
C1RXF1SID	0444				SID<10:3>	10:3>					SID<2:0>			EXIDE	I	EID<17:16>	16>	XXXX
C1RXF1EID	0446				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF2SID	0448				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF2EID	044A				EID<15:8>	15:8>							EID<7:0>	<0>				хххх
C1RXF3SID	044C				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF3EID	044E				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF4SID	0450				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF4EID	0452				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF5SID	0454				SID<10:3>	10:3>					SID<2:0>			EXIDE		EID<17:16>	16>	XXXX
C1RXF5EID	0456				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF6SID	0458				SID<10:3>	10:3>					SID<2:0>			EXIDE		EID<17:16>	16>	XXXX
C1RXF6EID	045A				EID<15:8>	15:8>							EID<7:0>	<0>				хххх
C1RXF7SID	045C				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF7EID	045E				EID<15:8>	15:8>							EID<7:0>	<0>				хххх
C1RXF8SID	0460				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF8EID	0462				EID<15:8>	15:8>							EID<7:0>	<0>				хххх
C1RXF9SID	0464				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	16>	хххх
C1RXF9EID	0466				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF10SID	0468				SID<10:3>	10:3>					SID<2:0>		I	EXIDE	I	EID<17:16>	16>	XXXX
	0460				FID<15.8>	15.8>							EID<7:0>	-02				~~~~

询P	IC2 4	НJ	320	GP	8 <u>0</u> -	4伊	ŧŅ	ZŔ	J				ß		[T.	[7.	[7.	[7.	FT.	FT.	[7 .	FT.	[* .	[T .	
, i	All Resets	XXXX	XXXX	XXX	XXXX	XXX	XXX		XXXX	XXXX	XXXX		All Resets	1F00	001F	1F1F	1F1F	1F1F	1F1F	001F	1F1F	1F1F	1F1F	001F	
	Bit 0	7:16>		7:16>		7:16>		7:16>		7:16>			Bit 0	I											
	Bit 1	EID<17:16>		EID<17:16>		EID<17:16>		EID<17:16>		EID<17:16>			Bit 1	I											
	Bit 2	I		I		I				I			Bit 2		NT2R<4:0>	T2CKR<4:0>	T4CKR<4:0>	IC1R<4:0>	IC7R<4:0>	OCFAR<4:0>	U1RXR<4:0>	U2RXR<4:0>	SDI1R<4:0>	SS1R<4:0>	
	Bit 3	EXIDE	<0	EXIDE	-0	EXIDE	6	EXIDE	<0	EXIDE	<0		Bit 3		N	Τ2(Τ4	IC	IC	00	U1	U2	SD	SS	
	Bit 4	1	EID<7:0>	I	EID<7:0>	I	EID<7:0>		EID<7:0>	I	EID<7:0>		Bit 4 E												
	Bit 5												Bit 5 B											I	
	Bit 6	SID<2:0>		SID<2:0>		SID<2:0>		SID<2:0>		SID<2:0>			Bit 6				I								
)		SID		SID		SID		SID		SID			Bit 7	1		1	1							I	
CITCLI.WIN - 1 (I OK FICZTIN 12001 302/304 AND FICZTIN30401 302/304) (CONTINOED)	Bit 7											ecimal.													
	Bit 8											n in hexad	Bit 8												
	Bit 9											s are show R MAP	Bit 9		ļ					I				Ι	
	Bit 10											 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal 19: PERIPHERAL PIN SELECT INPUT REGISTER MAP 	Bit 10	INT1R<4:0>		T3CKR<4:0>	T5CKR<4:0>	IC2R<4:0>	IC8R<4:0>		U1CTSR<4:0>	U2CTSR<4:0>	SCK1R<4:0>	I	
	Bit 11	SID<10:3>	EID<15:8>	SID<10:3>	EID<15:8>	SID<10:3>	EID<15:8>	SID<10:3>	EID<15:8>	SID<10:3>	EID<15:8>	ld as 'o'. F ⊃UT RI	Bit 11	Z		Т3	Т5	IC	I		U10	U2(SC		
	Bit 12	SID<	EID<	SID<	EID<	SID<	EID<	SID<	EID<	SID<	EID<	ented, rea CT INF	Bit		-										
	Bit 13											iown value on Reset, — = unimplemented, read as PERIPHERAL PIN SELECT INPUT	Bit 12		I					Ι				I	
	Bit 14											set, — = AL PI	Bit 13	I		Ι	I	I	Ι	I	I	Ι	I	I	
ECAN I REGISTER MAP WHEN CI	Bit 15 E											ue on Re PHER	Bit 14	Ι	I	I	I	I	I	I	I	I	I	I	
		с U	Е	0	2	4	9	8	A	с U	Е	PERI	Bit 15	I		I	I	I	Ι	Ι	I	Ι	I	Ι	
.10:	Addr	046C	046E	0470	0472	0474	0476	0478	047A	047C	047E	. = unk. - 19:	Addr	0680	0682	0686	0688	068E	0694	9690	06A4	06A6	06A8	06AA	
	File Name	C1RXF11SID	C1RXF11EID	C1RXF12SID	C1RXF12EID	C1RXF13SID	C1RXF13EID	C1RXF14SID	C1RXF14EID	C1RXF15SID	C1RXF15EID	Legend: x = ∟ TABLE 4-19:	File Name	RPINR0	RPINR1	RPINR3	RPINR4	RPINR7	RPINR10	RPINR11	RPINR18	RPINR19	RPINR20	RPINR21	

1F1F001F 001F

> SS2R<4:0> C1RXR<4:0>

SDI2R<4:0>

I I I

> I 1

> 1

> > 1

T

T

I

SCK2R<4:0> 1

1

> I T

1

06AC 06AE 06B4

RPINR22 RPINR23 RPINR26⁽¹⁾ Legend: Note 1:

© 2009 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. This register is present for Plc24HJ128GP502/504 and Plc24HJ64GP502/504 devices only.

		PIC24F	PIC24HJ32GP304	304														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
RPOR0	06C0	I	ļ	I			RP1R<4:0>			I					RP0R<4:0>			0000
RPOR1	06C2	1	I	I			RP3R<4:0>			I	I	I			RP2R<4:0>			0000
RPOR2	06C4	I	I	I			RP5R<4:0>			I	I	I			RP4R<4:0>			0000
RPOR3	0606	-	I	Ι			RP7R<4:0>			-	—	Ι			RP6R<4:0>			0000
RPOR4	06C8	I	I	I			RP9R<4:0>			I	I	I			RP8R<4:0>			0000
RPOR5	06CA	-					RP11R<4:0>			-	—	I		ц	RP10R<4:0>			0000
RPOR6	0600	-	I	I			RP13R<4:0>			-	—	Ι		Ľ	RP12R<4:0>			0000
RPOR7	06CE	1	I	I			RP15R<4:0>	^		I	I	I		Ľ	RP14R<4:0>			0000
RPOR8	06D0						RP17R<4:0>							Я	RP16R<4:0>			0000
RPOR9	06D2	-	Ι	Ι			RP19R<4:0>			-	-	Ι		Ч	RP18R<4:0>			0000
RPOR10	06D4	-	-	Ι			RP21R<4:0>	^		-	—			Щ	RP20R<4:0>			0000
RPOR11	06D6	—	Ι	Ι			RP23R<4:0>				—	Ι		Ч	RP22R<4:0>			0000
RPOR12	06D8	-					RP25R<4:0>	^		-	-			ч	RP24R<4:0>			0000
Legend:	x = unk	\mathbf{x} = unknown value on Reset, — = unimplemented, read as	on Reset,	— = unimp	lemented, r	ead as 'o'. F	'0'. Reset values are shown in hexadecimal	are shown it	hexadecim	al.								

DS70293D-page 42

0000 0000

OBOE

OB1E

OB2E

OB3E

PTEN<10:0>

Ι

OBUF

OBE

IB0F

IB1F

IB2F

I

Ι

IBF I

Legend: PMSTAT PMAEN

PTEN14 IBOV

060C 060E

OPIC2	Bit 0 AI	RDSP 000	WAITE<1:0> 00000	04 000	世 000	1 000	000	0000	PTEN<1:0> 0000	OB0E 0000	
02/502 /	Bit 1	WRSP	'IAVI'						PTE	OB1E	
64GP2(Bit 2	BEP								OB2E	
IC24HJ	Bit 3	CS1P	WAITM<3:0>						Ι	OB3E	
2/502, P	Bit 4	I	WAITI						Ι	Ι	
28GP20	Bit 5	ALP			((Ι	Ι	
:24HJ12	Bit 6	CSF0	WAITB<1:0>	<13:0>	Parallel Port Data Out Register 1 (Buffers 0 and 1)	Parallel Port Data Out Register 2 (Buffers 2 and 3)	ers 0 and 1)	ers 2 and 3)	Ι	OBUF	
:24HPIC	Bit 7	CSF1	MAITI	ADDR<13:0>	gister 1 (Buf	gister 2 (Buf	Parallel Port Data In Register 1 (Buffers 0 and 1)	Parallel Port Data In Register 2 (Buffers 2 and 3)	Ι	OBE	
	Bit 8	PTRDEN	MODE<1:0>		Data Out Re	Data Out Re	Data In Reç	Data In Reç	Ι	IB0F	
RAP F	Bit 9	PTWREN	IDOM		arallel Port I	arallel Port I	^{>} arallel Port	^{>} arallel Port	Ι	IB1F	
GISTER	Bit 10	PTBEEN	MODE16		д	д			Ι	IB2F	ecimal.
ORT RE	Bit 11	X<1:0>	<1:0>						Ι	IB3F	vn in hexadecimal
PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR PIC24HPIC24HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302	Bit 12	ADRMUX<1	INCM<1:0>						Ι	Ι	— = unimplemented, read as '0'. Reset values are shown in
STER/S 02	Bit 13	PSIDL	IRQM<1:0>						Ι	Ι	. Reset valu
PARALLEL MAST PIC24HJ32GP302	Bit 14	I	IRQM	CS1					PTEN14	IBOV	, read as '0
PARALI PIC24H.	Bit 15	PMPEN	ЛSUB	ADDR15					Ι	IBF	plemented
	Addr	0090	0602	1000	0004	0000	0608	060A	060C	060E	= unin
TABLE 4-22 :	File Name	PMCON	PMMODE	PMADDR	PMDOUT1	PMDOUT2	PMDIN1	PMPDIN2	PMAEN	PMSTAT	Legend:

TABLE 4-23: PARALLEL MASTER/SLAVE PORT	23:	PARALI	LEL MA	STER/S	SLAVE P		GISTER	REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304	OR PIC.	24HJ12	8GP204	I/504, PI	C24HJ6	4GP20	4/504 AI	ND PIC2	34HJ320	3P304
File Name Addr Bit 15 Bit 14 Bit 13	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0090	PMPEN		PSIDL	ADRMUX<1:0:	IX<1:0>	PTBEEN	PTWREN PTRDEN	PTRDEN	CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	IRQM<1:0>	INCM	INCM<1:0>	MODE16	MODE<1:0>	<1:0>	WAITB<1:0>	<1:0>		WAITM<3:0>	1<3:0>		WAITE<1:0>	<1:0>	0000
PMADDR	1000	ADDR15	CS1							ADDR<13:0>	13:0>							0000
PMDOUT1	0004						۵.	Parallel Port Data Out Register 1 (Buffers 0 and 1)	ata Out Reg	lister 1 (Buff	ers 0 and 1)							0000
PMDOUT2	9090						۵.	Parallel Port Data Out Register 2 (Buffers 2 and 3)	ata Out Reg	lister 2 (Buff	ers 2 and 3)							0000
PMDIN1	0608							Parallel Port Data In Register 1 (Buffers 0 and 1)	Data In Regi .	ster 1 (Buffe	rs 0 and 1)							0000
PMPDIN2	060A							Parallel Port Data In Register 2 (Buffers 2 and 3)	Data In Regi	ster 2 (Buffe	rs 2 and 3)							0000

read as '0'. Reset values are shown in hexadecimal. IB3F — = unimplemented,

TABLE 4-24:	1-24:	REAL-1	REAL-TIME CLOCK AND CALEND	OCK AI	VD CAL	ENDAR	REGIS	AR REGISTER MAP	۵,									
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10) Bit 9		Bit 8 B	Bit 7 Bi	Bit 6 Bit	Bit 5 Bit 4	1 Bit 3	Bit 2	Bit 1	Bit 0	All All Resette
ALRMVAL	0620							Alarm Value Register Window based on APTR<1:0>	Register Win	dow based	on APTR<1	< <u>;</u>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME		AMA	AMASK<3:0>		ALF	ALRMPTR<1:0>	^			A	ARPT<7:0>				000
RTCVAL	0624						Ŗ	RTCC Value Register Window based on RTCPTR<1:0>	egister Windo	ow based or	1 RTCPTR<	:1:0>						xxxx
RCFGCAL	0626	RTCEN	Ι	RTCWREN	N RTCSYNC	IC HALFSEC	C RTCOE		RTCPTR<1:0>				0	CAL<7:0>				000
Legend:	x = unk	nown value	on Reset, –	- = unimple	mented, re-	ad as '0'. Re	eset values	\mathbf{x} = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal	n hexadecin	nal.								00-
TABLE 4-25 :	-25:	CRC RI	CRC REGISTER MAP	R MAP														1供原
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All K Reset
CRCCON	0640	1		CSIDL		>	VWORD<4:0>	4		CRCFUL	CRCMPT	Ι	CRCGO		PLEN	PLEN<3:0>		0000
CRCXOR	0642								X<15:0>	5:0>								0000
CRCDAT	0644								CRC Data Input Register	put Register								0000
CRCWDAT	0646								CRC Result Register	It Register								0000
Legend:	un = —	= unimplemented, read as '0'. Reset values are shown in	d, read as 'o	ı'. Reset va	lues are sh	own in hexa	hexadecimal.											
TABLE 4-26 :	-26:	DUAL (DUAL COMPARATOR REGISTER	RATOR	REGISI	ter map	۵.											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL		C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C10UTEN	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	1	1	1	1			Ι	Ι	CVREN	CVROE	CVRR	CVRSS		CVR	CVR<3:0>		0000
Legend: —= TABLE 4-27:	= un	 = unimplemented, read as 'o'. Reset values are shown in 7: PORTA REGISTER MAP FOR PIC2 	nplemented, read as '0'. Reset values are shown in I PORTA REGISTER MAP FOR PIC2	reset va	P FOR		exadecimal. 4HJ128GP	aexadecimal. 4HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302	, PIC24	4J64GP	202/50	2 AND F	IC24HJ	32GP30	2			
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	Ι	Ι	Ι	Ι	I	Ι	Ι	1	Ι	Ι	Ι	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2						I	I	I				RA4	RA3	RA2	RA1	RA0	XXXX

= unimplemented, read as '0'. Reset values are shown in hexadecimal. I x = unknown value on Reset, 02C4 02C6

I

I

I

XXXX 0000

LATA0

LATA1

LATA2

LATA3

LATA4

I I

Τ 1

L 1

T I

Т I

I

I

Legend:

ODCA LATA

询PI	C24 IIV Rese	Ĵ3	2G 8	P3 ŏ	04	供	並商	All Resets	чĿ	ŏ	X	00		ll ets	чF	XX	X	00		ets	(1)	0300 (2)	1 O	30	00
	All Rese	1670	CXXXX	CXXX	000			All Rese	FFF	XXXX	XXXX	0000		All Resets) 03FF	XXXX	XXXX	0000		All Resets	Â		3040	0030	0000
	Bit 0	TRISA0	RA0	LATA0	1			Bit 0	TRISBO	RB0	LATB0	I		Bit 0	TRISC0	RC0	LATC0	Ι		Bit 0	POR	OSWEN			
	Bit 1	TRISA1	RA1	LATA1	I			Bit 1	TRISB1	RB1	LATB1	I		Bit 1	TRISC1	RC1	LATC1	I		Bit 1	BOR	LPOSCEN	<		
4	Bit 2	TRISA2	RA2	LATA2	1			Bit 2	TRISB2	RB2	LATB2	I	4	Bit 2	TRISC2	RC2	LATC2	I		Bit 2	IDLE		PLLPRE<4:0>		<5:0>
32GP30	Bit 3	TRISA3	RA3	LATA3	I			Bit 3	TRISB3	RB3	LATB3	I	32GP30	Bit 3	TRISC3	RC3	LATC3	ODCC3		Bit 3	SLEEP	СF	Р		TUN<5:0>
C24HJ:	Bit 4	TRISA4	RA4	LATA4	1			Bit 4	TRISB4	RB4	LATB4	I	C24HJ;	Bit 4	TRISC4	RC4	LATC4	ODCC4		Bit 4	WDTO	1		PLLDIV<8:0>	
AND PI	Bit 5	1	I	I				Bit 5	TRISB5	RB5	LATB5	ODCB5	AND PI	Bit 5	TRISC5	RC5	LATC5	ODCC5		Bit 5	SWDTEN	LOCK		Ы	
204/504	Bit 6							Bit 6	TRISB6	RB6	LATB6	ODCB6	hexadecimal. PIC24HJ64GP204/504 AND PIC24HJ32GP304	Bit 6	TRISC6 TI	RC6	LATC6 L	obcc6 0		Bit 6	SWR	IOLOCK	T<1:0>		
J64GP2	Bit 7	TRISA7	RA7	LATA7	ODCA7	al.		Bit 7	TRISB7	RB7	LATB7	ODCB7	al. J64GP2	Bit 7	TRISC7 TI	RC7	LATC7 L	ODCC7 0	.le	Bit 7	EXTR	CLKLOCK	PLLPOST<1:0>		
PIC24H	Bit 8	TRISA8 -	RA8	LATA8	ODCA8 (nexadecima		Bit 8	TRISB8	RB8	LATB8	ODCB8	PIC24H	Bit 8	TRISC8 T	RC8	LATC8 L	ODCC8 0	rexadecima	Bit 8	VREGS	Ō			
)4/504 ,	Bit 9	TRISA9	RA9	LATA9	ODCA9	shown in I		Bit 9	TRISB9	RB9	LATB9	ODCB9	shown in I 04/504,	Bit 9	TRISC9 1	RC9	LATC9	ODCC9 (shown in l	Bit 9	CM	NOSC<2:0>	FRCDIV<2:0>		1
28GP20	Bit 10	TRISA10 -	RA10	LATA10	ODCA10 (t values are		Bit 10	TRISB10	RB10	LATB10	ODCB10	t values are 28GP2(Bit 10		1	-	1	t values are	Bit 10	I	N	FRC		
C24HJ1	Bit 11 E		-		0	as '0'. Rese		Bit 11	TRISB11	RB11	LATB11	ODCB11	as 'o'. Rese C24HJ1	Bit 11 E	1	1			as 'o'. Rese MAP	Bit 11	1		DOZEN		1
FOR PI	Bit 12 B					ented, read	_	Bit 12	TRISB12	RB12	LATB12	I	FOR PI	Bit 12	1				plemented, read a	Bit 12					
PORTA REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ64GP204/504 AND PIC24HJ32GP304	Bit 13 B					= unimplemented, read as '0'. Reset values are shown in hexadecimal.	PORTB REGISTER MAP	Bit 13	TRISB13 1	RB13	LATB13	I	 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. 30: PORTC REGISTER MAP FOR PIC24HJ128GP204/504, PIC24HJ 	Bit 13 I	1							COSC<2:0>	DOZE<2:0>		0748
REGISTE	Bit 14 E					Reset, — =	REGIST	Bit 14	TRISB14 1	RB14	LATB14		Reset, — = ?EGISTE	Bit 14	1				I F	Bit 14 Bit 13	JWR -	CO	DO		
ORTA R	Bit 15 E					x = unknown value on Reset, —	ORTB F	Bit 15	TRISB15 T	RB15	LATB15 1		n value on DRTC F	Bit 15	1				x = unknown value on Reset, 31: SYSTEM CON	Bit 15 Bit	TRAPR IOPUWR		ROI	_	
ł	Addr B	02C0	02C2	02C4	02C6	= unknow		Addr	02C8 TI	02CA	02CC L	02CE	= unknow 0: P(Addr B	02D0	02D2	02D4	02D6	uyur	Addr Bit	0740 TR/	0742 -	0744 R	0746 -	0748 -
TABLE 4-28:	File Name A						LE 4-29:	File Name A					4	File Name A					4	File Name Ac					
TAB	File P	TRISA	PORTA	LATA	ODCA	Legend:	TABLE	File ¹	TRISB	PORTB	LATB	ODCB	Legend: TABLE	File ¹	TRISC	PORTC	LATC	ODCC	Legend: TABLE	File N	RCON	OSCCON	CLKDIV	PLLFBD	OSCTUN

All Resets 00000 00000 00000

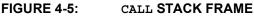
TABLE 4-32: SECURITY REGISTER MAP ⁽¹⁾	1-32 :	SECUF	RITY RE	GISTER	MAP ⁽¹⁾	_												<u>查</u> ì
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0270			1	1	I	1	1					1		IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	I		I	I	I	I	I		I	I	I	I	I	IW_ SSR	IR_SSR	RL_SSR	0000
Legend: x = u Note 1: This r TABLE 4-33:	x = unk This reç 1-33:	nown value jister is not NVM R	nown value on Reset. — = unimplister is not present in devices with NVM REGISTER MAP	 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal This register is not present in devices with 32K Flash (PIC24HJ32GP302/304). 33: NVM REGISTER MAP 	:mented, re 32K Flash	ad as 'o'. F (PIC24HJ3	teset value 2GP302/30	s are show 04).	'n in hexac	decimal.								32GP304
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	8 Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
NVMCON	0260	WR	WREN	WRERR	I	1	I	1		1	ERASE	I	1		NVMC	NVMOP<3:0>		0000
NVMKEY	0766	Ι	Ι	Ι	Ι	Ι	Ι	Ι					NVMK	NVMKEY<7:0>				0000
Legend:	x = unk	nown value	e on Reset, -	x = unknown value on Reset, — = unimplemented, read as	mented, re		Reset value	0'. Reset values are shown in hexadecimal	'n in hexac	decimal.								
TABLE 4-34:		PMD R	PMD REGISTER MAP	R MAP														
															-			

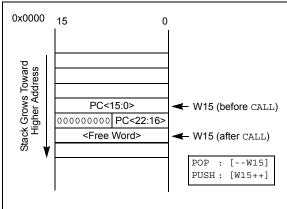
File Name	Addr	ile Name Addr Bit 15 Bit 14 Bit 13 Bit 1	Bit 14	Bit 13	12	Bit 11	Bit 11 Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PMD1	0270	0770 T5MD T4MD T3MD T2MD	T4MD	T3MD	T2MD	T1MD	I	I	Ι	I2C1MD	U2MD	U1MD	U2MD U1MD SPI2MD SPI1MD	SP11MD	I	C1MD AD1MD	AD1MD	
PMD2	0772	0772 IC8MD IC7MD	IC7MD		—		-	IC2MD IC1MD	IC1MD	I	I	-	I	OC4MD	OC3MD	OC4MD OC3MD OC2MD OC1MD	OC1MD	
PMD3	0774				—		CMPMD	CMPMD RTCCMD PMPMD CRCMD	DMPMD	CRCMD	I	-	I	I	I	I	Ι	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

查询中在624HJ390月WARESEACK

In addition to its use as a working register, the W15 register in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.7 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE (235:13 TUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE (MOV) INSTRUCTION

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, MOV instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions support all the address-
	ing modes given above. Individual instruc-
	tions may support different subsets of
	these addressing modes.

4.3.4 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

查语船4C24H**nterfacing** Program and Data Memory Spaces

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.4.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

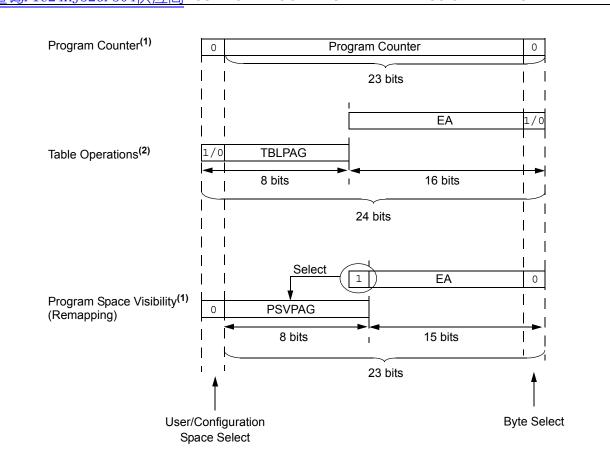

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-36 and Figure 4-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access		Progra	m Space A	Address	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>	•	0
(Code Execution)			0xx xxxx x	XXX XXXX	x xxxx xxx0	
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xx	xx xxxx xxxx	
	Configuration	TB	LPAG<7:0>		Data EA<15:0>	
		1	xxx xxxx	xxxx x	xxx xxxx xxxx	
Program Space Visibility	User	0	PSVPAG<7	7:0>	Data EA<14:	0>(1)
(Block Remap/Read)		0	XXXX XXXX	ĸ	xxx xxxx xxxx	xxxx

TABLE 4-36: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

查GURE 246 J32GP DA体体在ESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The Least Significant bit (LSb) of program space addresses is always fixed as '0' to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

查询科224HJ92ATAAQCESSFROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

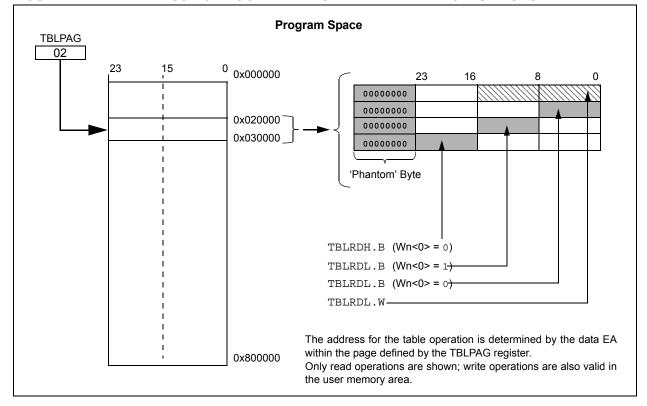


FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

查德PIC2 READING DA共和正的OM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

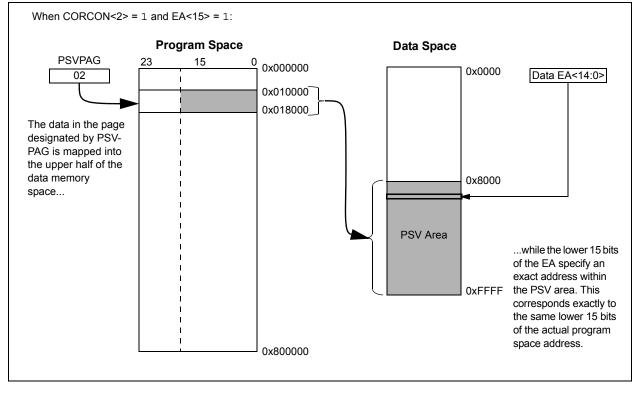
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-8), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-8: PROGRAM SPACE VISIBILITY OPERATION

查询5.0C24HF18ASH0PROGRAM MEMORY

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70228) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

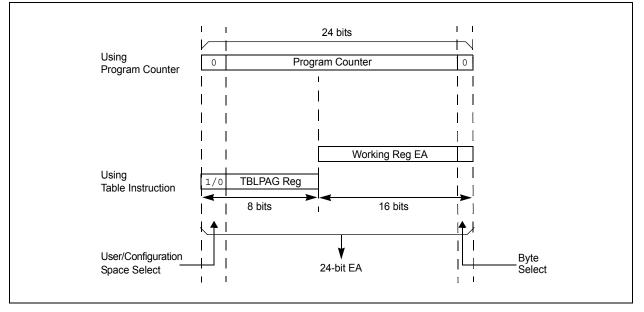
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGEC1/PGED1, PGEC2/PGED2 or PGEC3/PGED3), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2009 Microchip Technology Inc.

查询PIORTSP3Operation应商

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 28-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 28-12).

EQUATION 5-1: PROGRAMMING TIME

$$\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `bllllll, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 \text{ ms}$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

查询REGISTER 25月304 供收MCON: FLASH MEMORY CONTROL REGISTER R/SO-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 U-0 U-0 WR WREN WRERR bit 15 bit 8 R/W-0(1) R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0(1) U-0 U-0 U-0 ERASE NVMOP<3:0>(2) ____ ____ ____ bit 7 bit 0 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive WREN: Write Enable bit bit 14 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' ERASE: Erase/Program Enable bit bit 6 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits⁽²⁾ If ERASE = 1: 1111 = Memory bulk erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: These bits can only be reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

查询PIC24HJ3	32GP304供	应商					
REGISTER 5-2	2: NVMP	(EY: NONVOL	ATILE ME	MORY KEY R	EGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable t	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

查询科 124H J PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

THE WRITE BUFFERS

; Set up NVMCON for row programming oper	ations
MOV #0x4001, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program	memory location to be written
; program memory selected, and writes en	abled
MOV #0x0000, W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to writ	e the latches
; 0th_program_word	
MOV #LOW_WORD_0, W2	i
MOV #HIGH_BYTE_0, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 1st_program_word	
MOV #LOW_WORD_1, W2	;
MOV #HIGH_BYTE_1, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	i
MOV #HIGH_BYTE_2, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_31, W2	;
MOV #HIGH_BYTE_31, W3	
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

; Block all interrupts with priority <7 ; for next 5 instructions
; Write the 55 key
i
; Write the AA key
; Start the erase sequence
; Insert two NOPs after the
; erase command is asserted

查询6.0C24HRESETS4供应商

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70229) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- · WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset

- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM RESET** Instruction Glitch Filter MCLR WDT Module Sleep or Idle BOR Internal SYSRST Regulator POR VDD Rise Detect Trap Conflict Illegal Opcode Uninitialized W Register Configuration Mismatch

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		—	_		CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	•	o Reset Flag bit					
		onflict Reset ha		. al			
bit 14	•	onflict Reset ha egal Opcode or			ot Elag bit		
JIL 14		al opcode deter			0	lized W registe	er used as a
	•	Pointer caused		gui uuulooo iii			
	0 = An illega	l opcode or unii	nitialized W F	Reset has not o	ccurred		
bit 13-10	-	nted: Read as 'o					
bit 9	•	ration Mismatch	•	agurrad			
		ration mismatcl					
bit 8	•	age Regulator S					
		regulator is activ					
	-	regulator goes i		mode during SI	еер		
bit 7		nal Reset (MCL	,				
		Clear (pin) Res Clear (pin) Res					
bit 6		are Reset (Instru					
		instruction has	, c				
		instruction has					
bit 5		oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
bit 4		hdog Timer Tim	e-out Flag b	it			
		e-out has occur	-	it.			
		e-out has not or					
bit 3	SLEEP: Wak	e-up from Slee	o Flag bit				
		as been in Slee as not been in S					
		up from Idle Fla					
bit 2							
bit 2		as in Idle mode	•				

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

查询释 GISTER 资产 304 保 COM RESET CONTROL REGISTER (1) (CONTINUED)

- bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit

 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

查询PICSystemCReset供应商

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

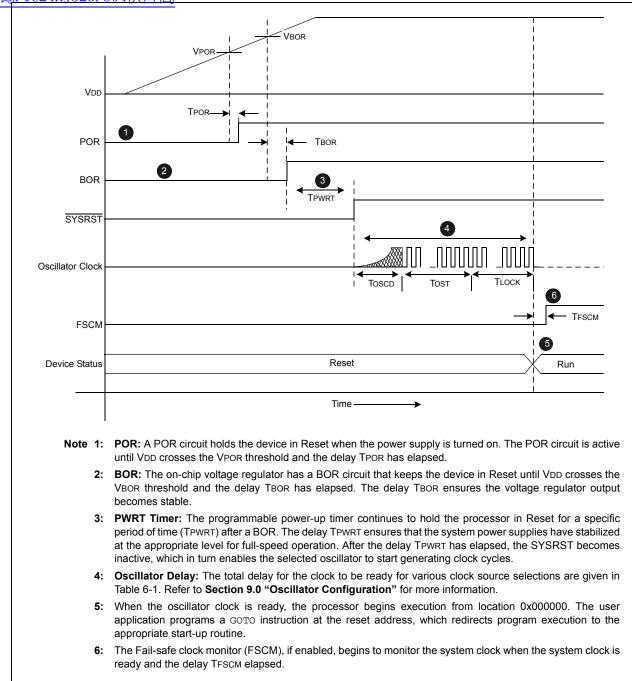
A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay	
FRC, FRCDIV16, FRCDIVN	Toscd	_	_	Toscd	
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK	
XT	Toscd	Tost	—	Toscd + Tost	
HS	Toscd	Tost	—	Toscd + Tost	
EC	—	—	—	—	
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK	
HSPLL	Toscd	Tost	ТLОСК	TOSCD + TOST + TLOCK	
ECPLL	—	—	TLOCK	TLOCK	
Sosc	Toscd	Tost	_	Toscd + Tost	
LPRC	Toscd	—	—	Toscd	


TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

查询**问GURE 632**GP304 (会) 等語M RESET TIMING

Symbol	Parameter	Value		
VPOR	POR threshold	1.8V nominal		
TPOR	POR extension time	30 μs maximum		
VBOR	BOR threshold	2.5V nominal		
TBOR	BOR extension time	100 μs maximum		
TPWRT	Programmable power-up time delay	0-128 ms nominal		
TFSCM	Fail-safe Clock Monitor Delay	900 μs maximum		

TABLE 622HJ326SCH4ATOR DELAY

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.2 Power-on Reset (POR)

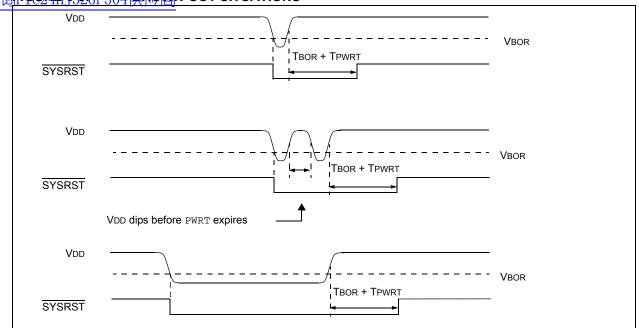
A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 28.0 "Electrical Characteristics"** for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.


The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 25.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

6.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 28.0 "Electrical Characteristics"** for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 25.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

6.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on trap conflict Resets.

查狗PICConfiguration 圳底商atch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to **Section 11.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.8.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.8.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 25.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:	
TRAPR (RCON<15>)	Trap conflict event	POR,BOR	
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR	
CM (RCON<9>)	Configuration Mismatch	POR,BOR	
EXTR (RCON<7>)	MCLR Reset	POR	
SWR (RCON<6>)	RESET instruction	POR,BOR	
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR	
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR	
IDLE (RCON<2>)	LE (RCON<2>) PWRSAV #IDLE instruction		
BOR (RCON<1>)	POR, BOR	—	
POR (RCON<0>)	POR	—	

Note: All Reset flag bits can be set or cleared by user software.

TABLE 6-3: RESET FLAG BIT OPERATION

查询P.OC24HINSTERRUPTCONTROLLER

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 32. "Interrupts (Part III)" (DS70304) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement up to 45 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The microcontroller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

查阅RE74批J32GP.形体热励器GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 INTERRUPT VECTOR TABLE

1	Reset – GOTO Instruction]0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector	-	
	Stack Error Trap Vector		
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
lity	Interrupt Vector 54	0x000080	
Decreasing Natural Order Priority	~]	
L L	~		
ge	~		
Ō	Interrupt Vector 116	0x0000FC	
Iral	Interrupt Vector 117	0x0000FE	
latı	Reserved	0x000100	
Z	Reserved	0x000102	
sin	Reserved		
ea	Oscillator Fail Trap Vector		
ect	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	4	
	~	4	
	~	4	Alternate Intervient Vector Table (AlVT) ⁽¹⁾
		0x000170	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52 Interrupt Vector 53	0x00017C 0x00017E	
	Interrupt Vector 53	0x00017E 0x000180	
		0,000100	
	~	-	
	~	4	
	Interrupt Vector 116		l
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	
Note 1: S	ee Table 7-1 for the list of impleme	ented interrupt v	ectors.
•			

查询和B2eb332GP3N+在R面子 VECTORS

Vector Number	IVT Address	AIVT Address	Interrupt Source		
0	0x000004	0x000104	Reserved		
1	0x000006	0x000106	Oscillator Failure		
2	0x00008	0x000108	Address Error		
3	0x00000A	0x00010A	Stack Error		
4	0x00000C	0x00010C	Math Error		
5	0x00000E	0x00010E	DMA Error		
6	0x000010	0x000110	Reserved		
7	0x000012	0x000112	Reserved		
8	0x000014	0x000114	INT0 – External Interrupt 0		
9	0x000016	0x000116	IC1 – Input Compare 1		
10	0x000018	0x000118	OC1 – Output Compare 1		
11	0x00001A	0x00011A	T1 – Timer1		
12	0x00001C	0x00011C	DMA0 – DMA Channel 0		
13	0x00001E	0x00011E	IC2 – Input Capture 2		
14	0x000020	0x000120	OC2 – Output Compare 2		
15	0x000022	0x000122	T2 – Timer2		
16	0x000024	0x000124	T3 – Timer3		
17	0x000026	0x000126	SPI1E – SPI1 Error		
18	0x000028	0x000128	SPI1 – SPI1 Transfer Done		
19	0x00002A	0x00012A	U1RX – UART1 Receiver		
20	0x00002C	0x00012C	U1TX – UART1 Transmitter		
21	0x00002E	0x00012E	ADC1 – ADC 1		
22	0x000030	0x000130	DMA1 – DMA Channel 1		
23	0x000032	0x000132	Reserved		
24	0x000034	0x000134	SI2C1 – I2C1 Slave Events		
25	0x000036	0x000136	MI2C1 – I2C1 Master Events		
26	0x000038	0x000138	CM – Comparator Interrupt		
27	0x00003A	0x00013A	CN – Change Notification Interrupt		
28	0x00003C	0x00013C	INT1 – External Interrupt 1		
29	0x00003E	0x00013E	Reserved		
30	0x000040	0x000140	IC7 – Input Capture 7		
31	0x000042	0x000142	IC8 – Input Capture 8		
32	0x000044	0x000144	DMA2 – DMA Channel 2		
33	0x000046	0x000146	OC3 – Output Compare 3		
34	0x000048	0x000148	OC4 – Output Compare 4		
35	0x00004A	0x00014A	T4 – Timer4		
36	0x00004C	0x00014C	T5 – Timer5		
37	0x00004E	0x00014E	INT2 – External Interrupt 2		
38	0x000050	0x000150	U2RX – UART2 Receiver		
39	0x000052	0x000152	U2TX – UART2 Transmitter		
40	0x000054	0x000154	SPI2E – SPI2 Error		
41	0x000056	0x000156	SPI2 – SPI2 Transfer Done		
42	0x000058	0x000158	C1RX – ECAN1 RX Data Ready		
43	0x00005A	0x00015A	C1 – ECAN1 Event		
44	0x00005C	0x00015C	DMA3 – DMA Channel 3		
45	0x00005E	0x00015E	Reserved		
46	0x000060	0x000160	Reserved		

TABLE (721H J32NFERRET RECTORS (CONTINUED)

Vector Number	IVT Address	AIVT Address	Interrupt Source
47	0x000062	0x000162	Reserved
48	0x000064	0x000164	Reserved
49	0x000066	0x000166	Reserved
50	0x000068	0x000168	Reserved
51	0x00006A	0x00016A	Reserved
52	0x00006C	0x00016C	Reserved
53	0x00006E	0x00016E	PMP – Parallel Master Port
54	0x000070	0x000170	DMA – DMA Channel 4
55	0x000072	0x000172	Reserved
56	0x000074	0x000174	Reserved
57	0x000076	0x000176	Reserved
58	0x000078	0x000178	Reserved
59	0x00007A	0x00017A	Reserved
60	0x00007C	0x00017C	Reserved
61	0x00007E	0x00017E	Reserved
62	0x000080	0x000180	Reserved
63	0x000082	0x000182	Reserved
64	0x000084	0x000184	Reserved
65	0x000086	0x000186	Reserved
66	0x000088	0x000188	Reserved
67	0x00008A	0x00018A	Reserved
68	0x00008C	0x00018C	Reserved
69	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	0x000090	0x000190	RTCC – Real Time Clock
71	0x000092	0x000192	Reserved
72	0x000094	0x000194	Reserved
73	0x000096	0x000196	U1E – UART1 Error
74	0x000098	0x000198	U2E – UART2 Error
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt
76	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request
79	0x0000A2	0x0001A2	Reserved
80	0x0000A4	0x0001A4	Reserved
81	0x0000A6	0x0001A6	Reserved
82	0x0000A8	0x0001A8	Reserved
83	0x0000AA	0x0001AA	Reserved
84	0x0000AC	0x0001AC	Reserved
85	0x0000AE	0x0001AE	Reserved
86	0x0000B0	0x0001B0	Reserved
87	0x0000B2	0x0001B2	Reserved
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved

查询<mark>??3</mark>C24H**nterrupt**4Control</u> and Status Registers

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-29 in the following pages.

RECISTER	I&2GP3SA供表	EUS TATUS R	EGISTER	(1)			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_		—	_	—	_	—	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
10000	IPL<2:0> ⁽²⁾	10000	RA	N	OV	Z	C
bit 7				•		•	bit C
Legend:							
C = Clear only	bit	R = Readable	bit	U = Unimplen	nented bit, read	l as '0'	
S = Set only bit W = Writable		W = Writable b	oit	-n = Value at POR			
'1' = Bit is set '0' = Bit is clea		'0' = Bit is clea	red	x = Bit is unknown			

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1: "SR: CPU STATUS Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

查询REGISTER262304位 REGISTER (1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV	—	
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	bit	W = Writable I	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	ʻx = Bit is unkr	nown	U = Unimpler	nented bit, read	d as '0'	

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
NSTDIS		_	—	—	_	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
bit 14-7 bit 6 bit 5	DIV0ERR: Ar 1 = Math erro 0 = Math erro DMACERR: I 1 = DMA cont	ted: Read as ' ithmetic Error S or trap was caus or trap was not DMA Controller troller error trap troller error trap	Status bit sed by a divide caused by a di Error Status b has occurred	ivide by zero bit I			
bit 4	MATHERR: A 1 = Math erro	Arithmetic Error or trap has occu or trap has not o	Status bit Irred	iicu			
bit 3	ADDRERR: A	Address Error T error trap has o	rap Status bit ccurred				
		•	ot occurred				
bit 2	0 = Address e STKERR: Sta 1 = Stack erro	error trap has n ack Error Trap s or trap has occ	Status bit urred				
bit 2 bit 1	0 = Address e STKERR: Sta 1 = Stack erro 0 = Stack erro OSCFAIL: Os 1 = Oscillator	error trap has n ack Error Trap \$	Status bit urred occurred Trap Status bi s occurred				

在ECISTERHI32GP3N+CON 商INTERRUPT CONTROL REGISTER 1

查询REGISTER 2G4304 (纳元CON2: INTERRUPT CONTROL REGISTER 2

		-					
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	INT2EP	INT1EP	INT0EP
bit 7						·	bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enal	ole Alternate Int	errupt Vector	Table bit			
	1 = Use alter	nate vector table	e				
	0 = Use stand	dard (default) ve	ector table				
bit 14	DISI: DISI In	struction Status	s bit				
		ruction is active					
		ruction is not a					
bit 13-3	Unimplemen	ted: Read as 'o)'				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect	Polarity Select	t bit		
		on negative edg	•				
	-	on positive edge					
bit 1		ernal Interrupt 1	-	Polarity Select	t bit		
		on negative edg	•				
h it 0		on positive edge			4 h:4		
bit 0		ernal Interrupt 0	0	Polarity Select			
		on negative edg on positive edge					
		on positive euge					

	DMA1IF										
		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF				
R/W-0				1		1	bit				
R/VV-U					DAMO						
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF bit 7	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF bit				
_egend:											
R = Readable		W = Writable		•	nented bit, read						
n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
pit 15	Unimplemer	nted: Read as '	0'								
pit 14	-			Complete Interru	upt Flag Status	bit					
	1 = Interrupt	request has oc	curred		.pr. ag caac						
	•	request has no		·							
pit 13	AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit										
	•	request has oc request has no									
pit 12	-	UTXIF: UART1 Transmitter Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
		request has no									
pit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit										
	 Interrupt request has occurred Interrupt request has not occurred 										
bit 10	-	Event Interrup		sit							
nt TO		request has oc	•	JIL							
		request has no									
oit 9	SPI1EIF: SP	SPI1EIF: SPI1 Error Interrupt Flag Status bit									
		request has oc									
	-	request has no									
bit 8	T3IF: Timer3 Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
oit 7	T2IF: Timer2 Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
pit 6	OC2IF: Outp	ut Compare Ch	annel 2 Interr	upt Flag Status	bit						
		request has oc									
	-	request has no									
bit 5	•	Capture Chann request has oc	•	-lag Status bit							
		request has oc									
oit 4		-		Complete Interru	upt Flag Status	bit					
		request has oc		·	-						
	0 = Interrupt	request has no	t occurred								
bit 3		Interrupt Flag									
		request has oc request has no									

在它的ferHuseGPaps的 Treas Status REGISTER 0

查询REGISTER304供题档NTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF			
pit 15							bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
pit 7	10/11			Ortin	Civin	WILC III	bit			
_egend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
							-			
oit 15	U2TXIF: UA	RT2 Transmitter	Interrupt Flag	Status bit						
		request has oc		-						
	0 = Interrupt	request has not	occurred							
oit 14	U2RXIF: UA	RT2 Receiver Ir	nterrupt Flag S	status bit						
		request has oc								
	•	request has not								
bit 13	INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred									
		request has oc								
pit 12	T5IF: Timer5 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
		request has not								
pit 11	T4IF: Timer4 Interrupt Flag Status bit									
	1 = Interrupt	request has occ	curred							
	0 = Interrupt	request has not	occurred							
oit 10	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit									
		request has oc								
	•	•		unt Elea Statua	hit					
bit 9	OC3IF: Output Compare Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
oit 8	DMA2IF: DN	MA Channel 2 D	ata Transfer C	omplete Interr	upt Flag Status	bit				
	DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt	request has not	occurred							
oit 7	IC8IF: Input Capture Channel 8 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	 o = Interrupt request has not occurred IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 									
oit 6		•	•	lag Status bit						
		t request has occ t request has not								
oit 5	•	nted: Read as '								
bit 4	-	ernal Interrupt 1		t						
		request has oc	-							
		request has not								
bit 3	CNIF: Input	Change Notifica	tion Interrupt F	-lag Status bit						
				0						
	•	request has oc request has not		U						

在它ISTERHIG2GP3PS供应商RRUPT FLAG STATUS REGISTER 1

查询程GISTER269304供新产TERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

套的 FER HT 2-GP 3 PS 生 前 商 RRUPT FLAG STATUS REGISTER 2	

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
_	DMA4IF	PMPIF		_	—	_					
bit 15		•					bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_		—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF				
bit 7							bit (
Legend:			1.11			(0)					
R = Readal		W = Writable		•	nented bit, read						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 13 bit 14	•			omolete Interr	upt Flag Status	hit					
UIL 14		request has oc			upt i lag olatas						
		equest has no									
bit 13	PMPIF: Paral	lel Master Por	t Interrupt Flag	Status bit							
		equest has oc									
	-	equest has no									
bit 12-5	-	nimplemented: Read as '0'									
bit 4	DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit										
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 3	•		ot Flag Status I	_{Dit} (1)							
		request has oc									
		equest has no									
bit 2	C1RXIF: ECA	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit ⁽¹⁾									
		1 = Interrupt request has occurred									
	-	equest has no		.,							
bit 1			t Flag Status b	ot							
		equest has oc equest has no									
bit 0	SPI2EIF: SPI	2 Error Interru	ot Flag Status	bit							
bit 0		2 Error Interru equest has oc	pt Flag Status I curred	bit							

Note 1: Interrupts disabled on devices without ECAN[™] modules.

查询REGISTER 268:304 供 <u>53</u> 商NTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	RTCIF	DMA5IF	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7	-	•		•			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14	RTCIF: Real-	Time Clock and	d Calendar Int	errupt Flag Sta	atus bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt i	equest has not	occurred				
bit 13	DMA5IF: DM	A Channel 5 Da	ata Transfer C	omplete Interr	upt Flag Status	bit	

1 = Interrupt request has occurred

- 0 = Interrupt request has not occurred
- bit 12-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_		_	_	—	_	—	_			
bit 15							bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF				
bit 7						· · · · · · · · · · · · · · · · · · ·	bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at POR '1' = Bit is set		I	'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 5	DMA7IF: DM/ 1 = Interrupt r	equest has no A Channel 7 D equest has oc equest has no	ata Transfer (curred	Complete Interr	upt Flag Status	bit				
bit 4	1 = Interrupt r	A Channel 6 D equest has oc equest has no	curred	Complete Interr	upt Flag Status	bit				
bit 3		Generator Inte equest has oc equest has no	curred	itus bit						
bit 2	U2EIF: UART 1 = Interrupt r	2 Error Interru equest has oc	pt Flag Status curred	s bit						
bit 1	-	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U1EIF: UART1 Error Interrupt Flag Status bit 								

----..... × . .

Note 1: Interrupts disabled on devices without ECAN[™] modules.

0 = Interrupt request has not occurred

Unimplemented: Read as '0'

bit 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-				
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE				
bit 15											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTO				
bit 7	UUZIE	ICZIE	DIVIAULE		OCTIE	ICTIE	INTO				
Legend:											
R = Readable		W = Writable		-	mented bit, rea						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14	-	A Channel 1 D		Complete Inter	rupt Enable bit						
	1 = Interrupt	request enable request not ena	d								
bit 13		1 Conversion C		rupt Enable bit							
		request enable									
bit 12		request not ena RT1 Transmitte		ahle hit							
		request enable									
	0 = Interrupt	request not ena	abled								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
	 I = Interrupt request enabled Interrupt request not enabled 										
bit 10	-	Event Interrup									
		request enable									
bit 9		request not ena I1 Error Interru									
DIL 9		request enable	-								
		request not ena									
bit 8		Interrupt Enab									
		request enable request not ena									
bit 7		Interrupt Enab									
		request enable request not ena									
bit 6	-	ut Compare Ch		upt Enable bit							
		request enable request not ena									
bit 5	IC2IE: Input (Capture Chann	el 2 Interrupt	Enable bit							
		request enable request not ena									
bit 4	-	A Channel 0 D		Complete Inter	rupt Enable bit						
		request enable			- p						
	0 = Interrupt	request not ena	abled								
	TILE, Timori	Interrupt Enab	la hit								
bit 3		request enable									

查底GISTERH7:30GP3**EC0**共的TERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
oit 15		·					bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
pit 7				0	0		bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		T2 Transmitte	•	able bit			
		equest enable equest not ena					
bit 14		RT2 Receiver li		le bit			
		equest enable					
	•	request not ena					
bit 13		nal Interrupt 2 equest enable					
		request enable					
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
		equest enable					
		equest not ena					
bit 11		Interrupt Enab equest enable					
	•	request not enable					
bit 10	-	ut Compare Ch		upt Enable bit			
		equest enable equest not ena					
bit 9	-	ut Compare Ch		upt Enable bit			
		request enable					
bit 8	•	equest not ena		Complete Interr	unt Enable bit		
		request enable					
		request not ena					
bit 7	IC8IE: Input C	Capture Chann	el 8 Interrupt	Enable bit			
		equest enable equest not ena					
bit 6	•	Capture Chann		Enable bit			
	•	equest enable	-				
		equest not ena					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4		nal Interrupt 1					
		equest enable equest not ena					
bit 3		Change Notifica		Enable bit			
		request enable					
		equest not ena					

查底GISTERH7312GP3EC供的商品RUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

查询REGISTER 264 推应2 产 NTERRUPT ENABLE CONTROL REGISTER 2

		<u> </u>					
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IE	PMPIE	—	_	_	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit 0
Legend:							
R = Readab		W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	-	ted: Read as '					
bit 14				Complete Inter	rupt Enable bit		
		equest enable					
L:1 1 0		equest not ena					
bit 13		llel Master Port equest enable					
		request not enable					
bit 12-5		ted: Read as '					
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Inter	rupt Enable bit		
	1 = Interrupt r	equest enable	d	-			
	•	equest has en					
bit 3		Event Interrup)			
		equest enable equest not ena					
bit 2	•	AN1 Receive D		orrunt Enable	hit(1)		
		request enable	•		DIC		
		request not ena					
bit 1	SPI2IE: SPI2	Event Interrup	t Enable bit				
		equest enable					
	-	equest not ena					
bit 0		2 Error Interrup					
		equest enable					
		request not ena	abied				

Note 1: Interrupts disabled on devices without ECAN™ modules

© 2009 Microchip Technology Inc.

在这时后来出现33GP 记忆供应在RRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	RTCIE	DMA5IE	—	_	—	_	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as 'o	0'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar Int	errupt Enable	bit		
		equest enable					
	0 = Interrupt r	equest not ena	abled				

bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit

1 =	Interrupt requ	lest enabled
-----	----------------	--------------

- 0 = Interrupt request not enabled
- bit 12-0 Unimplemented: Read as '0'

查询REGISTER 26 1404 (供应A营NTERRUPT ENABLE CONTROL REGISTER 4

		-					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	<u> </u>	<u> </u>		<u> </u>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_
bit 7						-	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-7	Unimplomon	ted: Read as '	o'				
bit 6	•	N1 Transmit d		torrupt Epoblo	hit(1)		
Dit O		request occurre			DIC		
		request not occ					
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Interr	upt Enable bit		
	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	bled				
bit 4		A Channel 6 D		Complete Interr	upt Enable bit		
		equest enable					
L # 0	•	equest not ena		- :4			
bit 3		Generator Intereguest enable	•	אנ			
		equest enable					
bit 2		2 Error Interru					
		equest enable					
	0 = Interrupt r	equest not ena	bled				
bit 1		⁻ 1 Error Interru					
		equest enable					
		equest not ena					
bit 0	Unimplemen	ted: Read as '	0'				

Note 1: Interrupts disabled on devices without ECAN[™] modules.

© 2009 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		T1IP<2:0>		—		OC1IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		IC1IP<2:0>		—		INT0IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, re	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkn	own					
bit 15	Unimpleme	ented: Read as '	0'									
bit 14-12		Timer1 Interrupt										
	111 = Interi	rupt is priority 7 (highest priori	ty interrupt)								
	•											
	•											
	001 = Interrupt is priority 1											
bit 11	000 = Interrupt source is disabled Unimplemented: Read as '0'											
bit 10-8	-	>: Output Compa		1 Intorrunt Dric	vrity bite							
		rupt is priority 7 (-	JILY DILS							
	•	aprio priority / (ingridet prior	ty monapty								
	•											
	• 001 = Inter	upt is priority 1										
		upt source is dis	abled									
bit 7	Unimpleme	nted: Read as '	0'									
bit 6-4	IC1IP<2:0>	: Input Capture C	Channel 1 Int	errupt Priority	bits							
	111 = Interi	rupt is priority 7 (highest priori	ty interrupt)								
	•											
	•											
		upt is priority 1										
		upt source is dis										
bit 3	-	ented: Read as '										
bit 2-0		External Interi supt is priority 7 (
	⊥⊥⊥ = Interi •	rupt is priority 7 (nignest priori	ty interrupt)								
	•											
	•											
	001 = Interi	upt is priority 1										

001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T2IP<2:0>				OC2IP<2:0>	
bit 15							bi
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC2IP<2:0>		_		DMA0IP<2:0>	
bit 7							bi
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
hit 1E	Unimalama	nted. Dood oo '	, '				
bit 15	-	nted: Read as '					
bit 14-12		Timer2 Interrupt	•				
	⊥⊥⊥ = Interr	upt is priority 7 (I	nignest priori	ity interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	OC2IP<2:0	Output Compa	re Channel	2 Interrupt Prior	rity bits		
	111 = Interr	upt is priority 7 (ł	nighest priori	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 7	Unimpleme	nted: Read as 'o	י)				
bit 6-4	IC2IP<2:0>	Input Capture C	hannel 2 Int	errupt Priority b	oits		
		upt is priority 7 (I					
	•		•				
	•						
	•	unt in priority 1					
		upt is priority 1 upt source is disa	abled				
bit 3		nted: Read as '					
bit 2-0	-	0>: DMA Channe		unefor Complete	Interrunt Driv	ority bite	
		upt is priority 7 (I		•	- menupi Phi	JILY DILO	
	•		iigiicat priori	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					

001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		U1RXIP<2:0>		—		SPI1IP<2:0>						
bit 15					·		bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		SPI1EIP<2:0>		—		T3IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	iown					
bit 15	Unimpleme	nted: Read as '	כ'									
bit 14-12	U1RXIP<2:0	>: UART1 Rece	eiver Interrupt	t Priority bits								
		upt is priority 7 (I	-	-								
	•											
	•											
	• 001 = Interrupt is priority 1											
	001 = Interrupt is priority i											
bit 11	Unimpleme	nted: Read as 'o	o'									
bit 10-8	SPI1IP<2:0>	SPI1 Event In	terrupt Priorit	y bits								
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis	abled									
bit 7	Unimpleme	nted: Read as 'o	כ'									
bit 6-4	SPI1EIP<2:0	0>: SPI1 Error Ir	nterrupt Priori	ity bits								
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
	• 001 = Interri	upt is priority 1										
		upt source is dis	abled									
bit 3	Unimpleme	nted: Read as 'o	כ'									
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits									
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
	•											
	• 001 = Interri	upt is priority 1										

查询REGISTER 261804 (使 23) TERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—		DMA1IP<2:0>	
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>	-	_		U1TXIP<2:0>	-
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as 'c)'				
bit 10-8				nsfer Complete	Interrupt Prior	ity bits	
	111 - Interrur	ot is priority 7 (h	niahest priorit	v interrunt)			
			ingricot priorit	y monupi)			
	• •		ingriest priorit	y monuply			
	• • •		ingricot priorit	y monuply			
	• • • 001 = Interrup	ot is priority 1					
bit 7	• • 001 = Interrup 000 = Interrup		abled	y monopty			
	• • 001 = Interrup 000 = Interrup Unimplemen	ot is priority 1 ot source is disa ted: Read as '0	abled		itv bits		
bit 7 bit 6-4	• • • 001 = Interrup 000 = Interrup Unimplemen AD1IP<2:0>:	ot is priority 1 ot source is disa ted: Read as 'c ADC1 Convers	abled	e Interrupt Prior	ity bits		
	• • • 001 = Interrup 000 = Interrup Unimplemen AD1IP<2:0>:	ot is priority 1 ot source is disa ted: Read as '0	abled	e Interrupt Prior	ity bits		
	• • • 001 = Interrup 000 = Interrup Unimplemen AD1IP<2:0>:	ot is priority 1 ot source is disa ted: Read as 'c ADC1 Convers	abled	e Interrupt Prior	ity bits		
	• • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h	abled	e Interrupt Prior	ity bits		
	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h	abled ,' ion Complete nighest priorit	e Interrupt Prior	ity bits		
	• • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1	abled ,, ion Complete nighest priorit	e Interrupt Prior	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as 'o	abled ,' ion Complete nighest priorit abled	e Interrupt Prior y interrupt)	ity bits		
bit 6-4	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa	abled ion Complete nighest priorit abled	e Interrupt Prior y interrupt) ipt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as 'o : UART1 Trans	abled ion Complete nighest priorit abled	e Interrupt Prior y interrupt) ipt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as 'o : UART1 Trans	abled ion Complete nighest priorit abled	e Interrupt Prior y interrupt) ipt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	ot is priority 1 ot source is disa ted: Read as 'o ADC1 Convers ot is priority 7 (h ot is priority 1 ot source is disa ted: Read as 'o : UART1 Trans ot is priority 7 (h	abled ion Complete nighest priorit abled	e Interrupt Prior y interrupt) ipt Priority bits	ity bits		

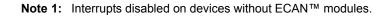
© 2009 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		CNIP<2:0>		_		CMIP<2:0>						
bit 15							bit 8					
	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
U-0	R/W-1	MI2C1IP<2:0>	K/W-U	0-0	FK/ VV- I	SI2C1IP<2:0>	K/W-U					
bit 7		WII20111 \2.02				0120111 \2.02	bit (
Logondi												
Legend: R = Readab	le bit	W = Writable b	oit	U = Unimplei	mented bit re	ad as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own					
				0 2.1.0 0.0			•••••					
bit 15	Unimplem	ented: Read as 'c)'									
bit 14-12	CNIP<2:0>	. Change Notifica	tion Interrup	Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	• 001 = Inter	rrupt is priority 1										
	000 = Interrupt source is disabled											
bit 11	Unimplem	ented: Read as 'o)'									
bit 10-8	CMIP<2:0>: Comparator Interrupt Priority bits											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	• 001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 7		ented: Read as 'o										
bit 6-4	MI2C1IP<2	2:0>: I2C1 Master	Events Inter	rupt Priority bits	3							
	MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 3	Unimplemented: Read as '0'											
bit 2-0	-	SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits										
·		rrupt is priority 7 (h										
	•			• •								
	•											
	•	runt is priority 1										
		rrupt is priority 1										

001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		IC8IP<2:0>				IC7IP<2:0>					
bit 15							bit				
U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
	_	_		_		INT1IP<2:0>					
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown					
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
bit 11	-	nted: Read as '									
bit 10-8	IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • •										
bit 7-3		nted: Read as 'o									
bit 2-0	INT1IP<2:0>: External Interrupt 1 Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										

001 = Interrupt is priority 1 000 = Interrupt source is disabled


U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T4IP<2:0>		_		OC4IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		OC3IP<2:0>				DMA2IP<2:0>						
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown					
bit 15	Unimpleme	nted: Read as '	0'									
bit 14-12	T4IP<2:0>:	T4IP<2:0>: Timer4 Interrupt Priority bits										
	111 = Interru	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•											
	•											
		upt is priority 1										
		000 = Interrupt source is disabled										
bit 11	-	Unimplemented: Read as '0'										
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	111 = Interru •	upt is priority 7 (nignest priori	ity interrupt)								
	•											
	•											
		upt is priority 1 upt source is dis	ahled									
bit 7		nted: Read as '										
bit 6-4	-			3 Interrupt Prior	rity hits							
	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interru	• 001 = Interrupt is priority 1										
		upt source is dis	abled									
bit 3	Unimpleme	nted: Read as '	0'									
bit 2-0		DMA Chann		•	e Interrupt Prio	rity bits						
	111 = Interru	upt is priority 7 (highest priori	ity interrupt)								
	•											
	•											
		upt is priority 1	م ام ا م									
	000 = Interru	upt source is dis	abled									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		U2TXIP<2:0>		—		U2RXIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		INT2IP<2:0>		—		T5IP<2:0>					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkn	iown				
bit 15	Unimpleme	ented: Read as '	כ'								
bit 14-12	U2TXIP<2:	0>: UART2 Trans	smitter Interr	upt Priority bits							
	<pre>111 = Interrupt is priority 7 (highest priority interrupt) .</pre>										
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 11		ented: Read as '									
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
L:1 7		-									
bit 7	-	ented: Read as '		, hite							
bit 6-4		INT2IP<2:0>: External Interrupt 2 Priority bits									
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3		ented: Read as '									
bit 2-0	-	Timer5 Interrupt									
		rupt is priority 7 (I	-	ity interrupt)							
	•	, (5 1	- 1/							
	•										
	• 001 = Inter	rupt is priority 1									
		rupt is priority i									

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		C1IP<2:0> ⁽¹⁾		—		C1RXIP<2:0>(1)							
bit 15	·			·	•		bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
—		SPI2IP<2:0>		—		SPI2EIP<2:0>							
bit 7							bit 0						
Legend:													
R = Readable bit		W = Writable	bit	U = Unimple	mented bit, re	ead as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own						
bit 15	Unimpleme	ented: Read as 'o	0'										
bit 14-12		ECAN1 Event Ir	•	•									
	111 = Inter	 111 = Interrupt is priority 7 (highest priority interrupt) • 											
	•												
	•												
		rupt is priority 1 rupt source is dis	abled										
bit 11	Unimpleme	ented: Read as '	0'										
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits ⁽¹⁾												
	111 = Inter	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•												
	•												
		rupt is priority 1 rupt source is dis	abled										
bit 7	Unimpleme	ented: Read as '	0'										
bit 6-4	SPI2IP<2:0	>: SPI2 Event In	terrupt Priori	ty bits									
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interrupt is priority 1												
L# 0	000 = Interrupt source is disabled												
bit 3	-	Unimplemented: Read as '0' SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits											
bit 2-0		rupt is priority 7 (I											
	•		ingricot priori										
	•												
	•												
	$()() = ini\Delta n$	rupt is priority 1											

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—	—	—	—	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_		—	—	_	DMA3IP<2:0>			
bit 7				•	•		bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_		—		DMA4IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_		PMPIP<2:0>		_	_	_					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-11	Unimpleme	nted: Read as '	0'								
bit 10-8	DMA4IP<2:	0>: DMA Chann	el 4 Data Tra	nsfer Complete	Interrupt Priori	ty bits					
	111 = Interr	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•										
	•	•									
	001 = Interr	001 = Interrupt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 7	Unimpleme	nted: Read as '	0'								
bit 6-4	PMPIP<2:0	>: Parallel Maste	er Port Interru	pt Priority bits							
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•	•									
	•										
	• 001 = Interrupt is priority 1										
	001 = Interr	upt is priority 1									

bit 3-0 Unimplemented: Read as '0'

查询REGISTER 262604 供应1窗 INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	_	_		_		RTCIP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_		DMA5IP<2:0>		—	—	—	_					
bit 7							bit C					
Legend:												
R = Readable bit W = Writable bit				U = Unimpler	mented bit, rea	d as '0'						
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown						
bit 15-11	Unimplemented: Read as '0'											
bit 10-8	RTCIP<2:0>	RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Flag Status bits										
	111 = Interr	11 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 7	Unimpleme	nted: Read as 'o)'									
bit 6-4	DMA5IP<2:	0>: DMA Channe	el 5 Data Tra	nsfer Complete	Interrupt Prior	ity bits						
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•	•										
	•	•										
		upt is priority 1 upt source is disa	hlad									
hit 2 0		•										
bit 3-0	Unimplemented: Read as '0'											

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		CRCIP<2:0>		_		U2EIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_		U1EIP<2:0>		—	—	_	_				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-12	CRCIP<2:0	>: CRC Generat	or Error Inter	rupt Flag Priorit	y bits						
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)							
	•										
	•										
	001 = Interrupt is priority 1										
		upt source is dis	abled								
bit 11	Unimpleme	ented: Read as '	0'								
bit 10-8	U2EIP<2:0	>: UART2 Error I	nterrupt Prior	rity bits							
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is priority 1										
		upt source is dis	abled								
		ented: Read as '									
bit 7	U1EIP<2:0>: UART1 Error Interrupt Priority bits										
	U1EIP<2:0>	>: UART1 Error I	nterrupt Prior	rity bits							
		>: UART1 Error I rupt is priority 7 (
bit 7 bit 6-4	111 = Interr • •										

bit 3-0

Unimplemented: Read as '0'

查询REGISTER 2G2804 供应1 窗 INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_	(C1TXIP<2:0> ⁽¹⁾					
bit 15		·			•		bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		DMA7IP<2:0>		_		DMA6IP<2:0>	bit				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15-11	Unimpleme	ented: Read as 'o)'								
bit 10-8	C1TXIP<2:	C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits ⁽¹⁾									
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
		upt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 7	Unimpleme	ented: Read as 'o)'								
bit 6-4	DMA7IP<2:	0>: DMA Channe	el 7 Data Tra	nsfer Complete	Interrupt Priori	ty bits					
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 3	Unimpleme	ented: Read as 'o)'								
bit 2-0	DMA6IP<2:	DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits									
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
		upt is priority 1									
		upt source is dis									

Note 1: Interrupts disabled on devices without ECAN[™] modules.

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0									
_	_	—	_		ILF	२<3:0>										
bit 15	·	·		·			bit									
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0									
—				VECNUM<6:0	>											
bit 7							bit									
Legend:																
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'										
-n = Value at POR '1' = Bit is se		'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared x = Bit is unknown											
			_													
bit 15-12	-	nted: Read as '														
bit 11-8	ILR: New CPU Interrupt Priority Level bits															
	1111 = CPU Interrupt Priority Level is 15															
	•															
	•															
	• 0001 = CPU Interrupt Priority Level is 1															
	0000 = CPU Interrupt Priority Level is 0															
bit 7		ted: Read as '	•													
bit 6-0	VECNUM: Vector Number of Pending Interrupt bits															
	0111111 = Interrupt Vector pending is number 135															
	•															
	•															
		nterrupt Vector					0000001 = Interrupt Vector pending is number 9									

0000000 = Interrupt Vector pending is number 8

查询P4C24Hnterrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

查**约JES**C24HJ32GP304供应商

查询**8:0**C24i**DIRECT4MEMO**RY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "Direct Memory Access (DMA) (Part III)" (DS70309) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

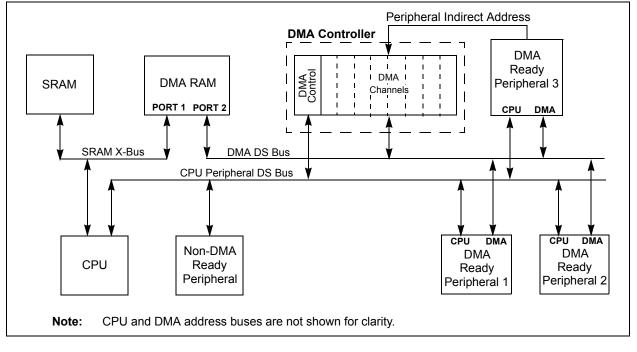
Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

TABLE 0-1. DIVIA CHAINNEL TO FERIFIERAL ASSOCIATIONS			
Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read from Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	—
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 Convert Done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—
PMP – Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

查询 PM2 4 倾 的 2 @ 你 3 @ 4 钟 感 商 g ht identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Eight DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

查询8·1C24HDMACP Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAxSTA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0								
CHEN	SIZE	DIR	HALF	NULLW	_	_									
bit 15							bit								
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0								
	—	— AMODE<1:0> — — MODE<1:03													
bit 7							bit								
Legend:															
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'									
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown								
bit 15		nel Enable bit													
	1 = Channel (0 = Channel (
bit 14		ransfer Size bit	t												
	1 = Byte														
	0 = Word														
bit 13	DIR : Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address														
			•												
bit 12	0 = Read from peripheral address, write to DMA RAM address														
	•	 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 													
				pt when all of th											
bit 11	NULLW: Null	Data Peripher	al Write Mode	e Select bit											
			eral in additio	n to DMA RAM	write (DIR bit i	must also be cle	ar)								
hit 10 C	0 = Normal o		o'												
bit 10-6 bit 5-4	-	ted: Read as '		Mode Select bits											
DIL 3-4															
	 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 														
		r Indirect without													
		r Indirect with F		nt mode											
	-	ted: Read as '		ada Calaat hita											
bit 3-2	MODE<1:0>: DMA Channel Operating Mode Select bits														
bit 3-2 bit 1-0					nsfer from/to	 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 									
	11 = One-Sh	ot, Ping-Pong r	modes enable	ed (one block tra	nsfer from/to	each DMA RAM	buffer)								

查询PIC24HJ32GP304供应商 REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾	—	—	—	_	—	_	—			
bit 15					•		bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
—	IRQSEL<6:0> ⁽²⁾									
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	J = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15	1 = Force a s	e DMA Transfe ingle DMA tran DMA transfer	sfer (Manual i							
bit 14-7	Unimplemen	ted: Read as 'd	כ'							
bit 6-0	IRQSEL<6:0	>: DMA Periphe	eral IRQ Num	ber Select bits	(2)					
	0000000-112	11111 = DMAI	RQ0-DMAIRC	127 selected t	to be Channel D	MAREQ				
Noto 1: T	ha EORCE hit a	annat ha alaar	ad by the use	r The EODOE	bit is cleared b	w bordworo wk	oon the forced			

- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

查询PIC24HJ32GP304供应商 REGISTER 8-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-4: DMAXSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as				ad as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unki			nown	

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

查询PIC24HJ32GP304供应商 REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	_	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - **2:** Number of DMA transfers = CNT<9:0> + 1.

THE RISTER BIT 2GP DOM GO SO BOMA	CONTROLLER STATUS REGISTER 0

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0			
oit 15							bit 8			
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0			
pit 7	XWCOLU	XWCOLJ	XWCOL4	XWCOLS	XWCOLZ	XWCOLI	bit (
Legend:				C = Cle	ear only bit					
R = Readable	• hit	W = Writable	hit		mented bit, rea	ad as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cl		x = Bit is unki	nown			
iii valao at		1 Bit io oot		e Bitleoi	curcu					
bit 15		nannel 7 Periph	neral Write Co	llision Flag bit						
		 1 = Write collision detected 0 = No write collision detected 								
bit 14	PWCOL6: Ch	nannel 6 Periph	neral Write Co	llision Flag bit						
		ision detected	ad							
bit 13	 0 = No write collision detected PWCOL5: Channel 5 Peripheral Write Collision Flag bit 									
	1 = Write collision detected									
	0 = No write o	collision detect	ed							
bit 12	PWCOL4: Channel 4 Peripheral Write Collision Flag bit									
		ision detected collision detect	ed							
bit 11	PWCOL3: Channel 3 Peripheral Write Collision Flag bit									
	1 = Write collision detected									
		collision detect								
bit 10	PWCOL2: Channel 2 Peripheral Write Collision Flag bit									
	1 = Write collision detected 0 = No write collision detected									
bit 9		nannel 1 Periph		llision Flag bit						
		ision detected		inclose r lag bit						
	0 = No write collision detected									
bit 8	PWCOL0: Ch	nannel 0 Periph	neral Write Co	llision Flag bit						
	 1 = Write collision detected 0 = No write collision detected 									
bit 7				Iliaion Eloa bit						
		nannel 7 DMA l ision detected		niision riay bi	L					
		collision detect	ed							
bit 6	XWCOL6: Ch	nannel 6 DMA I	RAM Write Co	Ilision Flag bit	t					
		ision detected collision detected	ed							
bit 5		nannel 5 DMA		llision Flag bit	t					
		ision detected								
		collision detect								
bit 4		nannel 4 DMA	RAM Write Co	llision Flag bit	t					
		ision detected collision detect	he							

查询REGISTER 304 (DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
—		_	—		LSTC	H<3:0>						
oit 15	L. C.	4	4				bit 8					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	nannel Active I	bits								
	1111 = No D	MA transfer ha	is occurred sir	nce system Res	set							
		1111 = No DMA transfer has occurred since system Reset 1110-1000 = Reserved										
	0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6											
	0101 = Last data transfer was by DMA Channel 5											
	0100 = Last data transfer was by DMA Channel 4											
	0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2											
	0001 = Last data transfer was by DMA Channel 1											
	0000 = Last (data transfer w	as by DMA Cl	hannel 0								
bit 7	PPST7: Channel 7 Ping-Pong Mode Status Flag bit											
	1 = DMA7STB register selected 0 = DMA7STA register selected											
bit 6		nnel 6 Ping-Po		ıs Elan hit								
		-	-	is Flag bit								
	1 = DMA6STB register selected 0 = DMA6STA register selected											
bit 5	PPST5: Char	nnel 5 Ping-Po	ng Mode Statu	us Flag bit								
		B register sele A register sele										
bit 4		nnel 4 Ping-Po		is Flag bit								
		B register sele	-	IS I lag bit								
		A register sele										
bit 3	PPST3: Char	nnel 3 Ping-Po	ng Mode Statu	us Flag bit								
		B register sele										
		A register sele										
bit 2		nnel 2 Ping-Po	-	is Flag bit								
		B register sele A register sele										
bit 1		nnel 1 Ping-Po		us Flag bit								
		B register sele	-	- 0								
		A register sele										
bit 0	PPST0: Char	nnel 0 Ping-Po	ng Mode Statu	us Flag bit								

查询REGISTER 26-9304 做实本 了 MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAE	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	t	U = Unimplemen	ted bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

查**约JES**C24HJ32GP304供应商

查询**9.0**C24i**QSCiL:0A开QR**商 CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Oscillator (Part III)" (DS70308) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 OSCILLATOR SYSTEM DIAGRAM

10 PIC PUJ Clocking System

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 25.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Configuration Select bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

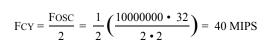
查询\$P.1.324HJ FLAP GONEL GLEATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

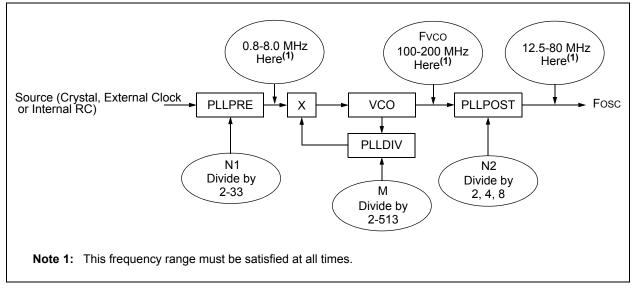
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:


EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

FIGURE 9-2: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PLL BLOCK DIAGRAM

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	-
Primary Oscillator (XT)	Primary	01	010	-
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 921H13 CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

查询REGISTER 39 P304 (SC CON: OSCILLATOR CONTROL REGISTER (1)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
—		COSC<2:0>				NOSC<2:0> ⁽²⁾			
bit 15							bit 8		
D /// 0				D /0.0		D 444 0	DAMA		
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0		
CLKLOC	K IOLOCK	LOCK	—	CF	_	LPOSCEN	OSWEN		
bit 7							bit 0		
Legend:		y = Value set	from Configu	ration bits on P	OR	C =	Clear only bit		
R = Reada	ble bit	W = Writable	-		mented bit, rea	ad as '0'	-		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 15	-	ted: Read as '							
bit 14-12				bits (read-only	r)				
		C oscillator (FF C oscillator (FF							
		y oscillator (XT	,						
	011 = Primar	y oscillator (XT	, HS, EC) with	ו PLL					
		dary oscillator							
		ower RC oscilla C oscillator (FF	· · · ·	e-bv-16					
	110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n								
bit 11	Unimplemen	ted: Read as '	0'						
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bit	s ⁽²⁾					
		C oscillator (FF							
		001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC)							
		D11 = Primary oscillator (XT, HS, EC) with PLL							
		00 = Secondary oscillator (Sosc)							
		ower RC oscilla C oscillator (FF		e by 16					
		C oscillator (FF							
bit 7		Clock Lock Ena	-						
				disabled, (FO		= 0b01)			
				lock source is		av ala alt avvitabias	_		
bit 6		ipheral Pin Se	-	IOCK SOURCE CAI	n be modilled i	oy clock switching	J		
DILO				to peripheral p	in select reaist	ers not allowed			
						gisters allowed			
bit 5	LOCK: PLL L	ock Status bit	(read-only)						
				tart-up timer is					
1.11.4				-up timer is in I	progress or PL	L IS disabled			
bit 4	•	ted: Read as '							
bit 3		il Detect bit (re as detected clo		oplication)					
		as not detected clo							
Note 1:	Writes to this regi								
	in the "dsPIC33F	-			the Microchip	-			

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

BEGISTER 1912 GP 308 COMEOSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	 1 = Enable secondary oscillator
	 Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 39. "Oscillator (Part III)" (DS70308) in the "dsPIC33F Family Reference Manual" (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

查询REGISTER 29-2304 (如文商V: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>						
bit 15							bit 8					
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	OST<1:0>				PLLPRE<4:0>	>						
bit 7							bit 0					
Legend:			from Config	uration bits on PC								
R = Readab	la hit	y – value set W = Writable	-									
			UIL	U = Unimplem								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own					
64.4 F												
bit 15		er on Interrupt bi		41	- <i>(</i>	ala ala antia in an						
		its have no effect		the processor clo ZEN bit	ock/periprieral	CIOCK TALIO IS SE						
bit 14-12	•	: Processor Cloo										
	000 = Fcy/1											
	001 = FCY/2	2										
		010 = FCY/4										
		011 = FCY/8 (default)										
		100 = FCY/16 101 = FCY/32										
		110 = FCY/64										
	111 = FCY/1											
bit 11	DOZEN: DC	ZE Mode Enabl	e bit ⁽¹⁾									
		2:0> field specifi sor clock/periphe		between the perip o forced to 1:1	oheral clocks a	and the process	or clocks					
bit 10-8	FRCDIV<2:0	0>: Internal Fast	RC Oscillate	or Postscaler bits								
		divide by 1 (defa	ult)									
	001 = FRC (•										
		010 = FRC divide by 4										
		011 = FRC divide by 8 100 = FRC divide by 16										
		101 = FRC divide by 32										
	110 = FRC (•										
	111 = FRC (divide by 256										
bit 7-6	PLLPOST<	1:0>: PLL VCO (Output Divid	er Select bits (als	o denoted as	'N2', PLL posts	caler)					
	00 = Output											
		01 = Output/4 (default)										
		10 = Reserved 11 = Output/8										
bit 5		nted: Read as '	י,									
bit 4-0	-			ut Divider bits (als	so denoted as	'N1' PLL preso	aler)					
Sit 1 0		out/2 (default)										
	•											
	•											
	•											
	11111 = I np	out/33										
	mb											

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

RECISTERIO	[3 2GP 304 (≢		DBACK DI	ISOR REGIS	TER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	—		—	_	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLC	0IV<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-9 **Unimplemented:** Read as '0'

bit 8-0

查询REGISTER 394304 做变面N: FRC OSCILLATOR TUNING REGISTER

		_					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
		nter frequency					
	011110 = Ce	nter frequency	+11.25% (8.2	0 MHz)			
	•						
	•						
		nter frequency					
		nter frequency					
	111111 = Ce	nter frequency	-0.375% (7.34	45 MHz)			
	•						
	•						
		nter frequency					
	100000 = Ce	nter frequency	-12% (6.49 N	lHz)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

2 2 PIC Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 25.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 39. "Oscillator (Part III)" (DS70308) in the "dsPIC33F Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

查询f0.024HPOWER4SAVING FEATURES

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power Savings Modes" (DS70236) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

查这21C240UB2MOB0E4供应商

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2 to 4 cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific PIC MCU variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-(
T5MD	T4MD	T3MD	T2MD	T1MD	—	_			
bit 15	I.								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W		
12C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD	AD1		
bit 7	OZIND	OTMD		GITTWD		OIND			
Legend:									
R = Readabl		W = Writable		U = Unimplem					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown		
bit 15	T5MD: Timer	5 Module Disal	ole bit						
		odule is disable							
bit 14		4 Module Disal							
	1 = Timer4 m	odule is disable	ed						
bit 13		3 Module Disal							
	1 = Timer3 m	odule is disable							
bit 12	T2MD: Timer	T2MD: Timer2 Module Disable bit							
	1 = Timer2 m	odule is disable	ed						
	0 = Timer2 module is enabled								
bit 11	-	T1MD: Timer1 Module Disable bit							
	-	odule is disable odule is enable							
bit 10-8	Unimplemen	ted: Read as '	0'						
bit 7		1 Module Disat	ole bit						
		ule is disabled ule is enabled							
bit 6	U2MD: UART	2 Module Disa	ıble bit						
		nodule is disabl nodule is enable							
bit 5	U1MD: UART	1 Module Disa	ble bit						
	-	nodule is disabl nodule is enable							
bit 4	SPI2MD: SPI	2 Module Disa	ble bit						
		dule is disabled dule is enabled							
bit 3	SPI1MD: SPI	1 Module Disa	ble bit						
		dule is disabled dule is enabled							
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	C1MD: ECAN	N1 Module Disa	able bit						
	-	nodule is disabl nodule is enabl							
bit 0		C1 Module Disa	ahle hit						

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
IC8MD	IC7MD	_	—	—	—	IC2MD	IC1MD					
bit 15	·					•	bit					
				DA440	D 4 4 4	D 444 0	544/0					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
 bit 7	_	—	—	OC4MD	OC3MD	OC2MD	OC1MD bit					
							bit					
Legend:												
R = Readab	ole bit	W = Writable	e bit	U = Unimplem	ented bit, read	l as '0'						
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown					
				.,								
bit 15	•	•	odule Disable b	It								
		 1 = Input Capture 8 module is disabled 0 = Input Capture 8 module is enabled 										
bit 14		IC7MD: Input Capture 2 Module Disable bit										
	1 = Input Capture 7 module is disabled											
	0 = Input Capture 7 module is enabled											
bit 13-10	Unimplemen	ted: Read as	'0'									
bit 9		•	odule Disable b	it								
		oture 2 module oture 2 module										
bit 8	IC1MD: Input Capture 1 Module Disable bit											
		oture 1 module oture 1 module										
bit 7-4	Unimplemen	ted: Read as	' 0 '									
bit 3	OC4MD: Out	put Compare	4 Module Disab	ole bit								
			lule is disabled lule is enabled									
bit 2	OC3MD: Out	ID: Output Compare 3 Module Disable bit										
1 = Output Compare 3 module is disabled 0 = Output Compare 3 module is enabled												
bit 1			2 Module Disab	ole bit								
			lule is disabled lule is enabled									
bit 0			1 Module Disab	ole bit								
			lule is disabled									
		ompore 1 med	lule is enabled									

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	2 10-3 04(PMD)			E DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	_	—	CMPMD	RTCCMD	PMPMD
bit 15							bit
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	_	_	_	_		_
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 10	1 = Comparat	nparator Modul or module is di or module is e	sabled				
bit 9	1 = RTCC mc	CC Module Di odule is disable	d				
bit 8	PMPMD: PMI	P Module Disal	-				
	0 = PMP mod	lule is enabled					
bit 7	CRCMD: CRC Module Disable bit 1 = CRC module is disabled 0 = CRC module is enabled						
bit 6	1 = DAC1 mo	AC1 Module Dis dule is disable dule is enabled	d				

查

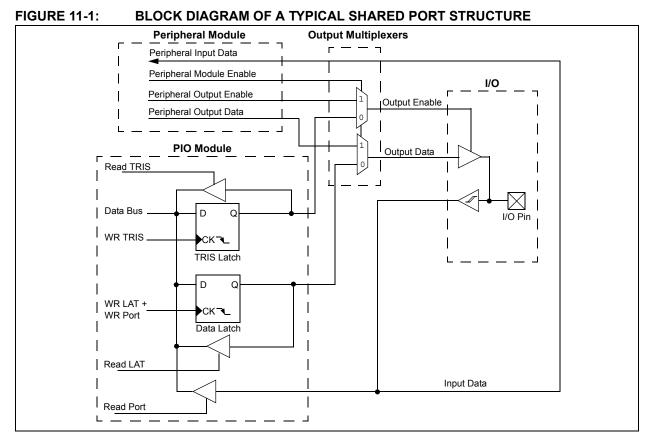
bit 5-0 Unimplemented: Read as '0' 查**约JES**C24HJ32GP304供应商

查询**11.0**24H/**92BORT**条应商

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70230) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2009 Microchip Technology Inc.

anaprice of the second second

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/ X04 and PIC24HJ128GPX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV MOV	0xFF00, W0 W0, TRISBB	;	Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP btss	PORTB, #13		Delay 1 cycle Next Instruction

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

查询和624股eripheral 提前 Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

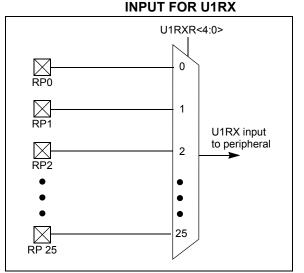
11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.6.2.1 Input Mapping

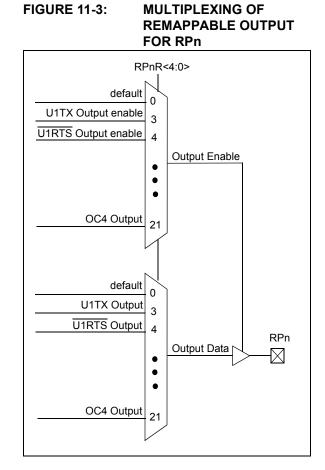
The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-14). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings. Therefore,
	when configuring the RPx pin for input, the
	corresponding bit in the TRISx register
	must also be configured for input (i.e., set
	to '1').

FIGURE 11-2: REMAPPABLE MUX

TABLE (1241113 SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)


Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

查询归6241320499414999999

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-15 through Register 11-27). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1	01000	RPn tied to SPI1 Clock Output
SS1	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2	01011	RPn tied to SPI2 Clock Output
SS2	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4

© 2009 Microchip Technology Inc.

查询BIC240QNIBOU44版文例FIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24H devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value) See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

查询知 224 Peripheral 理前 Select Registers

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family of devices implement 27 registers for remappable peripheral configuration:

- 14 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11, RPINR18-RPINR23 and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Input ar	nd Output	t Re	gister	valu	es can	only
	be ch	nanged	if	the	IOL	OCK	bit
	(OSCC	ON<6>)	is	set	to	'0'.	See
	Section	n 11.6.3.1		"Cont	rol	Reg	ister
	Lock"	for a spec	cific	comm	and	seque	nce.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss 11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1 00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

TER 132GP REINRY RECEIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—		—
bit 15		·		-			bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT2R<4:0>		
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

	•
11111 =	Input tied to Vss
11001 =	Input tied to RP25
•	

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

查询REGISTER 20123:04 保护IN密3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_				T3CKR<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	0-0	0-0	FX/ VV- I	FX/ VV- 1	T2CKR<4:0		DV VV- I
bit 7					1201010-4.0	-	bit (
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	11001 = Inpu • •	it tied to RP25					
	00001 = Inpu 00000 = Inpu						
bit 7-5	Unimplemen	ted: Read as 'o)'				
bit 4-0	11111 = Inp u	: Assign Timer2 It tied to Vss It tied to RP25	2 External Clo	ock (T2CK) to t	he correspond	ling RPn pin	
	• 00001 = Inpu 00000 = Inpu						

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T5CKR<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				1000	T4CKR<4:0		
bit 7							bit C
Legend:							
R = Readabl	le hit	W = Writable	bit	LI = LInimpler	nented bit, rea	ad as 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
bit 15-13	Unimplement	ed: Read as	0'				
	-						
bit 12-8		•	5 External Cl	ock (T5CK) to tl	ne correspond	ing RPn pin	
	11111 = Input						
	11001 = Input	11e0 10 RP25					
	11001 = Input •						
	11001 = Input • •						
	11001 = Input • •	l lied to RP25					
	11001 = Input • • • • • •						
	•	tied to RP1					
bit 7-5	• • 00001 = Input	t tied to RP1 t tied to RP0					
	• • • • • • • • • • • • • • • • • • •	t tied to RP1 t tied to RP0 red: Read as t	0'	ock (T4CK) to tl	ne correspond	ing RPn pin	
	• • • • • • • • • • • • • • • • • • •	t tied to RP1 t tied to RP0 red: Read as Assign Timer t tied to Vss	o' 4 External Cl	ock (T4CK) to tl	ne correspond	ing RPn pin	
	• • • • • • • • • • • • • • • • • • •	t tied to RP1 t tied to RP0 red: Read as Assign Timer t tied to Vss	o' 4 External Cl	ock (T4CK) to tl	ne correspond	ing RPn pin	
bit 7-5 bit 4-0	• • • • • • • • • • • • • • • • • • •	t tied to RP1 t tied to RP0 red: Read as Assign Timer t tied to Vss	o' 4 External Cl	ock (T4CK) to tl	ne correspond	ing RPn pin	

00001 = Input tied to RP1 00000 = Input tied to RP0

查询REGISTER20195:04 (RPINE7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_		_			IC2R<4:0>						
bit 15	·						bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_		_			IC1R<4:0>	R<4:0>					
bit 7							bit C				
Legend:											
R = Readab	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown				
	11111 = Inpu 11001 = Inpu •	It tied to RP25									
		00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimplemen	ted: Read as 'o)'								
bit 4-0	11111 = Inpu 11001 = Inpu •	ut tied to RP25	oture 1 (IC1)	to the correspo	onding RPn pir	1					
	00001 = Inpu 00000 = Inpu										

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	_			IC8R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	—			IC7R<4:0>		
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		e bit	U = Unimplei	mented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is se	'0' = Bit is cleared			x = Bit is unkr	nown
		out tied to Vss out tied to RP25					
	• • • 00001 = Inp	out tied to RP1					
bit 7-5	• • 00001 = Inp 00000 = Inp						

查询REGISTER 201P2:04供应N密11: PERIPHERAL PIN SELECT INPUT REGISTER 11

		-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	—	—	— OCFAR<4:0>						
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-5	Unimplemen	ted: Read as 'o)'						
bit 4-0	OCFAR<4:0>	: Assign Outpu	t Compare A	(OCFA) to the	corresponding l	RPn pin			

OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresp
11111 = Input tied to Vss
11001 = Input tied to RP25
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	-				U1CTSR<4:0		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		—			U1RXR<4:0>	•	
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		it	U = Unimple	mented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
	11001 = Inj • • • • • •	out tied to Vss out tied to RP25 out tied to RP1 out tied to RP0					
bit 7-5	Unimpleme	ented: Read as '0	,				
bit 4-0	11111 = In	D>: Assign UART1 put tied to Vss put tied to RP25	Receive (U	1RX) to the co	rresponding RF	n pin	

查询REGISTER 20199:04 供用INE 19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	_				U2CTSR<4:0)>					
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	_				U2RXR<4:0	>					
bit 7							bit C				
Legend:											
R = Readab	ole bit	W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				ared	x = Bit is unkr	nown					
	•										
	•	• 00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimplemen	ted: Read as '	0'								
bit 4-0	U2RXR<4:0>	: Assign UART	2 Receive (U2	2RX) to the co	rresponding R	Pn pin					
	11111 = Inpu 11001 = Inpu	It tied to Vss It tied to RP25									
	•										
	•										
	00001 = Inpu 00000 = Inpu										

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_					SCK1R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			SDI1R<4:0>		
bit 7		· · ·					bit C
Legend:							
R = Readable bit W = Writable bit U = Unimplemente		mented bit, rea	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	11001 = Inj • • • • • •	put tied to Vss put tied to RP25 put tied to RP1 put tied to RP0					
bit 7-5	Unimpleme	ented: Read as '0'					
bit 4-0	11111 = In	Assign SPI1 Da put tied to Vss put tied to RP25	ta Input (SD	11) to the corre	esponding RPn	pin	

查询REGISTER 2012的4 保护IN密21: PERIPHERAL PIN SELECT INPUT REGISTER 21

		-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	—	—	— SS1R<4:0>						
bit 7		•					bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at I	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is u			nown		
bit 15-5	Unimplemen	ted: Read as 'o)'						
bit 4-0	SS1R<4:0>: /	Assign SPI1 Sla	ave Select Inp	out (SS1) to the	e corresponding	RPn pin			
	11111 - Innu								

00000 = Input tied to RP0

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_			SCK2R<4:0	>	
oit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				1000	SDI2R<4:0		
oit 7							bit C
Legend:							
R = Readable bit W = Writable I		bit	•	nented bit, rea			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 12-8 bit 7-5	11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	>: Assign SPI2 (ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as '0		SCK2) to the co	rresponding F	Pn pin	
bit 4-0	•	: Assign SPI2 D)(2) to the corre	sponding PDr	nin	
511 +-0	11111 = Inp	ut tied to Vss ut tied to RP25				μn	
	•						

00001 = Input tied to RP1 00000 = Input tied to RP0

查询REGISTER 2012 13:4 供用INE 23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	_		—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	_	—	SS2R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	= Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • •

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	_	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	—		C1RXR<4:0>						
bit 7	•	•	•				bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-5	Unimplemen	ted: Read as 'o	0'							
bit 4-0	C1RXR<4:0>	: Assign ECAN	11 Receive (C	1RX) to the co	rresponding RP	n pin				
	11111 = Inpu	t tied to Vss								
	11001 = Inpu	t tied to RP25								
	•									

• • • 00001 = Input tied to RP1 • 00000 = Input tied to RP0

Note 1: This register is disabled on devices without ECAN[™] modules.

TERINA SP RECEIPTERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP1R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP0R<4:0>	•	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	ble bit U = Unimplemented bit, read as '0'			ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknowr		nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

查询REGISTER 44 4 中 0 克 : PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7		·					bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = E		x = Bit is unkr	iown	

- bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

© 2009 Microchip Technology Inc.

TER HU 249 P REORE FERIPHERAL PIN SELECT OUTPUT REGISTERS 4

-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is un			x = Bit is unkr	nown
R = Readable I	oit	W = Writable t	able bit U = Unimplemented bit, read as '0'			id as '0'	
Legend:							
bit 7							bit C
	—	—			RP8R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
_	_	_			RP9R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for peripheral function numbers)

查询REGISTER 24 20204 供应底: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP13R<4:0>				
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP12R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
R = Readable b				U = Unimplemented bit, read as '0' '0' = Bit is cleared $x = Bit$ is unknow		nown	

- bit 12-8 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

© 2009 Microchip Technology Inc.

在这时在中国地名第一天中日本部产ERIPHERAL PIN SELECT OUTPUT REGISTERS 8(1)

-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
Legend:								
bit 7							bit (
	_	_	RP16R<4:0>					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
_	—		RP17R<4:0>					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 12-8**RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for
peripheral function numbers)bit 7-5**Unimplemented:** Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_			RP19R<4:0>				
bit 15	·						bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—	RP18R<4:0>						
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unkr	iown			
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8		Peripheral Ou ction numbers	•	is Assigned to	RP19 Output I	Pin bits (see Tat	ble 11-2 for		
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	RP18R<4:0>:	Peripheral Ou	RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for						

Note 1: This register is implemented in 44-pin devices only.

peripheral function numbers)

查询REGISTER 201-2524 供应商 0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 10⁽¹⁾

		—		RP21R<4:0>				
bit 15							bit 8	
			DAMA	DAMA	DAMA	DAMO	DAMO	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—		RP20R<4:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cle	x = Bit is unkr	Bit is unknown			

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	RP23R<4:0>				
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—	RP22R<4:0>				
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTERIU			RAL PIN S	ELECT OUT	OT REGIST	ERS 12(1)	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP25R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP24R<4:0	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknow			nown	

在它ISTERHU326PRFORT2产ERIPHERAL PIN SELECT OUTPUT REGISTERS 12⁽¹⁾

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

查询**12.0**24HJIMER104供应商

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70244) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

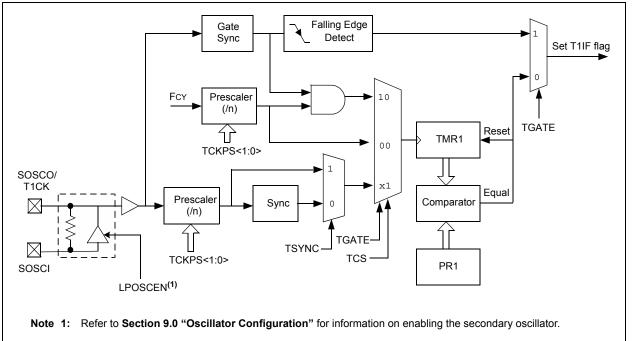
The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated timer	0	1	х
Synchronous counter	1	x	1
Asynchronous counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTERH	232GP30400			EGISTER					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON	—	TSIDL	_	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
0-0	TGATE	TCKPS		0-0	TSYNC	TCS	0-0		
 bit 7	IGAIE	TUKFS	5<1.02	_	ISTNC	103	bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	TON: Timer1	On bit							
	1 = Starts 16-								
	0 = Stops 16-								
bit 14	Unimplemen	ted: Read as '	כ'						
bit 13		in Idle Mode bit							
		ue module operation			lle mode				
bit 12-7	 0 = Continue module operation in Idle mode Unimplemented: Read as '0' 								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit								
	When T1CS =								
	This bit is igno								
	When T1CS =	= 0:							
		e accumulatior							
		e accumulatior							
bit 5-4		: Timer1 Input	Clock Presca	le Select bits					
	11 = 1:256								
	10 = 1:64 01 = 1:8								
	01 = 1.8 00 = 1.1								
bit 3		ted: Read as 'o	כ'						
bit 2	TSYNC: Time	er1 External Clo	ock Input Syn	chronization Se	elect bit				
	When TCS =								
	 1 = Synchronize external clock input 0 = Do not synchronize external clock input 								
	-		rnal clock inp	ut					
	When TCS = This bit is igno								
bit 1	0	Clock Source S	Select bit						
~		clock from pin T		rising edge)					
	0 = Internal c			5 5 /					
		ted: Read as 'o	`						

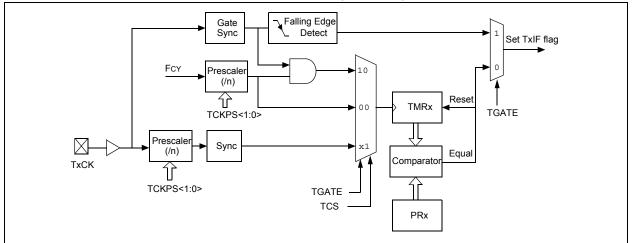
查福时(1941152CP304世立主

查询<mark>找.0</mark>24时MER2/3共补合TIMER4/5 FEATURE

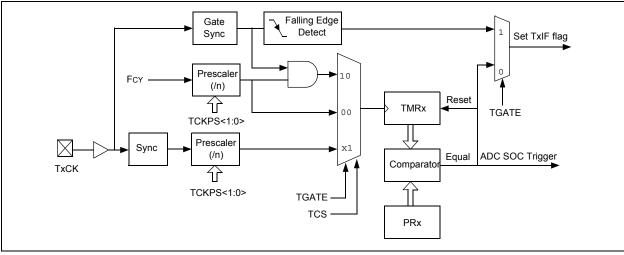
- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304. PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70244) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers with the following specific features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler


A block diagram of the Type B timer is shown in Figure 13-1.

Timer3 and Timer5 are Type C timers with the following specific features:


- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 13-2.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

查询开症@243 颜创研的@44 处 预速期 es can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

TABLE 13-1:	TIMER MODE SETTINGS
-------------	---------------------

Mode	TCS	TGATE
Timer	0	0
Gated timer	0	1
Synchronous coun- ter	1	х

13.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note:	Only Timer2 and Timer3 can trigger a	I
	DMA data transfer.	

13.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit).

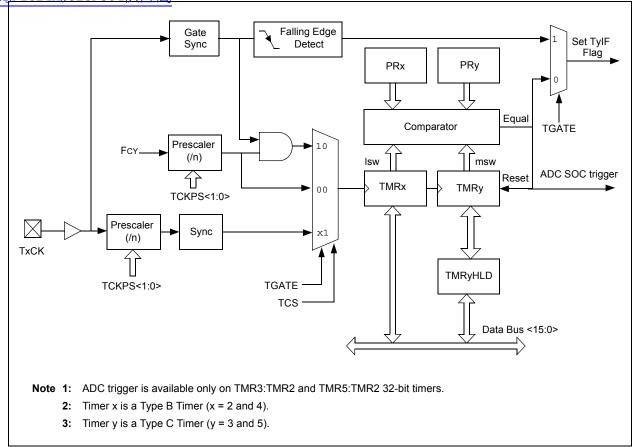
For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 13-2.

TABLE 13-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)		
Timer2	Timer3		
Timer4	Timer5		

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:


- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

查询问GURE 13 93:P304 (32) 得唐 TIMER BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL		—		—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—	TGATE	TCKPS	S<1:0>	T32	—	TCS	—
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own
bit 15	1 = Starts 32 0 = Stops 32	1 (in 32-bit Tim -bit TMRx:TMR -bit TMRx:TMR 0 (in 16-bit Tim -bit timer	y timer pair y timer pair				
bit 14	Unimplemented: Read as '0'						
bit 13	TSIDL: Stop in Idle Mode bit						
		ue timer operat		vice enters Idle	mode		
bit 12-7	Unimplemer	nted: Read as '	0'				
bit 6	When TCS = This bit is ign When TCS = 1 = Gated tin	ored.	n enabled	n Enable bit			
bit 5-4		: Timerx Input		ale Select bits			
-		rescale value escale value scale value					
bit 3	T32: 32-bit T 1 = TMRx an	imerx Mode Se d TMRy form a d TMRy form s	32-bit timer	it timer			
bit 2	Unimplemer	nted: Read as '	0'				
bit 1	TCS: Timerx Clock Source Select bit 1 = External clock from TxCK pin						
		clock from TxC clock (Fosc/2)	K pin				

查询REGISTER 23-204 供应 CONTROL REGISTER (x = 3 OR 5)

R/W-0	U-0	 R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽²⁾		TSIDL ⁽¹⁾	_		_		_		
bit 15		TOIDE					bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
_	TGATE ⁽²⁾	TCKPS<	<1:0> ⁽²⁾	—	_	TCS ⁽²⁾	_		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown		
bit 15	TON: Timery								
	1 = Starts 16-								
bit 14	•	0 = Stops 16-bit Timerx							
bit 13		Unimplemented: Read as '0' TSIDL: Stop in Idle Mode bit ⁽¹⁾							
bit 10	-	1 = Discontinue timer operation when device enters Idle mode							
		timer operation							
bit 12-7	Unimplemen	ted: Read as 'o)'						
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit ⁽²⁾					
	When TCS =								
	This bit is ign								
	$\frac{\text{When TCS}}{1 = \text{Gated tim}}$	<u>0:</u> ne accumulation	enabled						
		ne accumulation							
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Presca	le Select bits ⁽²)				
	11 = 1:256 prescale value								
	10 = 1:64 prescale value 01 = 1:8 prescale value								
	00 = 1:1 pres								
bit 3-2	-	Unimplemented: Read as '0'							
bit 1	-	Clock Source S							
		clock from TxCk							
	0 = Internal c	· · · ·							
bit 0	Unimplemen	ted: Read as 'o)'						

- **Note 1:** When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
 - 2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

© 2009 Microchip Technology Inc.

查**约JES**C24HJ32GP304供应商

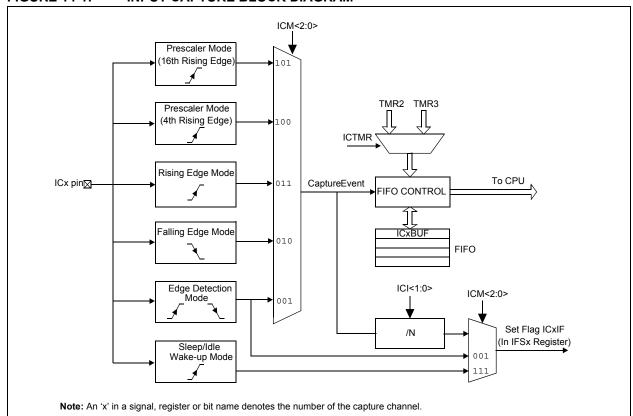
查询14.024HNPUT3CAPT出来E

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304 of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70248) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

1. Simple Capture Event modes:


- Capture timer value on every falling edge of input at ICx pin
- Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values:
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00).

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

141 PIO POUL Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

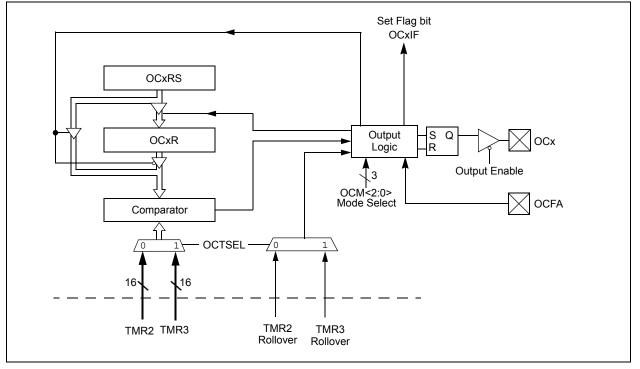
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	_	—	—	—	—
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:		HC = Cleared i	HC = Cleared in Hardware		
R = Readable bit W = Writable bit		U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'						
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit						
	 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode 						
bit 12-8	Unimplemented: Read as '0'						
bit 7	ICTMR: Input Capture Timer Select bits						
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 						
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits						
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event 						
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)						
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred 						
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)						
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 						
bit 2-0	ICM<2:0>: Input Capture Mode Select bits						
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled) 						
	101 = Capture mode, every 16th rising edge						
	100 = Capture mode, every 4th rising edge						
	011 = Capture mode, every rising edge						
	010 = Capture mode, every falling edge						
	 001 = Capture mode, every edge (rising and falling) (ICI<1:0> bits do not control interrupt generation for this mode.) 						
	000 = Input capture module turned off						

查询15.02410827P874位OMPARE


- Note 1: This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70247) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

259PI Output Compare Modes

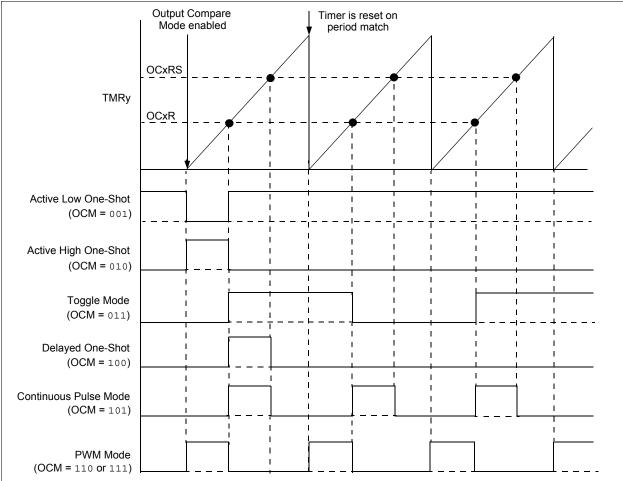

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

TABLE 15-1:	OUTPUT COMPARE MODES
-------------	----------------------

- Note 1: Only OC1 and OC2 can trigger a DMA data transfer.
 - 2: See Section 13. "Output Compare" in the "dsPIC33F Family Reference Manual" (DS7029) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx Rising edge
010	Active-High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

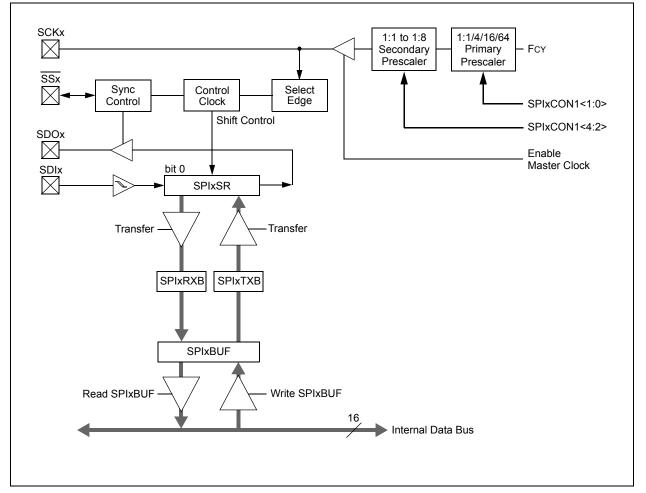
查询REGISTER 26-304 (Cx CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—		OCSIDL	—	_	—	_	—				
bit 15							bit				
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0				
	_	—	OCFLT	OCTSEL		OCM<2:0>					
bit 7							bit				
Legend:		HC = Cleared in	n Hardware	HS = Set in H	lardware						
R = Readab	ole bit	W = Writable bi		U = Unimplen		ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn					
bit 15-14	Unimpleme	ented: Read as '0	9								
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit										
	1 = Output	1 = Output Compare x halts in CPU Idle mode									
	0 = Output	0 = Output Compare x continues to operate in CPU Idle mode									
bit 12-5	Unimpleme	ented: Read as '0	,								
bit 4	OCFLT: PWM Fault Condition Status bit										
	1 = PWM Fault condition has occurred (cleared in hardware only)										
	0 = No PWM Fault condition has occurred										
	(This bit is only used when $OCM<2:0> = 111.$)										
bit 3	OCTSEL: Output Compare Timer Select bit										
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x 										
bit 2-0	OCM<2:0>: Output Compare Mode Select bits										
	111 = PWM mode on OCx, Fault pin enabled										
	110 = PWM mode on OCx, Fault pin disabled										
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin										
		100 = Initialize OCx pin low, generate single output pulse on OCx pin									
		pare event toggles			:						
	 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 										

查**约JES**C24HJ32GP304供应商

查询**16.0**24I**SERIA**如**PERIPHERAL** INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70243), which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- <u>SCK</u>x (shift clock input or output)
- SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN		SPISIDL					
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
_	SPIROV	_		_	_	SPITBF	SPIRBF
bit 7							bit
Legend:		C = Clearable	bit				
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14 bit 13 bit 12-7 bit 6	 0 = Disables Unimplement SPISIDL: Stop 1 = Discontinue 0 = Continue Unimplement SPIROV: Report 1 = A new by 	module and con module nted: Read as 'c op in Idle Mode I nue module operati module operati nted: Read as 'c ceive Overflow I yte/word is com a data in the SPI	o' poit ration when d on in Idle mo y' Flag bit pletely receiv	evice enters Id de ed and discard	le mode		read the
		flow has occurre					
bit 5-2	•	nted: Read as 'o		L:4			
bit 1	1 = Transmit 0 = Transmit Automatically	Ix Transmit Buffe not yet started, started, SPIxTX y set in hardware y cleared in harc	SPIxTXB is f (B is empty e when CPU	ull writes SPIxBUI			SPIxSR.
bit 0	1 = Receive 0 = Receive Automatically	Ix Receive Buffe complete, SPIxF is not complete, y set in hardware y cleared in harc	RXB is full SPIxRXB is e when SPIx	empty transfers data 1			KB.

查诺尼尼在HBAGP SPICSTATES SPIX STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_		DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15							bi			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0> ⁽²))	PPRE<	<1:0> ⁽²⁾			
bit 7							b			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-13	Unimpleme	nted: Read as '	0'							
bit 12				ter modes only)						
		SPI clock is disa SPI clock is ena		ctions as I/O						
bit 11		sable SDOx pin		6 11 10						
	 SDOx pin is not used by module; pin functions as I/O SDOx pin is controlled by the module 									
bit 10		/ord/Byte Comm	•							
		nication is word- nication is byte-)						
bit 9		Data Input Samp	ole Phase bit							
		<u>Master mode:</u> 1 = Input data sampled at end of data output time								
	0 = Input da	ta sampled at m								
	SMP must b		SPIx is used	in Slave mode.						
bit 8		Clock Edge Sele								
	1 = Serial ou	utput data chang	ges on transit	ion from active c ion from Idle clo						
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾									
		used for Slave i not used by mo		trolled by port fu	Inction					
bit 6	CKP: Clock Polarity Select bit									
				ive state is a low ve state is a high						
bit 5	MSTEN: Master Mode Enable bit									
	1 = Master n 0 = Slave me									
	he CKE bit is i FRMEN = 1).	not used in the	Framed SPI	modes. Progra	m this bit to 'o	' for the Frame	ed SPI mod			
		Primary and Se	condarv pres	calers to a value	of 1:1.					
		,	, , , , , , , , , , , , , , , , , , , ,							

3: This bit must be cleared when FRMEN = 1.

查EGISTERH632GP35PI的CONT: SPIX CONTROL REGISTER 1 (CONTINUED)

- 11 = Primary prescale 1:1 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

查询REGISTER 26-304 (安府) 文章 ON2: SPIx CONTROL REGISTER 2

		<u>-</u>							
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	_	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
_	—	—	—	_		FRMDLY	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own		
bit 15	FRMEN: Framed SPIx Support bit								
	1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output)								
		SPIx support dis							
bit 14	SPIFSD: Frame Sync Pulse Direction Control bit								
	1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master)								
bit 13	•	• •	. ,						
bit io	FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame sync pulse is active-high								
	0 = Frame sync pulse is active-low								
bit 12-2	Unimplemented: Read as '0'								
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit								
	1 = Frame sync pulse coincides with first bit clock								
	0 = Frame sy	nc pulse prece	des first bit cl	ock					
bit 0	Unimplemen	ted: This bit m	ust not be set	t to '1' by the us	ser application				

© 2009 Microchip Technology Inc.

查**约JES**C24HJ32GP304供应商

查询**行**2024HNTER→INTEGEATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit[™] $(I^2C^{™})$ " (DS70235) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

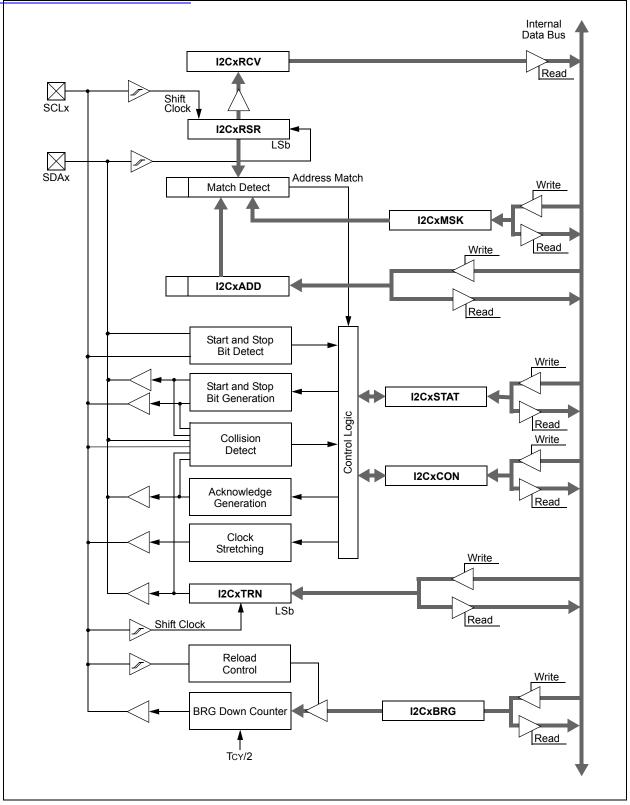
17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7- or 10-bit address


For details about the communication sequence in each of these modes, refer to the "*PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated. 查GURE27H1:32GP360供题LOCK DIAGRAM (x = 1)

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7				-			bit
Legend:		U = Unimpler	nented bit, rea	d as '0'			
R = Readabl	le bit	W = Writable		HS = Set in h	ardware	HC = Cleared	in hardware
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15 bit 14	0 = Disables 1	he I2Cx modul	lle. All I ² C pins		nd SCLx pins a by port function	as serial port pir ns	าร
bit 13	•	p in Idle Mode					
	1 = Discontin	ue module ope		evice enters ar de	n Idle mode		
bit 12	1 = Release S 0 = Hold SCL <u>If STREN = 1</u> Bit is R/W (i.e at beginning o <u>If STREN = 0</u> Bit is R/S (i.e. transmission.	SCLx clock x clock low (cl , software car of slave transm , software can	ock stretch) n write 'o' to ini nission. Hardwa only write '1' t	are clear at en o release cloci	nd write '1' to re d of slave recep k). Hardware cl	elease clock). H otion. ear at beginning	
bit 11		e is enabled; a	al Managemer all addresses A	nt Interface (IP Acknowledged	MI) Enable bit		
bit 10	1 = I2CxADD	Slave Address is a 10-bit slav is a 7-bit slave	ve address				
bit 9	1 = Slew rate	able Slew Rate control disable control enable	ed				
bit 8	1 = Enable I/0	is Input Levels O pin threshold Mbus input thr	ls compliant wi	ith SMbus spe	cification		
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled 						
bit 6	STREN: SCL	x Clock Stretch	n Enable bit (w	hen operating	as I ² C slave)		
	Used in conju 1 = Enable sc	nction with SC	LREL bit. ive clock streto	ching			

THE GISTER 272804 HE OVERN LICY CONTROL REGISTER 查

BEGISTERH1732GP32C CONSI2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HS				
ACKSTAT	TRSTAT		_		BCL	GCSTAT	ADD1				
bit 15											
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HS				
IWCOL	12COV	D_A	P	S	R W	RBF	TBF				
bit 7	12001			5	1_\\	11DI					
Legend:		-	mented bit, rea	ad as '0'			r only bit				
R = Readable	e bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/clea				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	(when operati 1 = NACK rec 0 = ACK rece Hardware set	ceived from sla lived from slav or clear at en	laster, applica ave e d of slave Ack	•							
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not ir	ogress (8 bits · n progress	+ ACK)		to master trans	-				
bit 13-11	Unimplemen	ted: Read as	ʻ0'								
bit 10	BCL: Master Bus Collision Detect bit										
	 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of hus collision 										
bit 9	Hardware set at detection of bus collision. GCSTAT: General Call Status bit										
bit 5	1 = General o 0 = General o	all address wa	as received as not received		ss. Hardware o	lear at Stop det	ection.				
bit 8	Hardware set when address matches general call address. Hardware clear at Stop detection. ADD10: 10-bit Address Status bit										
	1 = 10-bit add 0 = 10-bit add	dress was mat dress was not	ched matched	ched 10-bit add	dress. Hardwa	re clear at Stop	detection.				
bit 7	IWCOL: Write Collision Detect bit										
	0 = No collisio	on		ster failed beca							
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).										
bit 6		I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte									
	0 = No overflo	wc		-	_						
bit 5	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). D_A: Data/Address bit (when operating as I ² C slave)										
	 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address 										
	Hardware clear at device address match. Hardware set by reception of slave byte.										
bit 4	Hardware clean P: Stop bit	ar at device ac	dress match.	Hardware set I	by reception of	slave byte.					

© 2009 Microchip Technology Inc.

BEGISTER 1732GP 12 CH STATE 12 Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

查询REGISTER207-304供应函SK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
		—	_	—	—	AMSK9	AMSK8	
bit 15		•		·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = E		'1' = Bit is set	= Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

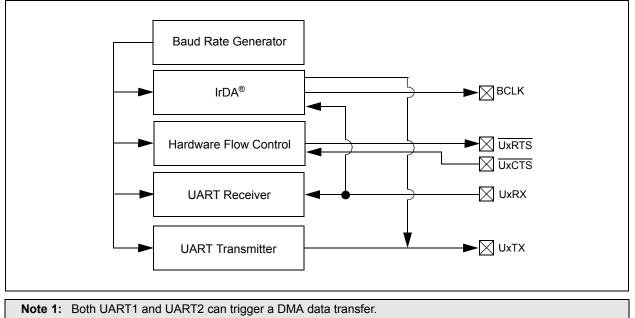
0 = Disable masking for bit x; bit match required in this position

查**约JES**C24HJ32GP304供应商

查询**找**2024HUNIVERSALASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- **Note 1:** This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70232) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	_	UEN	<1:0>			
bit 15							bit			
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE bit 7	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL			
							bit			
Legend:		HC = Hardwa	re cleared							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	nown			
			(4)							
bit 15		ARTx Enable bi					0.			
		is enabled; all U is disabled; all L								
	minimal		· · · · · · · · · · · · · · · · · · ·	,	, -					
bit 14	Unimpleme	nted: Read as '	כ'							
bit 13	USIDL: Stop in Idle Mode bit									
		nue module ope e module operat			lle mode					
bit 12										
	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾ 1 = IrDA encoder and decoder enabled									
	_	coder and decod								
bit 11	RTSMD: Mo	de Selection for	UxRTS Pin b	it						
		pin in Simplex m pin in Flow Cont								
bit 10	Unimpleme	nted: Read as 'o	o'							
bit 9-8	UEN<1:0>: UARTx Enable bits									
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used									
	01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches									
		ind UxRX pins a								
	port late									
bit 7		e-up on Start bit				olling odgo: bit	alaarad			
	 I = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 									
	0 = No wake		, , ,							
bit 6	LPBACK: UARTx Loopback Mode Select bit									
	 1 = Enable Loopback mode 0 = Loopback mode is disabled 									
bit 5	•	to-Baud Enable								
bit 5		baud rate meas		e next charact	er – requires re	eception of a Sv	nc field (55t			
	before o	ther data; cleare te measurement	ed in hardware	e upon comple						
		n 17. "UART" (E				Reference Mai	<i>nual"</i> for info			
		nly available for								

查询REGISTER 218-304 (此來) @DE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity 01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit
Note 1	Pafer to Section 17 "ILAPT" (DS70323) in the "deBIC22E/DIC24H Femily Paferones M

- **Note 1:** Refer to **Section 17. "UART**" (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

TERHES2GP WXSTADIOAR	Γχ STATUS		REGISTER
RE013 PER 10-2.01 0000/14.2041	12 214103	AND CONTROL	REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1					
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT					
bit 15	•						bit 8					
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0					
	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA					
bit 7		ADDEN	RIDLE	FLNN	FLAN	ULKK	bit (
Legend:		HC = Hardwar	e cleared		C = Clea	ar only bit						
R = Readabl	e bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown					
bit 15,13	UTXISEL<1:	0>: Transmissio	n Interrupt M	lode Selection I	bits							
,		ed; do not use										
		t when a charac		rred to the Trar	nsmit Shift Reg	ister, and as a i	result, the					
		transmit buffer becomes empty										
	01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed											
	00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is											
		one character o	-	ansmit buffer)								
bit 14		nsmit Polarity In	version bit									
	If IREN = 0: 1 = UxTX Idle state is '0'											
	0 = UxTX Idle state is 0 0 = UxTX Idle state is 1'											
	If IREN = 1:											
	$\overline{1 = \text{IrDA}^{\text{®}}}$ encoded UxTX Idle state is '1'											
	0 = IrDA [®] er	ncoded UxTX Id	e state is 'o'									
bit 12	Unimplemer	nted: Read as 'o	3									
bit 11	UTXBRK: Transmit Break bit											
	1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit											
	cleared by hardware upon completion 0 = Sync Break transmission disabled or completed											
bit 10				completed								
	UTXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx											
	 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled 											
	by port											
bit 9		UTXBF: Transmit Buffer Full Status bit (read-only)										
	 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written 											
					er can be white	n						
L:1 0	TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)											
bit 8		-			omnty (the las	t tranemieeion h	has completed					
bit 8	1 = Transmit	Shift Register is	empty and t	ransmit buffer is			nas completed					
	1 = Transmit 0 = Transmit	-	empty and to s not empty,	ransmit buffer is a transmission			nas completed					
bit 8 bit 7-6	1 = Transmit 0 = Transmit URXISEL<1 :	Shift Register is Shift Register is	empty and to s not empty, errupt Mode	ransmit buffer is a transmission Selection bits	is in progress of	or queued						
	1 = Transmit 0 = Transmit URXISEL<1: 11 = Interrup 10 = Interrup	Shift Register is Shift Register is 0>: Receive Inte	empty and to s not empty, errupt Mode R transfer m R transfer m	ransmit buffer is a transmission Selection bits naking the recei naking the recei	is in progress o ve buffer full (i. ve buffer 3/4 fu	or queued e., has 4 data d Il (i.e., has 3 da	characters) ata characters					

Note 1: Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

查询程GISTER218-204供透话: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

5 0	
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	Refer to Section 17. "UART" (DS70232) in the "dsPIC33E/PIC24H Family Reference Manual" for information

Note 1: Refer to Section 17. "UART" (DS70232) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. 查**约JES**C24HJ32GP304供应商

查询**19.0**24Ⅰ**ΕΝΗΑΝΟΕΟΩCA**N (ECAN™) MODULE

- Note 1: This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70226) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter

- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

- Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

查@JRE 29H132GP ICAN 应 窗ODULE BLOCK DIAGRAM

查询19.3241Mgdes30f1 Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- · Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

19.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0					
		CSIDL	ABAT			REQOP<2:0>						
oit 15							bit					
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0					
	OPMODE<2:0>	>	—	CANCAP		—	WIN					
oit 7							bit					
Legend:		C = Writable I	oit. but only '0	' can be written t	o clear the bi	t r = Bit is Rese	rved					
R = Readab	le bit	W = Writable	-	U = Unimplem								
n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13	CSIDL: Stop	in Idle Mode bi	t									
				levice enters Idle	e mode							
		module operat										
bit 12	ABAT: Abort All Pending Transmissions bit											
	•	L = Signal all transmit buffers to abort transmission D = Module will clear this bit when all transmissions are aborted										
oit 11	Reserved: D											
bit 10-8	REQOP<2:0>: Request Operation Mode bits											
	000 = Set Normal Operation mode											
	001 = Set Disable mode											
	010 = Set Loopback mode											
	011 = Set Listen Only Mode 100 = Set Configuration mode											
	101 = Reserved											
	110 = Reserved											
		ten All Messag										
bit 7-5		0>: Operation		da								
		000 = Module is in Normal Operation mode 001 = Module is in Disable mode										
		010 = Module is in Loopback mode										
		e is in Listen O	•									
		e is in Configur	ation mode									
	101 = Reserv 110 = Reserv											
		e is in Listen Al	l Messages m	node								
bit 4		ted: Read as '	-									
oit 3	CANCAP: C	AN Message R	eceive Timer	Capture Event E	nable bit							
	1 = Enable in 0 = Disable C		sed on CAN r	nessage receive								
bit 2-1		ted: Read as '	0'									
bit 0	-	ap Window Sel										
	1 = Use filter											
	0 = Use buffe											

查询REGISTER 209-204 (GICTREL2: ECAN™ CONTROL REGISTER 2

<u></u>									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
—	—	—			DNCNT<4:0>				
bit 7							bit 0		
Legend:		C = Writeable	bit, but only '0)' can be writte	en to clear the b	it			
R = Readable I	bit	W = Writable	bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					
bit 15-5	Unimplemen	ted: Read as 'o)'						
bit 4-0 DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits									

DNCNT<4:0>: DeviceNet™ Filter Bit Number bits						
10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>						
•						
•						
•						
00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes						

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	—	_			FILHIT<4:0>		
oit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_			-	ICODE<6:0>			-
bit 7							bit
Legend:		C = Writeable	bit, but only	' '0' can be writte	en to clear the b	bit	
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimpleme	ented: Read as '	0'				
bit 12-8		>: Filter Hit Num					
		11 = Reserved					
	01111 = Fi l	ter 15					
	•						
	•						
	00001 = Fil 00000 = Fil						
bit 7		ented: Read as '	0'				
bit 6-0	=	>: Interrupt Flag					
		.111111 = Rese					
		FIFO almost full	•				
		Receiver overflo Wake-up interru	•				
	1000001 =	Error interrupt	F -				
	1000000 -	No interrupt					
	•						
	•						
		RB15 buffer Inte					
	•		·				
	•						
	•						
		RB9 buffer inter					
		RB8 buffer inter TRB7 buffer inte					
		TRB6 buffer inte					
		TRB5 buffer inte					
		TRB4 buffer inte TRB3 buffer inte	•				
		TRB2 buffer inte					
	0000001 =	TRB1 buffer inte	errupt				
	0000000 =	TRB0 Buffer inte	errupt				

查询REGISTER 209-2404 使 FCT RL: ECAN™ FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMABS<2:0>		—	_	_	_	_			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—			FSA<4:0>					
bit 7							bit C			
Legend:		C = Writeable	bit but only	'0' can be writte	en to clear the	hit				
R = Readab	le hit	W = Writable	•		mented bit, rea					
-n = Value a		'1' = Bit is set	UIL	'0' = Bit is cle		x = Bit is unkr	unknown			
		1 - Dit 13 30t			arca		IOWIT			
bit 15-13	DMABS<2:0	>: DMA Buffer S	Size bits							
	111 = Reser	ved								
		ffers in DMA RA	М							
	101 = 24 bu	ffers in DMA RA	М							
	100 = 16 bu	ffers in DMA RA	М							
		ffers in DMA RA								
		ers in DMA RAN								
		ers in DMA RAN ers in DMA RAN								
bit 12-5										
	-	nted: Read as ' FIFO Area Starts		site						
bit 4-0				JIIS						
	-	11111 = Read buffer RB31 11110 = Read buffer RB30								
	•									
	•									

00001 = TX/RX buffer TRB1 00000 = TX/RX buffer TRB0

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				FBP	<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—			FNR	3<5:0>		
bit 7							bit C
		0	1. h. t l	N			
Legend:	I I.:.		•)' can be written			
R = Readab		W = Writable	DIT	U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	Unimplom	ented: Read as '	۰ ،				
bit 13-14	-	FIFO Buffer Poin					
DIL 15-0		RB31 buffer					
	011111 - F 011110 = F						
	•						
	•						
	•						
	000001 =]	TRB1 buffer					
	000000 = 1						
bit 7-6	Unimpleme	ented: Read as 'o)'				
bit 5-0	FNRB<5:0>	>: FIFO Next Rea	d Buffer Poir	nter bits			
	011111 = F	RB31 buffer					
	011110 = F	RB30 buffer					
	•						
	•						
	•						
	000001 = 7	TRB1 buffer					
	000000 = 1						

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWA
bit 15							
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-
IVRIF	WAKIF		0-0	FIFOIF	1	RBIF	TBI
bit 7	VVANIF	ERRIF	—		RBOVIF	KDIF	IDI
			1. 10 1	(O)		••	
Legend:					en to clear the b		
R = Readabl		W = Writable	DIT	•	mented bit, read		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemer	nted: Read as ')'				
bit 13	-	mitter in Error S		bit			
	1 = Transmitt	ter is in Bus Off ter is not in Bus	state				
hit 10				aive hit			
bit 12		mitter in Error S ter is in Bus Pas		SIVE DIL			
		ter is not in Bus		e			
bit 11		iver in Error Sta					
	1 = Receiver	is in Bus Passi is not in Bus Pa	ve state				
bit 10		nsmitter in Erro		na hit			
DIL TO		ter is in Error W		ng bit			
		ter is not in Erro	•	ate			
bit 9		ceiver in Error S	-				
	1 = Receiver	is in Error Warr is not in Error V	ning state				
bit 8		insmitter or Rec	•		bit		
2.1.0		ter or Receiver i		•			
	0 = Transmitt	ter or Receiver i	s not in Error	State Warning	l state		
bit 7	IVRIF: Invalio	d Message Rec	eived Interrup	ot Flag bit			
		Request has oc					
		Request has no					
bit 6	WAKIF: Bus	Wake-up Activi	ty Interrupt Fl	ag bit			
		Request has oc					
		Request has no					
bit 5		Interrupt Flag		ources in CiIN	F<13:8> regist	er)	
		Request has oc					
	•	Request has no					
bit 4	-	nted: Read as 'o					
bit 3		Almost Full Inf		it			
		Request has oc					
1.11.0	•	Request has no					
bit 2		Buffer Overflow	-	ag bit			
		Request has oc Request has no					
hit 1	-	-					
bit 1		iffer Interrupt Fla Request has oc	-				
		Request has no					
	-	-					
bit 0	TRIF IX Rul	ffer Interrupt Fla	a bit				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	_	_	_
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit
Legend:		C = Writeable	hit but only	'0' can be writte	n to clear the h	nit	
R = Readab	le bit	W = Writable			nented bit, read		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	IVRIE: Invalid	Message Rec	eived Interru	pt Enable bit			
	1 = Interrupt Request Enabled						
	•	Request not en					
bit 6		Wake-up Activi		lag bit			
		Request Enable Request not en					
bit 5		Interrupt Enab					
		Request Enable					
		Request not en					
bit 4	•	ted: Read as '					
bit 3		Almost Full In		e bit			
		Request Enable					
	0 = Interrupt F	Request not en	abled				
bit 2		Buffer Overflow		nable bit			
	 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled 						
	-	-					
bit 1		fer Interrupt Er					
		Request Enable Request not en					
	•	•					
hit ()	TBIE: TX Buffer Interrupt Enable bit 1 = Interrupt Request Enabled						
bit 0		•					

查询REGISTER 19-8.14供应商ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

	•. •.=•		••••••				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRO	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:		C = Writeable b	it, but only	'0' can be written t	o clear the	bit	
R = Readable b	bit	W = Writable bit		U = Unimplemer	nted bit, rea	d as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknow	n

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			—			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>			BRF	°<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	10 = Length is 3 x TQ
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = TQ = 2 x 3 x 1/FCAN
	00 0001 = TQ = 2 x 2 x 1/FCAN
	00 0000 = TQ = 2 x 1 x 1/FCAN

© 2009 Microchip Technology Inc.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
	WAKFIL	_	_	—		SEG2PH<2:0>				
bit 15							bit			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	S	EG1PH<2:0	>		PRSEG<2:0>				
bit 7							bit			
Logondu										
Legend: R = Readable	hit	\\/ = \\/ritabla.	. :+		monted hit rea	vd op (0)				
		W = Writable k	אנ	-	mented bit, rea					
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkno	JWN			
bit 15	Unimplomor	nted: Read as 'o	,'							
bit 14	-			Vake un hit						
511 14	WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up									
	0 = CAN bus line filter is not used for wake-up									
bit 13-11		nted: Read as 'o		с «р						
bit 10-8	=	0>: Phase Segn								
	111 = Lengt	•								
	•									
	•									
	•									
	000 = Length	h is 1 x Tq								
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit									
	1 = Freely programmable									
				ion Processing	Time (IPT), w	hichever is greate	er			
bit 6	SAM: Sample of the CAN bus Line bit									
	1 = Bus line is sampled three times at the sample point									
	 Bus line is sampled once at the sample point SEG1PH<2:0>: Phase Segment 1 bits 									
bit 5-3		-	ient i dits							
	111 = Length is 8 x TQ									
	•									
	•									
	• 000 = Length is 1 x TQ									
bit 2-0	-	Propagation 1	Time Seamer	ut bite						
bit 2-0	111 = Length		nine ocynici							
	•									
	•									
	•									
	000 = Length	h is 1 x To								
	o o o congu									

查询REGISTER 49-304 供雇商: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

	-	-			_	-	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend: C = Writeable bit, but only '0' can be written to clear the bit							

Legend:	C = Writeable bit, but only '	0' can be written to clear the b	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<	<3:0>			F2BP	F2BP<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BP<3:0>				F0BP<3:0>				
bit 7						bit 0			

Legend:	C = Writeable bit, but only	'0' can be written to clear the	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BF	P<3:0>		F6BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP<3:0>				F4B	P<3:0>		
bit 7							bit (
Legend: C = Writeable bit, but only				0' can be writte	n to clear the	bit		
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	1111 = Filte	RX Buffer mas r hits received in r hits received in	n RX FIFO but					
	•							
		r hits received in r hits received in						
hit 11_8	F6BP<3.0>	RX Ruffer mas	k for Filter 6 (s	amo valuos as	hit 15_12)			

- bit 11-8 **F6BP<3:0>:** RX Buffer mask for Filter 6 (same values as bit 15-12)
- bit 7-4 **F5BP<3:0>:** RX Buffer mask for Filter 5 (same values as bit 15-12)
- bit 3-0 F4BP<3:0>: RX Buffer mask for Filter 4 (same values as bit 15-12)

REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BP	<3:0>			F10B	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F9BP	<3:0>			F8BF	?<3:0>		
bit 7							bit 0	
Legend:		C = Writeable	e bit, but only '	0' can be writte	n to clear the b	bit		
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-12	1111 = Filter 1110 = Filter • • • •	RX Buffer man hits received ir hits received ir hits received ir hits received ir	n RX FIFO but n RX Buffer 14	ffer				
bit 11-8	F10BP<3:0>:	RX Buffer ma	sk for Filter 10) (same values	as bit 15-12)			
bit 7-4	F9BP<3:0>:	RX Buffer mas	k for Filter 9 (s	same values as	bit 15-12)			

查询PIC24HI32GP304供应商 REGISTER 19-15: CIBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

	13-13. 0100	TENIA. LOAI				REGISTER		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>			F14BI	P<3:0>		
bit 15							bit 8	
R/W-0					R/W-0			
R/W-U	R/W-0	R/W-0 P<3:0>	R/W-0	R/W-0		R/W-0	R/W-0	
L:1 7	F 13B	P<3:0>			F IZBI	P<3:0>	L:1.0	
bit 7							bit 0	
Legend:		C = Writeable	e bit, but only '	0' can be writte	n to clear the t	oit		
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-12	F15BP<3:0	RX Buffer ma	sk for Filter 15	i i i i i i i i i i i i i i i i i i i				
	1111 = Filter hits received in RX FIFO buffer							
	1110 = Filte	r hits received i	n RX Buffer 14					
	•							
	•							
	•							
	0001 = Filte	0001 = Filter hits received in RX Buffer 1						
	0000 = Filte	r hits received i	n RX Buffer 0					
bit 11-8	F14BP<3:0	>: RX Buffer ma	sk for Filter 14	(same values	as bit 15-12)			
bit 7-4	F13BP<3:0	RX Buffer ma	sk for Filter 13	(same values	as bit 15-12)			
hit 2 0	E4000-2.0	N DV Duffer me	als for Filtor 10		a_{0} bit $1E(10)$			

bit 3-0 F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

EXIDE: Extended Identifier Enable bit

1 = Match only messages with extended identifier addresses0 = Match only messages with standard identifier addresses

1 = Message address bit EIDx must be '1' to match filter
 0 = Message address bit EIDx must be '0' to match filter

If MIDE = 1 then:

If MIDE = 0 then: Ignore EXIDE bit.

Unimplemented: Read as '0'

EID<17:16>: Extended Identifier bits

REGISTER	1326P304# 1 9-16: CiRXF	STD: ECAN	M ACCEPT		R STANDARI		REGISTER
	n (n =						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0		EXIDE		EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only	'0' can be writte	en to clear the b	bit	
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	SID<10:0>: S	standard Identifi	er bits				
	•	address bit SIE address bit SIE					
bit 4	•	ted: Read as 'o					

bit 3

bit 2

bit 1-0

查询PIC24H132GP304供应产 REGISTER 19-17: CIRXENEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

	•						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0

EID<15:0>: Extended Identifier bits

 ${\tt 1}$ = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSł	<<1:0>	F6MSI	<<1:0>	F5MS	K<1:0>	F4MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSł	F3MSK<1:0> F2MSK<1:0>		<<1:0>	F1MS	K<1:0>	F0MS	<<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit 11 = No mask 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15M	ISK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11M	SK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MSI	<<1:0>
bit 7				•			bit (
Legend:		C = Writeable	bit, but only '	0' can be writte	n to clear the b	bit	
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	= Bit is set '0' = Bit is cle		ared	x = Bit is unkr	nown
				1.1			
bit 15-14	11 = No mask	>: Mask Sourc	e for Filter 15	DI			
	±±	nce Mask 2 reg	nisters contair	mask			
		nce Mask 1 reg					
		nce Mask 0 reg	-				
bit 13-12	F14MSK<1:0	>: Mask Sourc	e for Filter 14	bit (same value	es as bit 15-14))	
bit 11-10	F13MSK<1:0	>: Mask Sourc	e for Filter 13	bit (same value	es as bit 15-14))	
bit 9-8	F12MSK<1:0	>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14))	
bit 7-6	F11MSK<1:0	>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14)		
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit (same value	es as bit 15-14)	1	
bit 3-2	F9MSK<1:0>	: Mask Source	for Filter 9 bit	(same values	as bit 15-14)		

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W->
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W->
SID2	SID1	SID0		MIDE		EID17	EID16
bit 7	•					•	
R = Readable -n = Value at I		W = Writable '1' = Bit is set		'0' = Bit is cle	nented bit, read ared	x = Bit is unkr	nown
bit 15-5	SID<10:0>: S	Standard Identif	ier bits				
		it SIDx in filter of s don't care in		son			
bit 4	Unimplemen	ted: Read as '	0'				
		ier Receive Mo	al a 14.14				

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

R/W-X	R/ VV-X	R/W-X	R/ VV-X	R/ VV-X	R/W-X	R/W-X	R/W-X
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

霍温PIC24HI32GP304供应户 ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7	•						bit 0

Legend:	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	ritable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 19-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

'0' = Bit is cleared

x = Bit is unknown

查询<mark>程EGISTER²19-22⁴任底态</mark>VF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	
bit 7							bit 0	
Legend: C = Writeable		bit, but only '0' can be written to clear the bit						
R = Readable bit W = Writable b			bit	U = Unimplemented bit, read as '0'				

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 =No overflow condition

REGISTER 19-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

© 2009 Microchip Technology Inc.

TX/RX BUFFER m CONTROL REGISTER

		,2,4,6; n = 1,3								
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>			
bit 15							bit			
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF				
bit 7	170 12111	inter a term	I X EI (I (III	i) (i (E Q iii			bit			
Legend:		C = Writeable	•		en to clear the bi					
R = Readable		W = Writable	bit	•	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15-8		n for Bits 7-0, C		n						
bit 7	TXENm: TX/F	RX Buffer Selec	ction bit							
	1 = Buffer TRBn is a transmit buffer									
	0 = Buffer TRBn is a receive buffer									
bit 6	TXABTm: Message Aborted bit ⁽¹⁾									
	 Message was aborted Message completed transmission successfully 									
bit 5	-	TXLARBm: Message Lost Arbitration bit ⁽¹⁾								
bit 0	1 = Message lost arbitration while being sent									
	0 = Message did not lose arbitration while being sent									
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾									
	1 = A bus error occurred while the message was being sent									
	0 = A bus error did not occur while the message was being sent									
bit 3	TXREQm: Message Send Request bit									
	1 = Requests that a message be sent. The bit automatically clears when the message is successfull sent									
	0 = Clearing the bit to '0' while set requests a message abort									
bit 2	RTRENm: Auto-Remote Transmit Enable bit									
	1 = When a remote transmit is received, TXREQ will be set									
	0 = When a remote transmit is received, TXREQ will be unaffected									
bit 1-0	TXmPRI<1:0	TXmPRI<1:0>: Message Transmission Priority bits								
		message priori								
		ermediate mes								
		01 = Low intermediate message priority 00 = Lowest message priority								

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

查询19.424HECAN MessageBuffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 19-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 0	IDE: Extended Identifier bit
	 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier

BUFFER 19-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	_	—	_	EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	FIDQ	FID8	EID7	EID6

Į	bit 7							bit 0
	EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
	R/W-x							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

查记PELC24HI32GP304供应商ESSAGE BUFFER WORD 2

	-J. LOAN						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-10	EID<5:0>: Ex	tended Identifie	er bits				
bit 9	RTR: Remote	e Transmission	Request bit				
	1 = Message	will request rer	note transmis	ssion			
	0 = Normal m						
bit 8	RB1: Reserve	ed Bit 1					
	User must se	t this bit to 'o' p	er CAN proto	ocol.			
bit 7-5	Unimplemen	ted: Read as '	0'				
L 14 A	DDA Decem						

bit 4 **RB0:** Reserved Bit 0 User must set this bit to '0' per CAN protocol. bit 3-0 **DLC<3:0>:** Data Length Code bits

BUFFER 19-4:	ECAN	N™ MESSAGE E	UFFER	WORD 3			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 0			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POI	٦	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: ECAN™ Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

查询BUFFER WORD 4 MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 2			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 19-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 4			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bit	t	U = Unimpler	nented bit, read	l as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Byte 5<15:8>: ECAN™ Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	/te 6				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-8 Byte 7<15:8>: ECAN™ Message Byte 7

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

BUFFER 19-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	_			FILHIT<4:0> ⁽¹)		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	—	—	—	_	
bit 7							bit 0	
Legend:								
R = Readable b	it	W = Writable I	bit U = Unimplemented bit, read as '0'					
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

查询**20.0**24时**0:岛时/02典时**商 ANALOG-TO-DIGITAL CONVERTER (ADC1)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70225) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

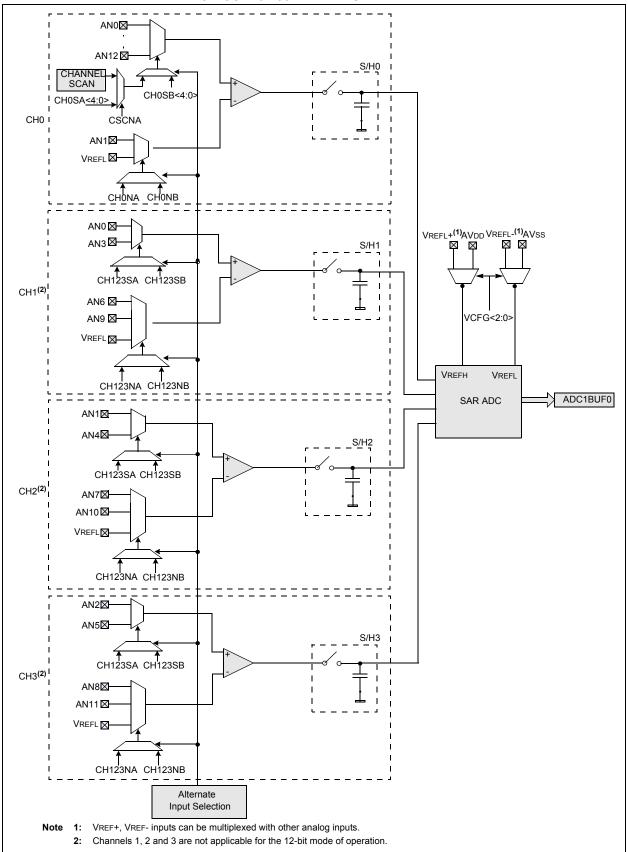
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

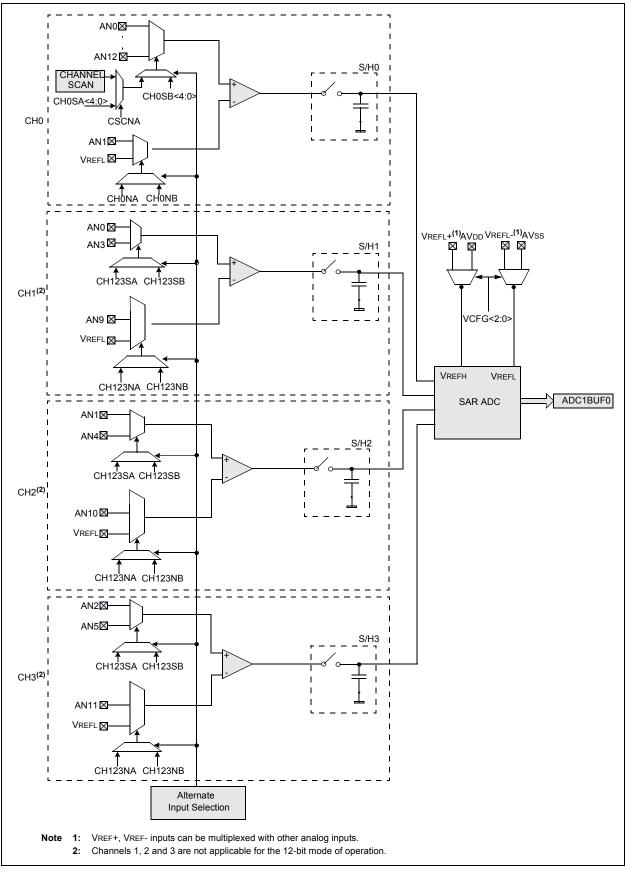
20.2 ADC Initialization

The following configuration steps should be performed.

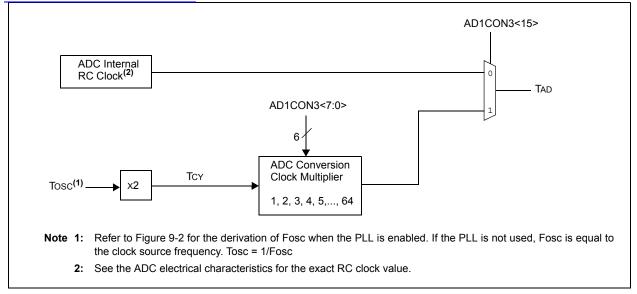

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.


The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.



查询**问 GURE 29** 2:P304 ADC台MODULE BLOCK DIAGRAM FOR PIC24HJ32GP302, PIC24HJ64GP202/502 AND PIC24HJ128GP202/502 DEVICES

查阅RE 20 32GP 30 CO 商/ERSION CLOCK PERIOD BLOCK DIAGRAM

查询REGISTER 202304体的 CONTROL REGISTER 1

R/W-0							
	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit
Legend:		HC = Cleared	by hardware	HS = Set by			ar only bit
R = Readable	e bit	W = Writable		-	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADON: ADC 1 = ADC mod 0 = ADC is of	lule is operatir					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ADSIDL: Stop	in Idle Mode	bit				
		•	eration when de		lle mode		
bit 12	channel t	ers are writter hat is the sam	n in the order of e as the addres	ss used for the		vides an addres nd-alone buffer	ss to the DM
					•	des a scatter/g	
bit 11	to the DM	IA channel, ba	ased on the inde		•	des a scatter/g e size of the DN	
bit 11 bit 10	to the DM Unimplemen	IA channel, ba ted: Read as '	ased on the inde	ex of the analo	•	•	
	to the DM Unimplemen	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC	ased on the inde o' eration Mode bit operation	ex of the analo	•	•	
	to the DM Unimplement AD12B: 10-bi 1 = 12-bit, 1-	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC channel ADC o	ased on the inde o' eration Mode bit operation operation	ex of the analo	•	•	
bit 10	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4-t FORM<1:0>: For 10-bit ope 11 = Reserve 10 = Reserve 01 = Signed in	IA channel, ba ted: Read as ⁶ t or 12-bit Ope channel ADC channel ADC o Data Output F <u>cration:</u> d d nteger (Dout =	ased on the inde o' eration Mode bit operation operation	ex of the analo t dddd dddd, v	g input and the	e size of the DM	
bit 10	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4-0 FORM<1:0>: For 10-bit ope 11 = Reserve 10 = Reserve 01 = Signed in 00 = Integer (For 12-bit ope	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC channel ADC o Data Output F aration: d nteger (Dout = Dout = 0000 aration:	ased on the inde o' eration Mode bit operation operation Format bits	ex of the analo t dddd dddd, v	g input and the	e size of the DM	
bit 10	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: For 10-bit ope 11 = Reserve 10 = Reserve 01 = Signed in 00 = Integer (For 12-bit ope 11 = Reserve 10 = Reserve 10 = Reserve 10 = Reserve 10 = Reserve 11 = Reserve	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC channel ADC Data Output F tration: d d nteger (DOUT = DOUT = 0000 tration: d d nteger (DOUT =	ased on the inde eration Mode bit operation operation Format bits 00dd dddd d = ssss sddd	ex of the analo t dddd dddd, y dddd dddd, y dddd dddd, y	vhere s = .NO	e size of the DŴ T.d<9>)	
bit 10	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: For 10-bit ope 11 = Reserve 10 = Reserve 01 = Signed in 00 = Integer (For 12-bit ope 11 = Reserve 01 = Signed I 00 = Integer (IA channel, ba ted: Read as ⁶ t or 12-bit Ope channel ADC channel ADC Data Output F ration: d d nteger (DOUT = DOUT = 0000 ration: d nteger (DOUT =	ased on the inde o' eration Mode bit operation operation Format bits = ssss sssd 00dd dddd d	ex of the analo t dddd dddd, y iddd) dddd dddd, y iddd)	vhere s = .NO	e size of the DŴ T.d<9>)	
bit 10 bit 9-8	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: For 10-bit ope 11 = Reserve 01 = Signed in 00 = Integer (For 12-bit ope 11 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserve 101 = Reserve 101 = Reserve 101 = Reserve 102 = Reserve 103 = Reserve 104 = Reserve 105 = Reserve 105 = Reserve 106 = Reserve 107 = Reserve 107 = Reserve 108 = Reserve 109 = GP time	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC channel ADC of Data Output F tration: d d nteger (DOUT = DOUT = 0000 sration: d d nteger (DOUT = DOUT = 0000 Sample Clock I counter ends ed ed er (Timer5 for	ased on the inde o' eration Mode bit operation Format bits = ssss sssd 00dd dddd d dddd dddd d	ex of the analo t dddd dddd, v dddd dddd, v dddd) bits starts conversi	where $s = .NO^{-1}$ where $s = .NO^{-1}$ on (auto-conve	e size of the DŴ T.d<9>) T.d<11>) ert)	
bit 10 bit 9-8	to the DM Unimplement AD12B: 10-bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: For 10-bit ope 11 = Reserve 10 = Reserve 01 = Signed in 00 = Integer (For 12-bit ope 11 = Reserve 01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserve 010 = GP time 011 = Active for 011 = Act	IA channel, ba ted: Read as ' t or 12-bit Ope channel ADC channel ADC of Data Output F ration: d d nteger (DOUT = DOUT = 0000 sample Clock I counter ends ed ed er (Timer5 for ed er (Timer3 for ransition on IN	eration Mode bit operation Mode bit operation format bits = ssss sssd 00dd dddd d dddd dddd d Source Select sampling and s	ex of the analo t dddd dddd, y dddd dddd, y dddd) bits starts conversi e ends samplin ampling and st	in g input and the where $s = .NO^{-1}$ where $s = .NO^{-1}$ on (auto-conve ing and starts c and starts c arts conversion	e size of the DŴ T.d<9>) T.d<11>) ert) onversion onversion	

查诺尼尼尼尼的 AD 供 DN AD 任 DN AD C1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

查询REGISTER 20 204 体页 CONTROL REGISTER 2

R/W-0	R/V	V-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-	-0	
	VCFG	<2:0>			_	CSCNA	CHPS	6<1:0>		
bit 15									bit 8	
R-0	U	0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	-0	
BUFS		-		SMPI	<3:0>		BUFM	ALT	S	
bit 7									bit C	
Legend:										
R = Readab	le bit	VV =	Writable	e bit	U = Unimple	emented bit, rea	d as '0'			
-n = Value a	t POR	'1' =	= Bit is se	et	'0' = Bit is cl	leared	x = Bit is unk	nown		
bit 15-13	VCFG	<2:0>: Conv	verter Vo	Itage Reference	Configuratio	n bits				
		ADRE	F+	ADREF-						
	000	Avde	C	Avss						
	001	External \	/REF+	Avss						
	010			External VREF-						
	011	External \		External VREF-						
	lxx	Avde		Avss						
bit 12-11	•	lemented:								
bit 10		CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs								
		an inputs o not scan ir	nputs							
bit 9-8	CHPS.	<1:0>: Sele	cts Chan	nels Utilized bits						
				:1:0> is: U-0, Un	implemente	d, Read as '0'				
			• •	CH2 and CH3						
		onverts CH onverts CH								
bit 7	BUFS:	Buffer Fill S	Status bit	(only valid wher	n BUFM = 1)					
				buffer 0x8-0xF, i	,		x0-0x7			
	0 = AD	DC is curren	tly filling	buffer 0x0-0x7,	user should a	access data in 0	x8-0xF			
bit 6	-	lemented:								
bit 5-2		3:0>: Select ons per inter		nent Rate for DN	IA Addresses	s bits or number	of sample/con	version		
	1111 = Increments the DMA address or generates interrupt after completion of every 16								16th	
	1110 -	sample/conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th								
	1110 -	sample/cor			generates	interrupt alter	completion o	n every	150	
	•	·		•						
	•									
				IA address after IA address after					n	
bit 1		: Buffer Fill I			completion o			lation		
2				ddress 0x0 on fi	rst interrupt a	and 0x8 on next	interrupt			
				ffer at address 0						
bit 0				ple Mode Select						
				lects for Sample		mple and Sampl	e B on next sa	mple		
	0 = Alv	ways uses o	channel i	nput selects for \$	Sample A					

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC		_			SAMC<4:0>(1)				
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
N/ W-U	F\/ VV-U	N/W-0	ADCS<	-	F\/ VV-U	N/W-0	FV/VV-0			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown			
bit 15	ADRC: ADC	C Conversion Clo	ock Source bit							
	1 = ADC internal RC clock									
	0 = Clock de	erived from syste	em clock							
bit 14-13	-	ented: Read as '								
bit 12-8	SAMC<4:0>: Auto Sample Time bits ⁽¹⁾									
	11111 = 31 TAD									
	•									
	•									
	•	_								
	00001 = 1 T 00000 = 0 T									
bit 7-0	ADCS<7:0>: ADC Conversion Clock Select bits ⁽²⁾									
	ADCS :0 : ADC Conversion Clock Select bits									
	•									
	•									
	•									
	•									
	0100000 = Reserved									
	00111111 = TCY · (ADCS<7:0> + 1) = 64 · TCY = TAD									
	•									
	•									
	•		7.0. (1) 0							
		= Tcy · (ADCS<` = Tcy · (ADCS<`								
	000000T -		· Z '							

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

查询REGISTER 2024.04供应在 N4: ADC1 CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	_	_	—		—	
bit 15					•		bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—		DMABL<2:0>		
bit 7		•			•		bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input 001 = Allocates 2 words of buffer to each analog input

000 =Allocates 1 word of buffer to each analog input

© 2009 Microchip Technology Inc.

本询PJC94世139CP304世位商。	
靠起了了在 12025GP3AD花中s节23: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGIS	ſER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	_		_	_	CH123N	IB<1:0>	CH123SB		
bit 15							bit		
					D 444 0	D 444 0	D 444 0		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	—		—	_	CH123N	IA<1:0>	CH123SA		
bit 7							bit		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	t POR	1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	known		
bit 15-11	Unimplemente								
bit 10-9	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits								
	When AD12B $11 = CH1$ pega								
	10 = CH1 nega	ative input is A	AN6, CH2 neg	ative input is A	N10, CH3 nega N7, CH3 negati				
	10 = CH1 nega 0x = CH1, CH2	ative input is A 2, CH3 negati	AN6, CH2 neg ve input is VRI	ative input is A	N7, CH3 negati				
bit 8	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha	ative input is A 2, CH3 negati annel 1, 2, 3 I	AN6, CH2 neg ve input is VRI Positive Input 3	ative input is A _{EF-} Select for Sam	N7, CH3 negati ple B bit				
bit 8	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1 , CHxSA i ve input is AN	AN6, CH2 neg ve input is VRI Positive Input 3 is: U-0, Unimp 3, CH2 positiv	ative input is A EF- Select for Sam blemented, Re re input is AN4	N7, CH3 negati ple B bit	ve input is AN			
	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv	ative input is A 2, CH3 negati annel 1, 2, 3 I = 1, CHxSA i /e input is AN /e input is AN	AN6, CH2 neg ve input is VRI Positive Input 5 is: U-0, Unim 3, CH2 positiv 0, CH2 positiv	ative input is A EF- Select for Sam blemented, Re re input is AN4	N7, CH3 negati ple B bit ead as '0' , CH3 positive in	ve input is AN			
bit 7-3	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplementer	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ve input is AN	AN6, CH2 neg ve input is VRI Positive Input 3 i s: U-0, Unim I3, CH2 positiv I0, CH2 positiv 0'	ative input is A EF- Select for Sam plemented, Re re input is AN4 re input is AN1	N7, CH3 negati ple B bit a d as '0' , CH3 positive in , CH3 positive in	ve input is AN nput is AN5 nput is AN2			
bit 8 bit 7-3 bit 2-1	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplementa CH123NA<1:0 When AD12B	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ve input is AN ed: Read as ' >: Channel 1 = 1, CHxNA i	AN6, CH2 neg ve input is VR Positive Input 3 (s: U-0, Unim (3, CH2 positiv (0, CH2 positiv (0, CH2 positiv (0, 2, 3 Negative (is: U-0, Unim	ative input is A EF- Select for Sam blemented, Re re input is AN4 re input is AN1 e Input Select fo blemented, Re	N7, CH3 negati ple B bit ad as '0' , CH3 positive in , CH3 positive in or Sample A bit ad as '0'	ve input is AN nput is AN5 nput is AN2 s	18(1)		
bit 7-3	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplementa CH123NA<1:0 When AD12B 11 = CH1 nega	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ed: Read as ' >: Channel 1 = 1, CHxNA i ative input is A	AN6, CH2 neg ve input is VRI Positive Input is is: U-0, Unim (3, CH2 positiv (0, CH2 positiv (0, CH2 positiv (0, CH2 positiv (0, CH2 neg (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	ative input is A EF- Select for Sam blemented, Re re input is AN4 re input is AN1 e Input Select fo blemented, Re ative input is A	N7, CH3 negati ple B bit ad as '0' , CH3 positive in , CH3 positive in or Sample A bit	ve input is AN nput is AN5 nput is AN2 s tive input is A	N11		
bit 7-3	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplemente CH123NA<1:0 When AD12B 11 = CH1 nega 10 = CH1 nega	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ve input is AN ed: Read as ' >: Channel 1 = 1, CHxNA i ative input is A ative input is A 2, CH3 negati	AN6, CH2 neg ve input is VRI Positive Input 3 is: U-0, Unimp (3, CH2 positiv (0, CH2 positiv (0, CH2 positiv (1, 2, 3 Negative (1, 3, 3 Negative (1, 3, 3 Negative (1, 3, 3 Negative (1, 3, 3 Negative (1, 4, 5 Ne	ative input is A EF- Select for Sam plemented, Re re input is AN4 re input is AN1 e Input Select fo plemented, Re ative input is A ative input is A	N7, CH3 negati ple B bit ad as '0' , CH3 positive in , CH3 positive in or Sample A bit ad as '0' N10, CH3 negati N7, CH3 negati	ve input is AN nput is AN5 nput is AN2 s tive input is A	N11		
bit 7-3 bit 2-1	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplementer CH123NA<1:0 When AD12B 11 = CH1 nega 10 = CH1 nega 0x = CH1, CH2 CH123SA: Cha When AD12B	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ed: Read as ' >: Channel 1 = 1, CHxNA i ative input is A ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i	AN6, CH2 neg ve input is VR Positive Input 3 (s: U-0, Unim) (3, CH2 positive (0, CH2 positive (1, 2, 3 Negative (1, 3 Negative	ative input is A EF- Select for Sam blemented, Re re input is AN4 re input is AN1 e Input Select fo plemented, Re ative input is A ative input is A EF- Select for Sam blemented, Re	N7, CH3 negati ple B bit ad as '0' , CH3 positive in , CH3 positive in or Sample A bit ad as '0' N10, CH3 negati N7, CH3 negati ple A bit ad as '0'	ve input is AN5 nput is AN5 nput is AN2 s tive input is AN ve input is AN	N11		
bit 7-3 bit 2-1	10 = CH1 nega 0x = CH1, CH2 CH123SB: Cha When AD12B 1 = CH1 positiv 0 = CH1 positiv Unimplementer CH123NA<1:0 When AD12B 11 = CH1 nega 10 = CH1 nega 0x = CH1, CH2 CH123SA: Cha When AD12B 1 = CH1 positiv	ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN ve input is AN ed: Read as ' >: Channel 1 = 1, CHxNA i ative input is A ative input is A 2, CH3 negati annel 1, 2, 3 F = 1, CHxSA i ve input is AN	AN6, CH2 neg ve input is VRI Positive Input 3 (s: U-0, Unim) (3, CH2 positive) (0, CH2 positive) (0, CH2 positive) (1, 2, 3 Negative) (is: U-0, Unim) (AN9, CH2 neg ve input is VRI Positive Input 3 (s: U-0, Unim) (3, CH2 positive)	ative input is A EF- Select for Sam blemented, Re re input is AN4 re input is AN1 e Input Select fo plemented, Re ative input is A ative input is A EF- Select for Sam blemented, Re re input is AN4	N7, CH3 negati ple B bit ead as '0' , CH3 positive in , CH3 positive in or Sample A bit ead as '0' N10, CH3 negati N7, CH3 negati	ve input is AN5 nput is AN5 nput is AN2 s tive input is AN ve input is AN	N11		

Note 1: This bit setting is Reserved in PIC24HJ128GPX02, PIC24HJ64GPX02 and PIC24HJ32GPX02 (28-pin) devices.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NB	_	_			CH0SB<4:0>						
bit 15							bit				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NA	—	—			CH0SA<4:0>						
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	oit	U = Unimple	emented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is c	leared	x = Bit is unk	nown				
bit 15		hannal O Nagative	Input Salaat	for Sample P	hit						
DIL 15		hannel 0 Negative iition as bit 7.	input Select		DIL						
bit 14-13		ented: Read as ')'								
bit 12-8	-	0>: Channel 0 Po		elect for Samp	le B bits						
		hannel 0 positive									
	01011 = Channel 0 positive input is AN11										
	•										
	• 01000 = Channel 0 positive input is AN8 ⁽¹⁾										
	00111 = Channel 0 positive input is AN7 ⁽¹⁾										
	00110 = Channel 0 positive input is AN(1)										
	•										
	•										
		hannel 0 positive									
		hannel 0 positive									
bit 7	00000 = Channel 0 positive input is AN0 CH0NA: Channel 0 Negative Input Select for Sample A bit										
	1 = Channel 0 negative input is AN1										
	0 = Channe	el 0 negative inpu	t is Vref-								
bit 6-5	Unimplem	ented: Read as ')'								
bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits										
	01100 = Channel 0 positive input is AN12										
	 01011 = Channel 0 positive input is AN11 • 										
	•										
	• 01000 = Channel 0 positive input is AN8 ⁽¹⁾										
	00111 = C	hannel 0 positive	input is AN7 ⁽¹	1)							
	00110 = C	hannel 0 positive	input is AN6 ⁽¹	1)							
	•										
	•										
		hannel 0 positive hannel 0 positive									

查询REGISTER 20-6.04 体的在 SELECT REGISTER

Note 1: These bit settings (AN6, AN7 and AN8) are reserved on PIC24HJ128GPX02, PIC24HJ64GPX02 and PIC24HJ32GPX02 (28-pin) devices.

REGISTER 2027 ADTOSSE ADC1 INPUT SCAN SELECT REGISTER LOW ^(1,2)
--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, read	d as '0'	

bit 15-13 **Unimplemented:** Read as '0'

-n = Value at POR

bit 12-0 CSS<12:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

'1' = Bit is set

0 = Skip ANx for input scan

Note 1: On devices without 13 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREF-.

'0' = Bit is cleared

x = Bit is unknown

2: CSSx = ANx, where x = 0 through 12.

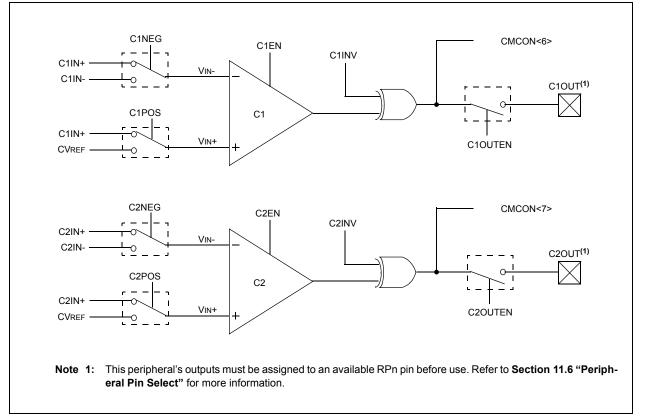
REGISTER 20-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7						bit 0	
Legend:							
R = Readable bit W		W = Writable bit		U = Unimplemented bit, read as '0		d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-0 **PCFG<12:0>:** ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 13 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** PCFGx = ANx, where x = 0 through 12.
 - **3:** PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode.


查询21.0241COMPARATOR MODULE

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Comparator" (DS70305) of the "PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

FIGURE 21-1: COMPARATOR I/O OPERATING MODES

查询PIC24HJ32GP304供应商 REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

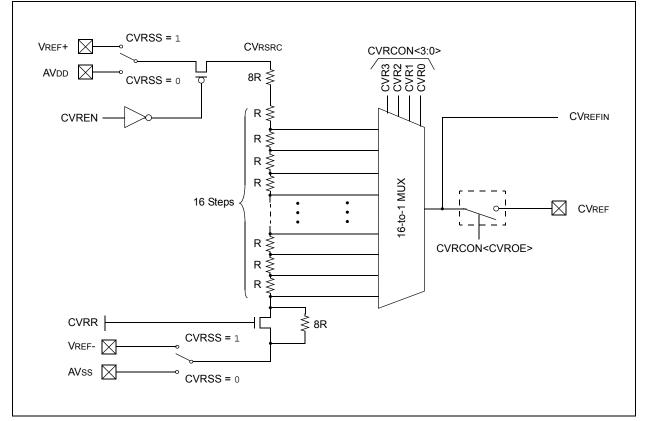
				R/W-0						
R/W-0	U-0	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0			
CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾			
bit 15							bit 8			
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS			
bit 7							bit (
Legend: R = Readabl	le hit	W = Writable	hit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at		'1' = Bit is set	bit	'0' = Bit is cle		x = Bit is unkn	own			
							lowin			
bit 15	CMIDL: Stop	in Idle Mode								
	•		e mode, modu	ule does not ge	nerate interrup	ts. Module is stil	l enabled			
		normal module								
bit 14	Unimplemen	ted: Read as '	כ'							
bit 13	C2EVT: Com	parator 2 Even	t							
		 Comparator output changed states Comparator output did not change states 								
h:: 40		•	•	ates						
bit 12	C1EVT: Comparator 1 Event									
		 1 = Comparator output changed states 0 = Comparator output did not change states 								
bit 11	-	arator 2 Enable	-							
	-	1 = Comparator is enabled								
	0 = Compara	tor is disabled								
bit 10	•	C1EN: Comparator 1 Enable								
	 1 = Comparator is enabled 0 = Comparator is disabled 									
bit 9	•	Comparator 2 O	utput Epoblo	(1)						
DIL 9		tor output is dr	•							
		ator output is no								
hit 0	C1OUTEN: C	C10UTEN: Comparator 1 Output Enable ⁽²⁾								
bit 8	1 = Comparator output is driven on the output pad									
DILO										
DILO		ator output is dr ator output is no								
bit 7	0 = Compara C2OUT: Com	itor output is no parator 2 Outp	ot driven on th							
	0 = Compara C2OUT: Com When C2INV	ator output is no parator 2 Outp <u>= 0:</u>	ot driven on th							
	0 = Compara C2OUT: Com <u>When C2INV</u> 1 = C2 VIN+	ator output is no parator 2 Outp <u>= 0:</u> > C2 VIN-	ot driven on th							
	0 = Compara C2OUT: Com <u>When C2INV</u> 1 = C2 VIN+ 0 = C2 VIN+	ator output is no parator 2 Outp <u>= 0:</u> > C2 VIN- < C2 VIN-	ot driven on th							
	0 = Compara C2OUT: Com <u>When C2INV</u> 1 = C2 VIN+	ator output is no parator 2 Outp = 0: > C2 VIN- < C2 VIN- = 1: > C2 VIN-	ot driven on th							

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

查询REGISTER 21P304 GMC ON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit
	When C1INV = 0:
	1 = C1 VIN + > C1 VIN
	0 = C1 Vin + < C1 Vin
	$\frac{\text{When C1INV} = 1:}{0 = \text{C1 VIN} + \text{C1 VIN}}$
	1 = C1 Vin + C1 Vin
bit 5	C2INV: Comparator 2 Output Inversion bit
	1 = C2 output inverted
	0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit
	1 = C1 output inverted
	0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit
	1 = Input is connected to VIN+
	 Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 21-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to VIN-
	See Figure 21-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = Input is connected to VIN+
	 Input is connected to CVREF See Figure 21-1 for the comparator modes.
	occ righte 21 rior the comparator modes.
Note 1:	If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See
	Section 11.6 "Peripheral Pin Select" for more information.

2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.


213 PIComparator Voltage Reference

21.1.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The Voltage Reference module is controlled through the CVRCON register (Register 21-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

查询REGISTER 2422422.04 做 RECON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	-	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	CVRSS		CVF	<3:0>	
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 6	0 = CVREF ci CVROE: Com 1 = CVREF vo 0 = CVREF vo	 CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on CVREF pin 0 = CVREF voltage level is disconnected from CVREF pin 					
bit 5	CVRR: Comparator VREF Range Selection bit 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size						
bit 4	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source CVRSRC = VREF+ – VREF- 0 = Comparator reference source CVRSRC = AVDD – AVSS						
bit 3-0	CVR<3:0>: Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits <u>When CVRR = 1:</u> CVREF = (CVR<3:0>/ 24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)						

查**约JES**C24HJ32GP304供应商

查询**22.0**24I**REAP3TIME_CE**OCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70310) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, and its operation. The following are some of the key features of this module:

- · Time: hours, minutes and seconds
- 24-hour format (military time)

- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 22-1: RTCC BLOCK DIAGRAM

2219 PI (RTCC3 Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
0 0	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	—	—			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

22.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 22-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 22-1.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

查询REGISTER 22-1304 供在EGGAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
-	-		CAL	<7:0>			-		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown		
bit 15	RTCEN RT	CC Enable bit ⁽²⁾	1						
51115	1 = RTCC n	nodule is enable	ed						
		nodule is disable							
bit 14	-	nted: Read as '							
bit 13		RTCC Value Re	•						
				an be written to b re locked out from		n to by the use	-		
bit 12			-		-				
	RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple								
	resulting in an invalid data read. If the register is read twice and results in the same data, the data								
	can be assumed to be valid								
				registers can be	e read without	concern over a	rollover ripp		
bit 11		HALFSEC: Half-Second Status bit ⁽³⁾							
		half period of a							
		If period of a sec							
bit 10		CC Output Enal	de bit						
	 1 = RTCC output enabled 0 = RTCC output disabled 								
bit 9-8		•	- Pagistar Wi	ndow Pointer bit	e				
bit 9-0			•			ALH and RTCV			
	Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.								
	RTCVAL<15			5					
	00 = MINUT								
	01 = WEEKDAY								
	10 = MONTH 11 = Reserved								
	RTCVAL<7:								
	00 = SECON								
	01 = HOUR								
	10 = DAY								
	11 = YEAR								
Note 1: Th	ne RCFGCAL i	register is only a	iffected by a F	POR.					
0 . A									

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

建EGISTER 22-32GP 讯QF CAE RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	01111111 =Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 =Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 =No adjustment 11111111 =Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 =Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

查询REGISTER 222-204件 在 CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		_	_		—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7				•			bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit is unknown				

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

ALRMEN bit 15 R/W-0 bit 7 Legend:	CHIME R/W-0		AMA	SK<3:0>		ALRMP	[R<1·0>
R/W-0 Dit 7	R/W-0	DANIO					11.04
bit 7	R/W-0	D 444 0					bit
		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
Legend:							bit
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15		• 0)	ed automatic	ally after an ala	arm event whe	never ARPT<7:	0> = 00h ai
oit 14		enabled; ARP		re allowed to rol top once they re		n to FFh	
oit 13-10		>: Alarm Mask					
	101x = Rese	y 10 minutes y hour a day a week a month	se	ured for Februar	ry 29th, once e	very 4 years)	
oit 9-8	ALRMPTR<1	:0>: Alarm Val	ue Register V	Vindow Pointer I	bits		
	the ALRMPTF ALRMVAL<15 00 = ALRMM 01 = ALRMW 10 = ALRMM 11 = Unimple ALRMVAL<75 00 = ALRMS 01 = ALRMD 10 = ALRMD 11 = Unimple	R<1:0> value de 5:8>: IN /D NTH mented <u>0>:</u> EC R AY mented	ecrements on	egisters when rea			
bit 7-0	11111111 = • •	Alarm Repeat Alarm will repe Alarm will not r	at 255 more 1				

查询REGISTER 222404保TC 体L (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN<3:0>				YRONE<3:0>			
bit 7							bit 0	
Legend:								
R = Readable I	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
n = Value at POR (1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 22-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2009 Microchip Technology Inc.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

查爸哈尔霍希拉拉多。GP·波什会权和定何WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	_	—		WDAY<2:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0
Legend:							

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-7: RTCVAL (WHEN RTCPTR<1:0> = 00): **MINUTES AND SECONDS VALUE REGISTER**

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>				SECON	IE<3:0>	

	SECTEN<2:0>	SECONE<3:0>
bit 7		bit 0
• • • • •		

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

查询REGISTER 2228.04 供原版VAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

			D/14/	DAM		DAA	
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—		MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	DAYTE	EN<1:0>		DAYON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

0-0	0-0	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X
—	_	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2009 Microchip Technology Inc.

TER 22 20 ALTER (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	NE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	— SECTEN<2:0>			SECONE<3:0>			
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

查询23.024HPROGRAMMABLE CYCLIC **REDUNDANCY CHECK (CRC)** GENERATOR

- Note 1: This data sheet summarizes the features the PIC24HJ32GP302/304, of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. Section refer to 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70311) of the "PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- · User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

CRC SHIFTER DETAILS PLEN<3:0> 0 **CRC Shift Register** Hold Hold X1 Hold X3 X15 Hold X2 XOR OUT 0 OUT OUT OUT IN IN IN IN BIT 0 BIT 1 Dout BIT 2 **BIT 15** p_clk p_clk p_clk p_clk CRC Read Bus **CRC Write Bus**

FIGURE 23-1:

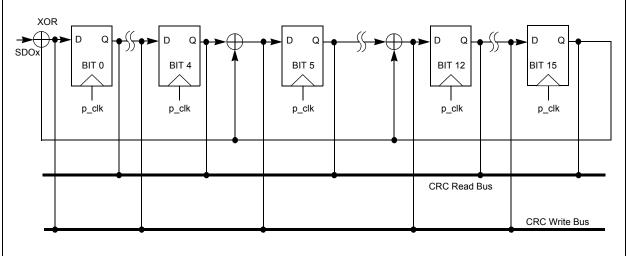
23.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively.

EQUATION 23-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 23-1.


TABLE 23-1:	EXAMPLE CRC SETUP
-------------	-------------------

Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 23-2.

23.2 User Interface

23.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See **Section 23.2.2 "Interrupt Operation"**).

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

23.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

23.3 Operation in Power Save Modes

23.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

23.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

查询23.4241 Registers 供应商

The CRC module provides the following registers:

- CRC Control Register
- CRC XOR Polynomial Register

REGISTER 23-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0	
—	—	CSIDL	VWORD<4:0>					
bit 15							bit 8	

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is greater than 7, or 16 when PLEN<3:0> is less than or equal to 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = Turn off CRC serial shifter after FIFO is empty
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

霍福·BITC24HI32GP304供应产 CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

查询**?4.0**24I**PARAL14时, M**合STER PORT (PMP)

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70302) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

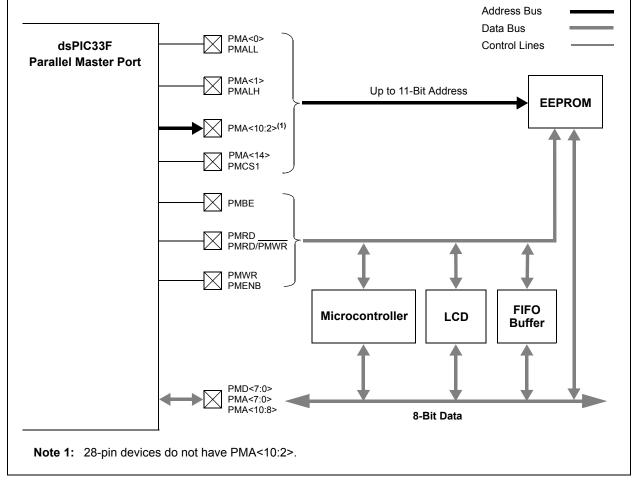

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

FIGURE 24-1:PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single chip select
 - up to 12 address lines without chip select
- · Single Chip Select Line
- · Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- · Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- Selectable Input Voltage Levels

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN				
oit 15							bit				
		(1)		(1)							
R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0				
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	:	'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	PMPEN: Par 1 = PMP en	allel Master Po	rt Enable bit								
		abled, no off-cl	nip access per	formed							
bit 14		nted: Read as	-								
bit 13	-	in Idle Mode bi									
				levice enters Id	le mode						
bit 12-11	 0 = Continue module operation in Idle mode ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits⁽¹⁾ 										
	11 = Reserved										
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins										
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed or PMA<10:8>										
			ear on separat	e pins							
bit 10		00 = Address and data appear on separate pins PTBEEN: Byte Enable Port Enable bit (16-bit Master mode)									
	1 = PMBE po		,		,						
	0 = PMBE po	ort disabled									
bit 9			PTWREN: Write Enable Strobe Port Enable bit								
	 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled 										
	PTRDEN: Read/Write Strobe Port Enable bit										
bit 8		PMENB port dis	sabled	bit							
bit 8	PTRDEN: R	PMENB port dis	sabled e Port Enable	bit							
bit 8	PTRDEN: Re 1 = PMRD/F	PMENB port dis	sabled e Port Enable bled	bit							
bit 8 bit 7-6	PTRDEN: Re 1 = PMRD/ <u>F</u> 0 = PMRD/F	PMENB port dis ead/Write Strob PMWR port ena	sabled e Port Enable bled abled	bit							
	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0 11 = Reserve	PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fi ed	sabled e Port Enable bled abled unction bits	bit							
	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reservent 10 = PMCS1	PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fi ed functions as c	sabled e Port Enable bled abled unction bits hip select	bit							
	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1	PMENB port dis ad/Write Strob <u>MWR</u> port ena PMWR port disa MWR port disa Chip Select Fi ed functions as c functions as a	sabled e Port Enable bled abled unction bits hip select ddress bit 14	bit							
bit 7-6	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h	PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fi ed functions as a functions as a ss Latch Polarit igh (PMALL an	sabled e Port Enable bled abled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d <u>PMALH</u>)	bit							
bit 7-6	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h 0 = Active-lo	PMENB port dis ad/Write Strob PMWR port ena PMWR port disa Chip Select Fi ed functions as a functions as a s Latch Polarity igh (PMALL an ow (PMALL and	sabled e Port Enable bled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d <u>PMALH</u>)	bit							
bit 7-6 bit 5 bit 4	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h 0 = Active-lc	PMENB port dis ead/Write Strob MWR port ena PMWR port disa Chip Select For ed functions as a s Latch Polarity igh (PMALL and ow (PMALL and thed: Read as	sabled e Port Enable bled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d PMALH) PMALH)	bit							
bit 7-6	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h 0 = Active-lo Unimplement CS1P: Chip	PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select For ed functions as a subsect Polarity igh (PMALL and pow (PMALL and the content of the content select 1 Polarity	sabled e Port Enable bled abled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d <u>PMALH</u>) o' y bit ⁽¹⁾	bit							
bit 7-6 bit 5 bit 4	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h 0 = Active-lo Unimplement CS1P: Chip 1 = Active-h	PMENB port dis ead/Write Strob PMWR port ena PMWR port ena PMWR port disa Chip Select Fi ed functions as a s Latch Polarity igh (PMALL and w (PMALL and thed: Read as Select 1 Polarity igh (PMCS1/Ph	sabled e Port Enable bled abled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d <u>PMALH</u>) o' y bit ⁽¹⁾ <u>d CS</u> 1)	bit							
bit 7-6 bit 5 bit 4	PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 0x = PMCS1 ALP: Address 1 = Active-ho 0 = Active-lo Unimplement CS1P: Chip 1 = Active-ho 0 = Active-lo	PMENB port dis ad/Write Strob MWR port ena PMWR port disa PMWR port disa Chip Select Fi ed functions as a s Latch Polarit igh (PMALL and (PMALL and MCS1/PM ow (PMCS1/PM	sabled e Port Enable bled abled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d <u>PMALH</u>) 0' y bit ⁽¹⁾ <u>MCS</u> 1) CS1)	bit							
bit 7-6 bit 5 bit 4 bit 3	PTRDEN: Ref 1 = PMRD/F 0 = PMRD/F CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-h 0 = Active-lc Unimplement CS1P: Chip 1 = Active-lc BEP: Byte E	PMENB port dis ead/Write Strob PMWR port ena PMWR port ena PMWR port disa Chip Select Fi ed functions as a s Latch Polarity igh (PMALL and w (PMALL and Select 1 Polarity igh (PMCS1/PI	sabled e Port Enable bled unction bits hip select ddress bit 14 y bit ⁽¹⁾ d PMALH) o' y bit ⁽¹⁾ <u>MCS1</u>) CS1) bit	bit							

Note 1: These bits have no effect when their corresponding pins are used as address lines.

查询REGISTER 24 304 但MC IN: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
	 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11):
	 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
	1 = Read strobe active-high (PMRD)
	0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11):
	 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUSY	IRQI	M<1:0>	INCM	l<1:0>	MODE16	MODE	<1:0>			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAIT	B<1:0> ⁽¹⁾		WAIT	M<3:0>		WAITE	<1:0> ⁽¹⁾			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown			
bit 15	BUSY: Busy	bit (Master mod	de only)							
		usy (not useful v	when the proc	essor stall is a	ictive)					
	0 = Port is no									
bit 14-13		Interrupt Reque		0		···· (D. (f.				
					Write Buffer 3 is v					
	or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only) 10 = No interrupt generated, processor stall activated									
	01 = Interrupt generated at the end of the read/write cycle									
		rrupt generated								
bit 12-11	INCM<1:0>: Increment Mode bits									
	11 = PSP read and write buffers auto-increment (Legacy PSP mode only)									
	10 = Decrement ADDR<10:0> by 1 every read/write cycle 01 = Increment ADDR<10:0> by 1 every read/write cycle									
		ement or decrer		•						
bit 10	MODE16: 8/	MODE16: 8/16-bit Mode bit								
		1 = 16-bit mode: data register is 16 bits, a read or write to the data register invokes two 8-bit transfer								
					the data register	invokes one 8-	-bit transfer			
bit 9-8		: Parallel Port N								
	11 =Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA <x:0> and PMD<7:0>)</x:0>									
	10 =Master mode 2 (PMCS1, PMRD, <u>PMWR, PMBE, PMA<x< u="">:0> and PMD<7:0>) 01 =Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)</x<></u>									
		01 =Enhanced PSP, control signals (PMRD, PM <u>WR, PMCS1, PMD<7:0></u> and PMA<1:0>) 00 =Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)								
bit 7-6	WAITB<1:0>	: Data Setup to	Read/Write V	Vait State Con	figuration bits ⁽¹⁾					
		WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits ⁽¹⁾ 11 = Data wait of 4 Tcy; multiplexed address phase of 4 Tcy								
	10 = Data wait of 3 TCY; multiplexed address phase of 3 TCY 01 = Data wait of 2 TCY; multiplexed address phase of 2 TCY									
bit 5-2	00 = Data wait of 1 TCY; multiplexed address phase of 1 TCY WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits									
		of additional 15			g					
	•									
	•									
		of additional 1								
		dditional wait cy								
bit 1-0		: Data Hold Afte	er Strobe Wait	State Configu	uration bits ⁽¹⁾					
	11 = Wait of	4 TCY								
	10 - \//-:+ - f	2 Toy								
	10 = Wait of 01 = Wait of									

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

查询REGISTER 224-3.04 供MA 的 DR: PARALLEL PORT ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADDR15	CS1			ADDF	R<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ADD	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bi	it	U = Unimplemented bit, read as '0'				
-n = Value at POR ''		'1' = Bit is set		'0' = Bit is cle	ared x = Bit is unknow		nown	

	ADDITIS. I draller for Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 24-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	_	_	F	PTEN<10:8> ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTEN<	7:2> ⁽¹⁾			PTEN	<1:0>
bit 7						•	bit 0

Legend:								
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit,	read as '0'				
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15	Unimple	mented: Read as '0'						
bit 14	PTEN14	PTEN14: PMCS1 Strobe Enable bit						
		 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O 						
bit 13-11	Unimple	mented: Read as '0'						

	•
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾

- 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
 - 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

© 2009 Microchip Technology Inc.

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0	
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F	
bit 15							bit 8	
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1	
OBE	OBUF		—	OB3E	OB2E	OB1E	OB0E	
bit 7							bit	
Legend:		HS = Hardwa	re Set bit					
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 14	IBOV: Input B 1 = A write at 0 = No overflo	empt to a full		gister occurred (must be cleare	d in software)		
L:1 40 40	Unimplemented: Read as '0'							
bit 13-12	•							
bit 13-12 bit 11-8	IB3F:IB0F Inp	ut Buffer x Sta er contains da	tus Full bits ta that has no	ot been read (rea	ading buffer wi	ll clear this bit)		
	IB3F:IB0F Inp 1 = Input buff	ut Buffer x Sta er contains da er does not co	tus Full bits ta that has no ntain any unr		ading buffer wi	ll clear this bit)		
bit 11-8	 IB3F:IB0F Inp 1 = Input buff 0 = Input buff OBE: Output I 1 = All readat 	ut Buffer x Sta er contains da er does not co Buffer Empty S ele output buffe	tus Full bits ta that has no ntain any unr Status bit er registers a	ead data	-	ll clear this bit)		
bit 11-8	 IB3F:IB0F Inp 1 = Input buff 0 = Input buff OBE: Output I 1 = All readat 	ut Buffer x Sta er contains da er does not co Buffer Empty S ele output buffe all of the reada	tus Full bits ta that has no ntain any unr Status bit er registers a ible output bu	ead data re empty uffer registers ar	-	ll clear this bit)		
bit 11-8	IB3F:IB0F Inp 1 = Input buff 0 = Input buff OBE: Output I 1 = All readat 0 = Some or a OBUF: Output	ut Buffer x Sta er contains da er does not co Buffer Empty S ble output buffe all of the reada t Buffer Under curred from al	tus Full bits ta that has no ntain any unr Status bit er registers an ible output bu flow Status bi	ead data re empty uffer registers ar	e full			
bit 11-8 bit 7 bit 6	IB3F:IB0F Inp 1 = Input buff 0 = Input buff OBE: Output I 1 = All readat 0 = Some or a OBUF: Output 1 = A read oc	ut Buffer x Sta er contains da er does not co Buffer Empty S ole output buff all of the reada t Buffer Under curred from al flow occurred	tus Full bits ta that has no ntain any unr Status bit er registers a Ible output bu flow Status bi n empty output	ead data re empty uffer registers ar ts	e full			
bit 11-8	IB3F:IB0F Inp 1 = Input buff 0 = Input buff OBE: Output I 1 = All readat 0 = Some or a OBUF: Output 1 = A read oc 0 = No under	ut Buffer x Sta er contains da er does not co Buffer Empty S ole output buffe all of the reada t Buffer Under curred from an flow occurred ed: Read as '	tus Full bits ta that has no ntain any unr Status bit er registers an able output bu flow Status bi n empty outpu o'	ead data re empty uffer registers ar ts ut byte register (e full			

查询REGISTER 24-604 伊森 CFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	_	_	_	—	_	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7						· · ·	bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
-								

bit 15-2 Unimpl	emented: Read as '0'
-----------------	----------------------

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	O = DMD modulo usos Schmitt Triggor input buffors

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

查**约JES**C24HJ32GP304供应商

查询25.024ISPECIAL任后ATURES

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices include the following features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

TABLE 25-1: DEVICE CONFIGURATION REGISTER MAP

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>	—	—		BSS<2:0>		BWRP
0xF80002	FSS ⁽¹⁾	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_		_	_	_	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO	—	—		_	FNC	SC<2:0>	
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	—	_	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST<	<3:0>	
0xF8000C	FPOR		Reserved	(2)	ALTI2C	_	FPW	/RT<2:0>	
0xF8000E	FICD	Reserv	ved ⁽³⁾	JTAGEN	—	_	—	ICS<	:1:0>
0xF80010	FUID0				User Unit ID) Byte 0			
0xF80012	FUID1				User Unit ID) Byte 1			
0xF80014	FUID2				User Unit ID) Byte 2			
0xF80016	FUID3				User Unit ID) Byte 3			

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on PIC24HJ32GP302/304 devices.

- 2: These bits are reserved and always read as '1'.
- 3: These bits are reserved for use by development tools and must be programmed as '1'.

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 25-1.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The Device Configuration register map is shown in Table 25-1.

查ABLE 254处 J320 C24H 按 ON TO GURATION BITS DESCRIPTION

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
		Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
		001 = High security; boot program Flash segment ends at 0x001FFE
		Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
(4)		000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes
		01 = Boot RAM is 230 bytes 00 = Boot RAM is 1024 bytes
SWRP ⁽¹⁾	FSS ⁽¹⁾	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE
		010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
		001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
		000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0> ⁽¹⁾	FSS ⁽¹⁾	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM
		01 = Secure RAM is 200 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM

Note 1: This Configuration register is not available on PIC24HJ32GP302/304 devices.

查询TABLE 12532GP 第0C 24时 @ NFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

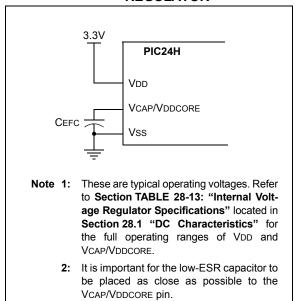
Note 1: This Configuration register is not available on PIC24HJ32GP302/304 devices.

Bit Field	Register	Description
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
ALTI2C	FPOR	Alternate I ² C [™] pins 1 = I ² C mapped to SDA1/SCL1 pins 0 = I ² C mapped to ASDA1/ASCL1 pins
JTAGEN	FICD	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

查為意思 (2542: J3 死) C24H (文 ONE) GURATION BITS DESCRIPTION (CONTINUED)

Note 1:	This Configuration register is not available on PIC24HJ32GP302/304 devices.
---------	---

查询25.2241002Chip Moltage Regulator


All of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP/VDDCORE pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 28-13 located in **Section 28.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the
	VCAP/VDDCORE pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 25-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

25.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

253PI (Wallobdog3Tinter (WDT)

For PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

25.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPRE WDTPOST<3:0> SWDTEN WDT Wake-up FWDTEN Prescaler Postscaler WDT LPRC Clock (divide by N2) (divide by N1) Reset WDT Window Select WINDIS CLRWDT Instruction

FIGURE 25-2: WDT BLOCK DIAGRAM

25.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

25.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by
	-
	the application software only during the last
	1/4 of the WDT period. This CLRWDT win-
	1/4 of the WDT period. This CLRWDT with-
	dow can be determined by using a timer. If
	a CLRWDT instruction is executed before
	this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

查询25.524HJTAGPInterface商

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70246) of the *PIC24H Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

25.6 In-Circuit Serial Programming

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

25.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

25.8 Code Protection and CodeGuard™ Security

The PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the PIC24HJ32GP302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices. The PIC24HJ32GP302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70239) of the "PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

ØΡ	IC24HJ32 ලිසිලිසිල්	2GP304 () විදුඩ්ද්ස්	<u></u> 世間
= x00 8K	0x000000h 0x0001FEh 0x000200h 0x0002FEh 0x0007FEh	0x0057FEh 0x002000h 0x003FFEh 0x004000h 0x0057FEh	0x0157FEh
BSS<2:0> = x00 8K	VS = 256 IW BS = 7936 IW	GS = 3072 IW	
1 4K	0x000000h 0x0001FEh 0x000200h 0x000200h 0x000000h 0x000000h 0x000000h		0x0157FEh
BSS<2:0> = x01 4K	VS = 256 IW BS = 3840 IW	GS = 7168 IW	
¢10 1K	0x000000h 0x00001FEh 0x000200h 0x00027FEh 0x000800h	0x002000 0x0035756h 0x0035756h 0x004000h 0x0057766h	0x0157FEh
BSS<2:0> = x10 1K	VS = 256 IW BS = 768 IW	GS = 10240 IW	
×11 0K	0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0007FEh	0x001FFFEN 0x002000h 0x00267FEh 0x00677FEh 0x0057FEh	0x0157FEh
BSS<2:0> = x11 0K	VS = 256 IW	GS = 11008 IW	
CONFIG BITS		YO YO	

TABLE 25-4: CODE	DE FLASH SECURITY	SEGMEN	T SIZES FOR 64 KB D	DEVICES		-		洵P
CONFIG BITS	BSS<2:0> =	×11 0K	BSS<2:0> = x10 1	Ŧ	BSS<2:0> = x0	1 4K	BSS<2:0> =	
	VS = 256 IW	0x000000h 0x0001FEh	VS = 256 IW 0x000	0000h 01FEh	VS = 256 IW	x000000h x0001FEh	VS = 256 IW	
		0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x000 0x000	0200h 07FEh 0800h	BS = 3840 IW	x000200h x0007FEh x000800h	BS = 7936 IW	
SSS<2:0> = x11		0x001FFEh 0x002000h 0x003FFEh		1666h 2000h 3666h		x001FFEh x002000h x003FFFh		0x001FFEh 0x002000h 0x003FFFh
УO	GS = 21760 IW	0x004000h 0x007FFEh 0x008000h	GS = 20992 IW	0x004000h 0x007FFEh 0x008000h	GS = 17920 IW	0x004000h 0x007FFEh 0x008000h	GS = 13824 IW	4供应 0x004000h 0x007FFEh 0x008000h 0x008000h
		0x0157FEh	0x01	0x0157FEh		0x0157FEh		
	VS = 256 IW	0x000000h 0x0001FEh	VS = 256 IW 0x000	0000h 01FEh	VS = 256 IW	x000000h x0001FEh	VS = 256 IW	0x000000h 0x00001FEh
	SS = 3840 IW	0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x000 SS = 3072 IW 0x000	0200h 07FEh 0800h	BS = 3840 IW	x000200h x0007FEh x000800h	BS = 7936 IW	0x000200h 0x0007FEh 0x000800h
SSS<2:0> = x 10		0x002000h 0x003FFEh		2000h 3FFEh		x002000h x003FFEh		0x002000h 0x003FFEh
4K	GS = 17920 IW	0x004000h 0x007FFEh 0x008000h 0x00ABFEh	GS = 17920 IW 0x00 0x00 0x00 0x00 0x00	0x004000h 0x007FFEh 0x008000h 0x00ABFEh	GS = 17920 IW	0x004000h 0x007FFEh 0x008000h 0x00ABFEh	GS = 13824 IW	0x004000h 0x007FFEh 0x008000h 0x00ABFEh
		0x0157FEh	0x01	0x0157FEh	0	0x0157FEh		0x0157FEh
	VS = 256 IW	0x000000h 0x0001FEh	VS = 256 IW 0x00	0000h 01FEh	VS = 256 IW	x000000h x0001FEh	VS = 256 IW	0x000000h 0x0001FEh
		0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x00 0x00 0x00	0200h 07FEh 0800h	BS = 3840 IW	x000200h x0007FEh x000800h	BS = 7936 IW	0x000200h 0x0007FEh 0x000800h
SSS<2:0> = x01	SS = 7936 IW	0x001FFEh 0x002000h 0x003FFEh	SS = 7168 IW 0x00	1FFEN 2000h 3FFEh 3500h	SS = 4096 IW	x001FFEh x002000h x003FFEh		0x001FFEh 0x002000h 0x003FFEh
8K	GS = 13824 IW	0x0040000 0x007FFEh 0x008000h 0x00ABFEh	0x00 0x00 0x00 0x00 0x00 0x00	0x007FFEh 0x008000h 0x00ABFEh	GS = 13824 IW 0	0x0040000 0x0075FEh 0x008000h 0x00ABFEh	GS = 13824 IW	0x0040000 0x007FFEh 0x008000h 0x00ABFEh
		0x0157FEh	0x01	0x0157FEh	0	0x0157FEh		0x0157FEh
	VS = 256 IW	0x0000000 0x0001FEh	VS = 256 IW 0x00	0000h 01FEh	VS = 256 IW	x000000h x0001FEh	VS = 256 IW	0x000000h 0x0001FEh
		0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x00 0x00 0x00 0x00	0x000200h 0x0007FEh 0x000800h	BS = 3840 IW 00	0x000200h 0x0007FEh 0x000800h 0x0016FEh	BS = 7936 IW	0x000200h 0x0007FEh 0x000800h 0x001FEFh
SSS<2:0> = x00		0x002000h 0x003FFEh		2000h 3FFEh		x002000h x003FFEh		0x002000h 0x003FFEh
16K	SS = 16128 IW GS = 5632 IW	0x007FFEh 0x008000h 0x008000h	SS = 15360 IW 0X00 GS = 5632 IW 0X00	07FFEh 08000h 08000h	SS = 12288 IW GS = 5632 IW	x004000 1x007FFEh 1x008000h	SS = 8192 IW GS = 5632 IW	0x007FFEh 0x008000h 0x008000h
		0x0157FEh	0x01	0x0157FEh		0x0157FEh		0x0157FEh

查	= x00 8K												0x0035655 0x0036055 0x0036055 0x0036655 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x00 0x000 0x00 0x000 0x0 0x00 0x	0x0035655 0x0036665 0x0036665 0x0036665 0x0032665 0x00326655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x0032655 0x000200 0x000200 0x000200 0x000200 0x0000 0x0000 0x00 0x000 0x00 0x000 0x00 0x000 0x	0x00036665 0x0036665 0x0036665 0x0036665 0x0036665 0x0036665 0x00036655 0x000000 0x00036665 0x00036665 0x00000 0x00036665 0x00000 0x00036665 0x00000 0x00036665 0x00000 0x00036665 0x00000 0x0003665 0x0000 0x00036665 0x0000 0x00036665 0x0000 0x00036665 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x000 0x0000 0x00 0x000 0x0	0x003605 0x0040005 0x0040005 0x0040005 0x0040605 0x0040605 0x0001567 0x00001667 0x00001667 0x00001667 0x0000000 0x00001667 0x0000000 0x0000000 0x000000 0x000000 0x000000	0x000000000000000000000000000000000000	00000000000000000000000000000000000000	0x00367675 0x00367675 0x00367675 0x00367675 0x00367675 0x00367675 0x00367675 0x00316757 0x000001675 0x000001675 0x000001675 0x000001675 0x000001675 0x000001675 0x00000175 0x000000175 0x00000175 0x000000175 0x00000000000000000000000000000000000	0x004000 0x004000 0x004000 0x004000 0x004000 0x004000 0x000000 0x000000 0x000000 0x000000 0x000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 x 00350555 0 x 003505555 0 x 003505555 0 x 0035055555 0 x 0035055555 0 x 0035055555 0 x 015575 0 x 015575 0 x 015575 0 x 0155755 0 x 0155755 0 x 0155755 0 x 0155755 0 x 01557555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 015575555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 01557555 0 x 0155755 0 x 015575 0 x 015575 0 x 015575 0 x 015575 0 x 000 0	0x00040000 0x00040000 0x00040000 0x00040000 0x00040000 0x00040000 0x00040000 0x000000000 0x0000000000 0x00000000000 0x00000000000000000000000000000000000	20000000000000000000000000000000000000	0x0040000 0x0040000 0x0040000 0x0040000 0x0040000 0x0040000 0x0040000 0x00000000 0x00000000000 0x0000000000 0x00000000000000000000000000000000000
		VS = 256 IW	BS = 7936 IW			GS = 35840 IW			VS = 256 IW		S S	S S S			s = 256 IW = 7936 IW = 35840 IW S = 256 IW	s = 256 IW = 7936 IW = 35840 IW = 35840 IW s = 256 IW	s = 256 IW = 7936 IW = 35840 IW 5 = 256 IW = 7936 IW	= 256 IW = 7936 IW = 35840 IW = 35840 IW = 256 IW = 7936 IW	S = 256 IW = 7936 IW = 35840 IW S = 256 IW = 7936 IW	s = 256 IW = 7936 IW = 35840 IW = 35840 IW = 7936 IW = 7936 IW	s = 256 IW = 7936 IW = 35840 IW = 35840 IW = 7936 IW = 35840 IW = 35840 IW	s = 256 IW = 7936 IW = 35840 IW = 35840 IW = 7936 IW = 7936 IW = 35840 IW	s = 256 IW = 7936 IW = 35840 IW s = 7936 IW = 35840 IW = 35840 IW = 7936 IW = 7936 IW	s = 256 IW = 7936 IW = 35840 IW s = 7936 IW = 7936 IW = 35840 IW = 7936 IW = 7936 IW	s = 256 IW = 7936 IW = 35840 IW = 35840 IW = 7936 IW = 7936 IW = 7936 IW = 7936 IW = 27648 IW
	0>=x01 4K			0x001FFEh 0x002000h 0x003FFFh	0x004000h 0x007FFEh 0x008000h	IW 0x010000h		0X015/FEN																	
	BSS<2:0>	VS = 256 IW	BS = 3840 IW			GS = 39936 IW			VS = 256 IW	= 256	S =	S S			S =	S = S = S = S									
	•= x10 1K	0×0000000h 0×0001FEh	0x0007FEh 0x000800h	0x001FFEh 0x002000h 0x003FFFh	0x004000h 0x008000h 0x008000h	v 0x010000h	0x0157FEh		0x000000h 0x0001FEh																
	BSS<2:0>	VS = 256 IW	BS = 768 IW			GS = 43008 IW			VS = 256 IW	= 256 = 768 = 3072	= 256 = 768 = 3072	= 256 = 768 = 3072	= 39936												
	x11 0K	0x0000000h 0x0001FEh	0x0007FEh 0x0007FEh 0x000800h	0x001FFEh 0x002000h 0x003FFFh	0x004000h 0x007FFEh 0x008000h	0x010000h	0x0157FEh		0x000000000000000000000000000000000000	0x000000 0x0001FEh 0x000200h 0x000200h 0x000700h 0x000700h 0x000700h 0x0000700h	0x000000 0x0001FEF 0x0001FEF 0x0001FFEF 0x0016FEF 0x0016FEFF 0x003FFEFF	0 × 0000000000000000000000000000000000	0x000000000000000000000000000000000000	0x0000000 0x000016E0 0x000016E0 0x000016E0 0x000016E0 0x00016E0 0x00016E0 0x00016E0 0x00016E0 0x00016E0 0x0000000 0x000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0x000000000000000000000000000000000000	0x000000000000000000000000000000000000	0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x00001000 0x000010000 0x000010000 0x000010000 0x000010000 0x000010000 0x0000100000 0x0000100000 0x0000100000 0x0000100000000	0x000010000000000000000000000000000000	0x00001000 0x00001600 0x000016760 0x000016760 0x000016760 0x000016760 0x000016760 0x000016760 0x00001600 0x00000000 0x00000000 0x0000000 0x000000	0x00001000 0x000016767 0x000016767 0x000016767 0x000016767 0x00016767 0x00016767 0x00016767 0x00016767 0x000016767 0x00001677 0x00001677 0x000017677 0x000017677 0x000017677 0x000017677 0x000007000 0x000017677 0x000007000 0x00000700000 0x000017677 0x000000000000000000000000000000000	0x000000000000000000000000000000000000	0x000000000000000000000000000000000000	0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x000020000 0x0000000 0x0000000 0x0000000 0x000000	0x000000000000000000000000000000000000
	BSS<2:0> =	VS = 256 IW				GS = 43776 IW		1/10 - 2/10	007 = 0	S = 250 S = 3840	vo = 200 IV	vvi 05 = 200 IW SS = 3840 IW	VS = 230 IW SS = 3840 IW GS = 39936 IW												
	CONFIG BITS			SSS<2:0> = x11	УO						SSS<2:0> = x10	= x1	= ×1	= ×1	= ×1	= ×1	= ×1	= ×1	= ×1 = ×0	= x1 = x0	= ×1	= ×1	= ×1 = ×0	= ×1 = ×0	= ×0 = ×1

查询26.024HNSTRUC开ONSET SUMMARY

Note:	This data sheet summarizes the features								
	of the PIC24HJ32GP302/304,								
	PIC24HJ64GPX02/X04 and								
	PIC24HJ128GPX02/X04 families of								
	devices. It is not intended to be a								
	comprehensive reference source. To								
	complement the information in this data								
	sheet, refer to the "dsPIC33F/PIC24H								
	Family Reference Manual". Please see								
	the Microchip web site								
	(www.microchip.com) for the latest								
	dsPIC33F/PIC24H Family Reference								
	Manual sections.								

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

Table 26-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 26-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 264HJ3 SYMBOLS DEED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

查询PIC24HJ32GP304供应商

TABLE 26-2: INSTRUCTION SET OVERVIEW

Base Instr # Assembly Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N, Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
	DOBI	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
0	DOM	BSW.Z	Ws,Wb	Write Z bit to Ws	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
~	210	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 01 3) 1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	(2 01 3) 1 (2 or 3)	None
	1				-	(2010)	

© 2009 Microchip Technology Inc.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	СОМ	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N,Z
				$Wd = \overline{Ws}$	1	1	,
18	an.	COM	Ws,Wd	Compare f with WREG	1	1	N,Z C,DC,N,OV,Z
10	CP	CP	f		1		
		CP	Wb,#lit5	Compare Wb with lit5		1	C,DC,N,OV,Z
10	GDA	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
00		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	C
34	GOTO	GOTO	Expr	Go to address	2	2	None
	2010	GOTO	Wn	Go to indirect	1	2	None

TABLE (2642) T3 (INSTIRUCTION SET OVERVIEW (CONTINUED)

查询TABLE 12632GP3NSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP	N3, NG	No Operation	1	1	None
40	NOT	NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	101	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to	1	2	None
			WIIG	W(nd):W(nd + 1)			
45	 	POP.S	-	Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
49	RESET	RESET		Software device Reset	1	1	None
50	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
51	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
52	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
53	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
54	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
55	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
56	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
57	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
58	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
59	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
60	SUB	SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
61	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	•	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
			#lit10,Wn				
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
62	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
63	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
64	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
65	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
66	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
68	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None

TABLE (2642:133NSTRUCTION SET OVERVIEW (CONTINUED)

查询 TAB2EI F632GP	INSTRUCTION SET OVERVIEW	V (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

查**约JES**C24HJ32GP304供应商

查询27.024HDEXELORMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit™ 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

272PIMPLABCCCComplex for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

查询27.724HMPLAB(SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline PIC16F5xx), (PIC10F, PIC12F5xx, midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

查询28.024IEBEOTRICAL SHARACTERISTICS

This section provides an overview of PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 28-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

289PI OCHCharacteristics

TABLE 28-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 28-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 28-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	30		°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	40	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	—	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θja	30	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	ARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	/lin Typ ⁽¹⁾ Max Unit		Units	Conditions		
Operati	ng Voltag	6							
DC10	Supply Voltage								
	Vdd		3.0	—	3.6	V	Industrial and Extended		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	—		
DC16	VPOR	VDD Start Voltage ⁽⁴⁾ to ensure internal Power-on Reset signal	_	—	Vss	V	_		
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	_	V/ms	0-3.0V in 0.1s		
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	_	2.75	V	Voltage is dependent on load, temperature and VDD		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at VSS for a minimum of 200 µs to ensure POR.

© 2009 Microchip Technology Inc.

TABLE 2845 J3 20 CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Operating Cur	rent (IDD) ⁽²⁾							
DC20d	19	30	mA	-40°C				
DC20a	19	30	mA	+25°C	2.21/			
DC20b	19	30	mA	+85°C	- 3.3V	10 MIPS		
DC20c	19	35	mA	+125°C				
DC21d	29	40	mA	-40°C				
DC21a	29	40	mA	+25°C	0.01/			
DC21b	28	45	mA	+85°C	3.3V	16 MIPS		
DC21c	28	45	mA	+125°C				
DC22d	33	50	mA	-40°C		20 MIPS		
DC22a	33	50	mA	+25°C	3.3V			
DC22b	33	55	mA	+85°C	3.3V	20 101195		
DC22c	33	55	mA	+125°C				
DC23d	47	70	mA	-40°C				
DC23a	48	70	mA	+25°C	3.3V			
DC23b	48	70	mA	+85°C	3.3V	30 MIPS		
DC23c	48	70	mA	+125°C]			
DC24d	60	90	mA	-40°C				
DC24a	60	90	mA	+25°C	3.3V	40 MIPS		
DC24b	60	90	mA	+85°C	3.3V	40 IVIIPS		
DC24c	60	90	mA	+125°C	1			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

查询FABLE 28-6. DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾								
DC40d	4	25	mA	-40°C				
DC40a	4	25	mA	+25°C				
DC40b	4	25	mA	+85°C	3.3V	10 MIPS		
DC40c	4	25	mA	+125°C				
DC41d	6	25	mA	-40°C		16 MIPS		
DC41a	6	25	mA	+25°C	2.21/			
DC41b	6	25	mA	+85°C	3.3V			
DC41c	6	25	mA	+125°C				
DC42d	9	25	mA	-40°C		20 MIPS		
DC42a	9	25	mA	+25°C	2.21/			
DC42b	9	25	mA	+85°C	- 3.3V	20 101195		
DC42c	9	25	mA	+125°C				
DC43a	16	25	mA	+25°C				
DC43d	16	25	mA	-40°C	2.21/			
DC43b	16	25	mA	+85°C	- 3.3V	30 MIPS		
DC43c	16	25	mA	+125°C				
DC44d	18	25	mA	-40°C				
DC44a	18	25	mA	+25°C	- 3.3V	40 MIPS		
DC44b	19	25	mA	+85°C	3.3V	40 101175		
DC44c	19	25	mA	+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 28-17. J3 20 CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	andard Operating Conditions: 3.0V to 3.6V hless otherwise stated) herating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Power-Down Current (IPD) ⁽²⁾									
DC60d	24	500	μA	-40°C					
DC60a	28	500	μA	+25°C	2 2)/	Base Power-Down Current ^(3,4)			
DC60b	124	750	μA	+85°C	3.3V	Base Power-Down Current			
DC60c	350	1000	μA	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	2 2 1	Matchdog Timor Current: Alwor(3)			
DC61b	12	20	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61c	13	25	μA	+125°C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 28-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERI	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No. Typical ⁽¹⁾ Max Doze Ratio				Units		Conditions		
DC73a	42	50	1:2	mA				
DC73f	23	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	23	30	1:128	mA				
DC70a	42	50	1:2	mA		3.3V	40 MIPS	
DC70f	26	30	1:64	mA	+25°C			
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA				
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	24	30	1:128	mA				
DC72a	42	50	1:2	mA	+125°C	25°C 3.3V		
DC72f	26	30	1:64	mA			40 MIPS	
DC72g	25	30	1:128	mA				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

		DCICHARACTERISTICS: I/	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
			Operating temp	$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O pins	Vss	—	0.2 VDD	V			
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1		
DI15		MCLR	Vss	—	0.2 VDD	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMbus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.2 VDD	V	SMbus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd		Vdd	V	_		
D 10 (I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.5	V			
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8		Vdd	V			
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	5.5	V			
	ICNPU	CNx Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2,3)							
DI50		I/O pins 5V Tolerant ⁽⁴⁾	—	_	±2	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ 40^\circC \leq \ TA \leq +85^\circC \end{array}$		
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Shared with external reference pins, 40°C ≤ Ta ≤ +85°C		
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C		
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$		
DI55		MCLR	_	—	±2	μA	$VSS \leq VPIN \leq VDD$		
DI56		OSC1	—	_	±2	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for the 5V tolerant I/O pins.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE 28410:3 20 CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
DO10		I/O ports	—	—	0.4	V	IOL = 2 mA, VDD = 3.3V	
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 2 mA, VDD = 3.3V	
	Vон	Output High Voltage						
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V	
DO26		OSC2/CLKO	2.41	—	—	V	Іон = -1.3 mA, Vdd = 3.3V	

TABLE 28-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions		
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	_		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHARACTERISTICS			(unless		ise state	ed) -40°C :	litions: 3.0V to 3.6V $40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol Characteri		Min	Min Typ ⁽¹⁾		Units	Conditions		
		Program Flash Memory							
D130a	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	VMIN	_	3.6	V	Vмın = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	Vмın = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	_	10	—	mA			
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2		
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2		
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2		
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2		
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, See Note 2		
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2		

查询和B2E1283122P3DC供应度ACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

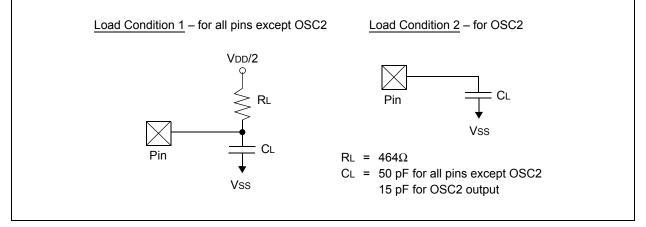
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 28-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol Characteristics Min Typ Max Units Comments									
	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Capacitor must be low series resistance (< 5 Ohms)			

© 2009 Microchip Technology Inc.

282PI (ACHOBAGacteristics and Timing


Parameters

This section defines PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 AC characteristics and timing parameters.

TABLE 28-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 28.0 "Electrical Characteristics" .						

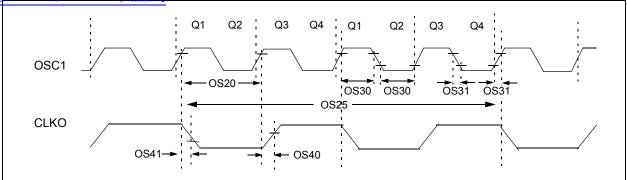

FIGURE 28-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 28-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In l ² C™ mode

查询问GURE 28 23 P304 任XTERNAL CLOCK TIMING

TABLE 28-16: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTEF	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	¹ Symb Characteristic Min Typ ⁽¹⁾		Typ ⁽¹⁾	Мах	Units	Conditions			
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS Sosc		
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns			
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2		ns	—		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2		ns	—		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TcY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

查福尼世纪8447.3年记30日前前MING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic			Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	—
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter)	-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

АС СНА	RACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
	Internal FRC Accuracy @	0 7.3728	MHz ^(1,2)							
F20	FRC	-2	_	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V				
	FRC	$-5 - +540^{\circ}C \le TA \le +125^{\circ}C VDD = 3.0^{\circ}$					VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

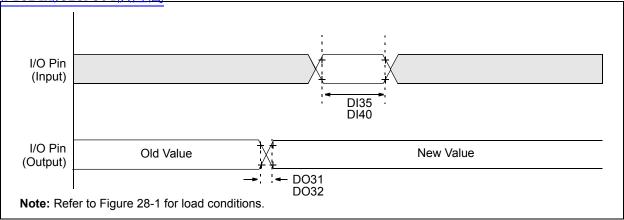

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 28-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
	LPRC	-70	_	+70	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: Change of LPRC frequency as VDD changes.

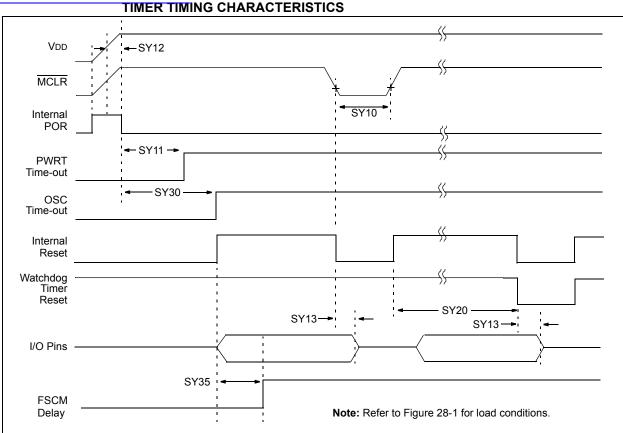

查询前 GURE 28 公 P304 任 K CAND I/O TIMING CHARACTERISTICS

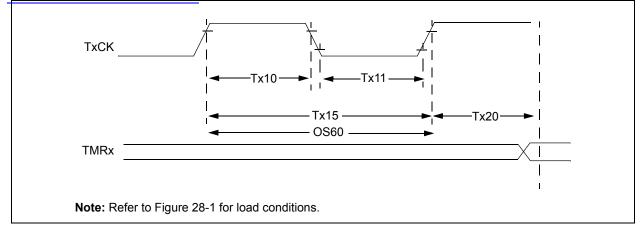
TABLE 28-20: I/O TIMING REQUIREMENTS

AC CHAR	AC CHARACTERISTICS			rating Co vise state perature	ed) -40°C ≤	Ta≤ +8	5°C for I	ndustrial Extended
Param No. Symbol Character			istic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TioR	Port Output Rise Tim	е		10	25	ns	—
DO32	TIOF	Port Output Fall Time	è		10	25	ns	—
DI35	TINP	INTx Pin High or Low	20	_		ns	—	
DI40	DI40 TRBP CNx High or Low Time (input)			2	_	_	Тсү	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

查@课程28H#32GP 张启转应随ATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

查询和的2世2832位P 梁色集成商ATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHA	RACTER	ISTICS	(unles	ard Operatin s otherwise ting tempera	stated) ture -	40°C ≤ ⁻	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SY10	ТмсL	MCLR Pulse Width (low)	2	_	_	μs	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period	-	2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_
SY20	Twdt1	Watchdog Timer Time-out Period	—	—	_	_	See Section 25.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 28-19)
SY30	Тоѕт	Oscillator Start-up Timer Period	-	1024 Tosc	—	—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

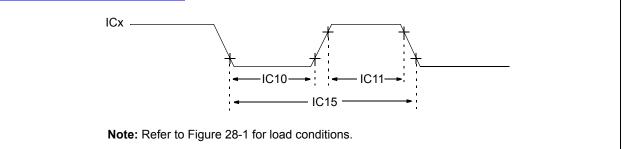
© 2009 Microchip Technology Inc.

查阅RE28532GP30M集成窗 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 28-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА	RACTERIST	ICS		(unless	rd Operating of softensing temperature of the softensing temperature of the softension of the softensi	ated) e -40°	C ≤ Ta ≤	+85°C	for Industrial C for Extended
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		0.5 Tcy + 20		_	ns	Must also meet parameter TA15
			Synchror with pres		10		—	ns	
			Asynchro	onous	10		_	ns	
TA11	ΤτxL	TxCK Low Time	Synchror no presc		0.5 Tcy + 20	_	—	ns	Must also meet parameter TA15
			Synchror with pres		10	_	—	ns	
			Asynchro	onous	10	_		ns	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presc		Tcy + 40		—	ns	—
			Synchror with pres		Greater of: 20 ns or (Tcy + 40)/N	—	—	_	N = prescale value (1, 8, 64, 256)
			Asynchro	onous	20	_	_	ns	—
OS60	Ft1	SOSC1/T1CK Osci frequency Range (o by setting bit TCS (scillator e	nabled	DC	_	50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY		1.5 TCY		

Note 1: Timer1 is a Type A.


查询和的2世283232 和MER空 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERIS	rics		(unles	ard Operating s otherwise st ting temperatur	t ated) re -40°	°C ≤ Ta ≤	+85°C f	or Industrial for Extended
Param No.	Symbol	Charact	Characteristic			Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous, no prescaler		0.5 TCY + 20		_	ns	Must also meet parameter TB15
			Synchronous, with prescaler		10		_	ns	
TB11	TtxL	TxCK Low Time	Synchro no prese		0.5 TCY + 20		—	ns	Must also meet parameter TB15
			Synchro with pre		10		_	ns	
TB15	TtxP	TxCK Input Period	Synchro no prese		Tcy + 40		_	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		Clock	0.5 TCY		1.5 TCY	_	—

TABLE 28-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.SymbolCharacteristic				Min	Тур	Max	Units	Conditions			
TC10	TtxH	TxCK High Time	Synchronous		0.5 TCY + 20			ns	Must also meet parameter TC15		
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20	_	_	ns	Must also meet parameter TC15		
TC15	TtxP	TxCK Input Period	Synchro no preso		Tcy + 40	_		ns	N = prescale value		
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)		
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY		1.5 Тсү	—	—		

查GURE 28-6:32GP3NPUTC CAPx) TIMING CHARACTERISTICS

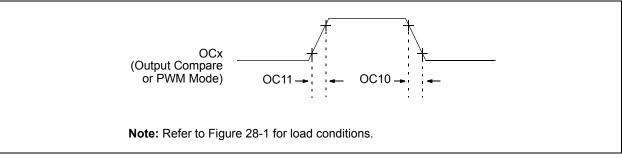


TABLE 28-25: INPUT CAPTURE TIMING REQUIREMENTS

АС СНА	RACTERI	ISTICS	(unless otherwis	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions			
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	_			
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	—			
			With Prescaler	10	_	ns				
IC15	IC15 TccP ICx Input Period			(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 28-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

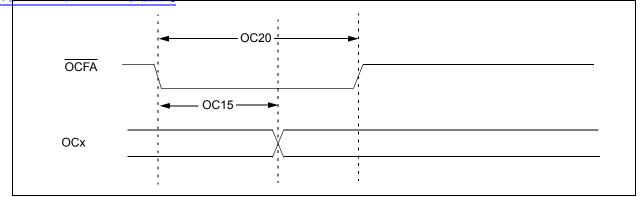


TABLE 28-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions			
OC10	TccF	OCx Output Fall Time	— — ns See parameter D032							
OC11	TccR	OCx Output Rise Time	— — ns See parameter D031							

Note 1: These parameters are characterized but not tested in manufacturing.

查询和GURE 2828 P304 (ACPPR) M MODULE TIMING CHARACTERISTICS

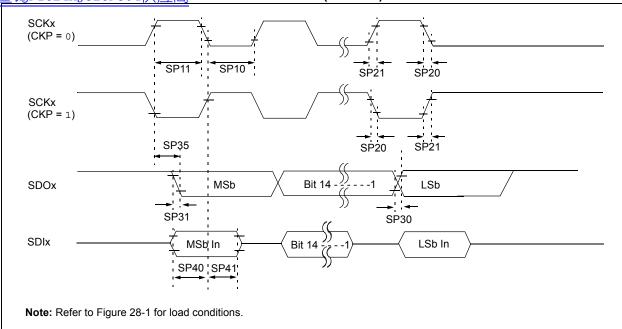


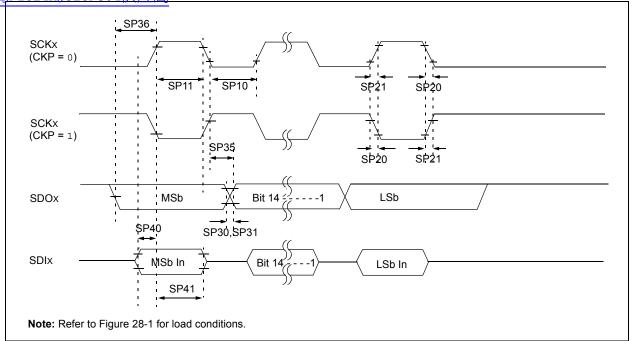
TABLE 28-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHAI	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC15	Tfd	Fault Input to PWM I/O Change	— — 50 ns —							
OC20	TFLT	Fault Input Pulse Width	50 — — ns —							

Note 1: These parameters are characterized but not tested in manufacturing.

© 2009 Microchip Technology Inc.

習(如果E28月:32GP38月其前()) ULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 28-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	C CHARACTERISTICS			Operatin therwise temperat	stated) ure -40)°C≤ Ta	by to 3.6V \leq +85°C for Industrial \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	—		ns	See Note 3
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter D031 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

查询问GURE 28210:304 (SRIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

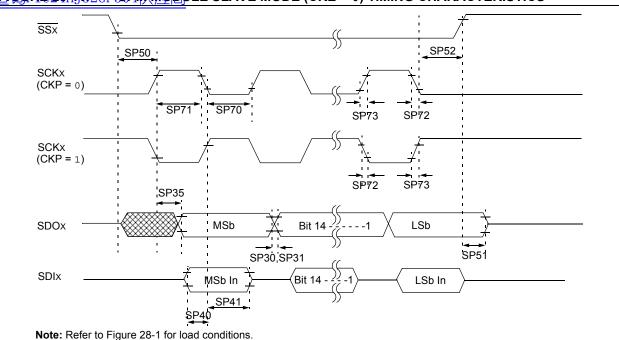


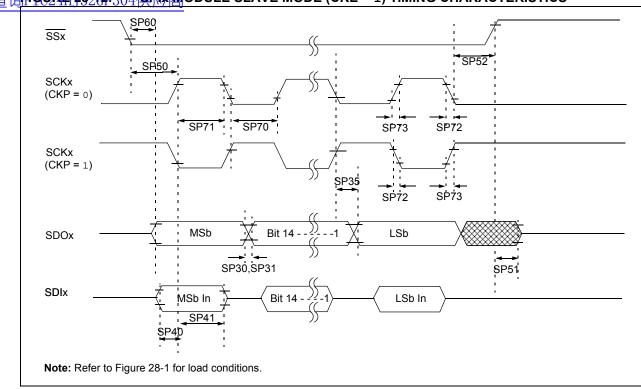
TABLE 28-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	C CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—	_	ns	See Note 3			
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2		_	ns	See Note 3			
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	—	_	ns	See parameter D032 and Note 4			
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	—	_	ns	See parameter D032 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter D031 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	_			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—			

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

習GURE 28H1132GP 3PHK MOEULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 28-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Conditions					
SP70	TscL	SCKx Input Low Time	30	_	_	ns	_		
SP71	TscH	SCKx Input High Time	30	_		ns			
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	—		ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	—		ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	See Note 3		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40	—	_	ns			

 $\label{eq:Note 1: These parameters are characterized but not tested in manufacturing.$

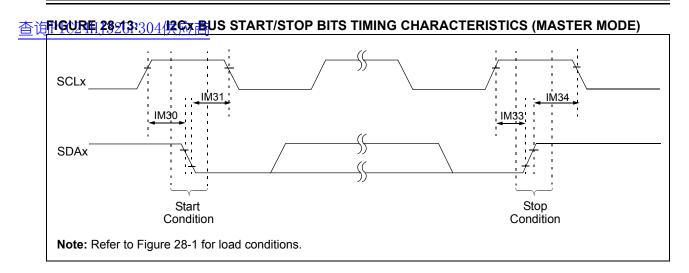
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

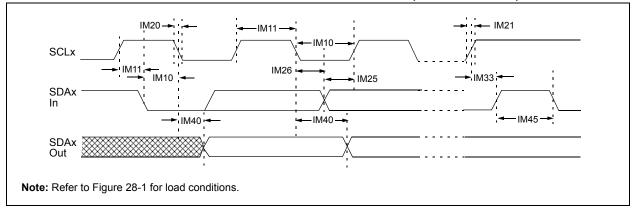
查询问GURE 28212:304 (SRIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

TABLE	284311:5 <i>4</i> 81	NODULE SLAVE MODE (-						
АС СНА	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30		_	ns	—		
SP71	TscH	SCKx Input High Time	30		_	ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	_	10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	_	10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—		_	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20		_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20		_	ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40			ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_		

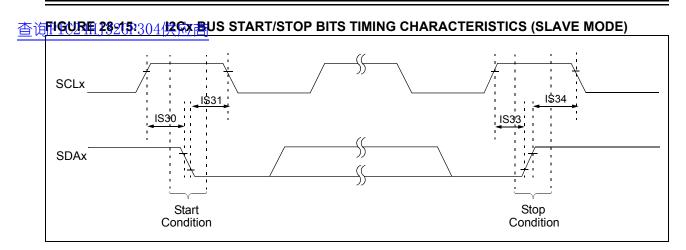

本词PIC244U32CD304供应表

Note 1: These parameters are characterized but not tested in manufacturing.

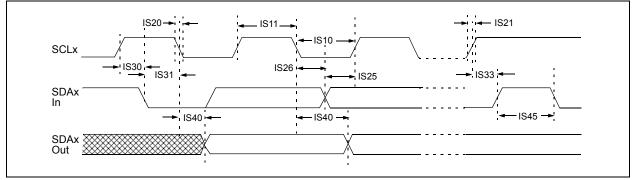

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


TIMING REQUIREMENTS (MASTER MODE)

	ARACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	_		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns	-		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_		
		Setup Time	400 kHz mode	100		ns	-		
			1 MHz mode ⁽²⁾	40	_	ns	-		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs	-		
			1 MHz mode ⁽²⁾	0.2	_	μs	-		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the		
-	_	Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	generated		
IM33	Τςυ:ςτο	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	-		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	-		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	_		
		From Clock	400 kHz mode		1000	ns	_		
			1 MHz mode ⁽²⁾		400	ns	_		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	<u> </u>	μs	transmission can start		
IM50	Св	Bus Capacitive L			400	pF	_		
IM51	TPGD	Pulse Gobbler De	÷	65	390	ns	See Note 3		
				erator Refer to Sec					


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" in the "*PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

TABLE 28435 342C & BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ forExtended					
Param.	Symbol	Charac	teristic	Min	Мах	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μs	_		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μs	—		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	_	300	ns	•		
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_		
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽¹⁾	100	_	ns	•		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	_		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽¹⁾	0	0.3	μs			
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated		
		Setup Time	400 kHz mode	0.6	_	μs	Start condition		
			1 MHz mode ⁽¹⁾	0.25	_	μs			
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μs	After this period, the first		
		Hold Time	400 kHz mode	0.6	_	μs	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	—	μs			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	—		
		Setup Time	400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.6	_	μs			
IS34	THD:ST	Stop Condition	100 kHz mode	4000	_	ns	—		
	0	Hold Time	400 kHz mode	600	_	ns			
			1 MHz mode ⁽¹⁾	250		ns			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns			
		From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free		
			400 kHz mode	1.3	_	μs	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start		
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	_		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

查询PIC24HJ32GP304供应商 FIGURE 28-17: ECAN™ MODULE I/O TIMING CHARACTERISTICS CiTx Pin Old Value X New Value CiTx Pin Old Value CA10 CA11 CiRx Pin CA20

TABLE 28-34: ECAN[™] MODULE I/O TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature -40°C $\leq Ta $\leq $+85°C$ for Industrial} \\ \mbox{-40°C $\leq Ta $\leq $+125°C$ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
CA10	TioF	Port Output Fall Time	—		_	ns	See parameter D032	
CA11	TioR	Port Output Rise Time	— — ns See parameter D0					
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	—	

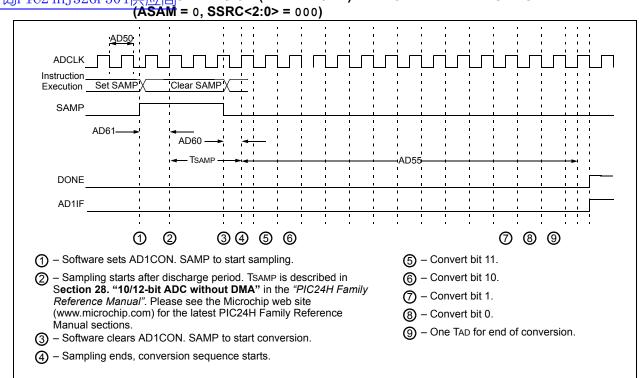
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-35-3 ADC MODUIT SPECIFICATIONS

AC CH	ARACTER		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Units	Conditions				
			Device	Supply	1				
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	—		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V	—		
			Reference	e Inpu	ts				
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVDD	V	See Note 1		
AD05a			3.0	—	3.6	V	VREFH = AVDD VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.7	V	See Note 1		
AD06a			0	_	0	V	Vrefh = AVdd Vrefl = AVss = 0		
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH - VREFL		
AD08	IREF	Current Drain	—	_	10	μA	ADC off		
AD09	Iad	Operating Current	—	7.0	9.0	mA	ADC operating in 10-bit mode, see Note 1		
			_	2.7	3.2	mA	ADC operating in 12-bit mode, see Note 1		
			Analog	g Input					
AD12	Vinh	Input Voltage Range VINH	VINL	_	VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	—		200 200	Ω Ω	10-bit ADC 12-bit ADC		

Note 1: These parameters are not characterized or tested in manufacturing.


АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq \mbox{TA} \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq \mbox{TA} \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20a Nr Resolution 12 data bits bits								
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23a	Gerr	Gain Error	1.25	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24a	EOFF	Offset Error	-0.2	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25a	_	Monotonicity	_		_	—	Guaranteed	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with ir	nternal \	VREF+/VREF-	
AD20a	Nr	Resolution	1:	2 data bi	ts	bits		
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6	
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVss = 0V, AVDD = 3.6	
AD25a	_	Monotonicity	_	_		_	Guaranteed	
		Dynamic	Performa	ince (12	-bit Mod	e)		
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_	
AD32a	SFDR	Spurious Free Dynamic Range	80	—	_	dB	_	
AD33a	Fnyq	Input Signal Bandwidth	_	—	250	kHz	—	
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits		

查询和的2世28336:P3ADCMDDULE SPECIFICATIONS (12-BIT MODE)

АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-												
AD20b Nr Resolution 10 data bits												
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23b	Gerr	Gain Error	0.4	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24b	EOFF	Offset Error	0.2	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25b	—	Monotonicity	_		_	_	Guaranteed					
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with in	nternal	VREF+/VREF-					
AD20b	Nr	Resolution	1	0 data bi	its	bits						
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6					
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6					
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6					
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6					
AD25b	—	Monotonicity	—	—	—	_	Guaranteed					
		Dynamic	Performa	ance (10	-bit Mod	e)						
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—					
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_					
AD32b	SFDR	Spurious Free Dynamic Range	72	_	_	dB	_					
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz	_					
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits						

TABLE 28437.3 ADC MODUL SPECIFICATIONS (10-BIT MODE)

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

查询**问QURE 2821**第304 (ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

AC CHARACTERISTICS			(unless	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min. Typ ⁽²⁾ Max. Units Conditions							
	-	Clock	(Paramet	ers ⁽¹⁾			·			
AD50	Tad	ADC Clock Period	117.6			ns	_			
AD51	tRC	ADC Internal RC Oscillator Period	-	250	_	ns	_			
		Cor	version R	ate						
AD55	tCONV	Conversion Time	_	14 Tad		ns	—			
AD56	FCNV	Throughput Rate	—	—	500	Ksps	—			
AD57	TSAMP	Sample Time	3 Tad	_	_	—	—			
		Timi	ng Parame	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad		Auto convert trigger not selected			
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	_	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD		—	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	_	20	μs	_			

TABLE 28438:32ADG CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON>='1'). During this time, the ADC result is indeterminate.

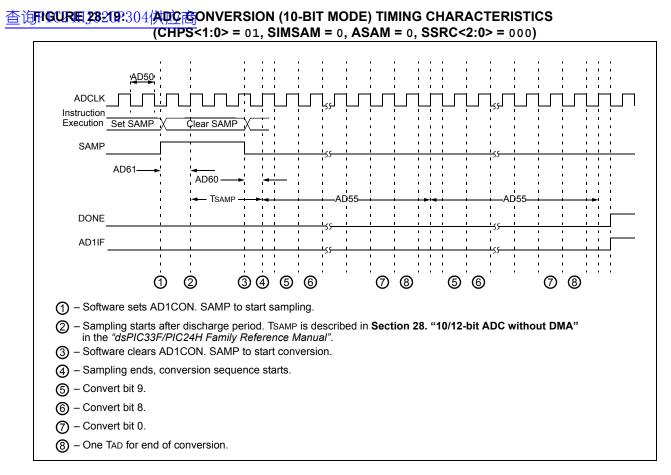
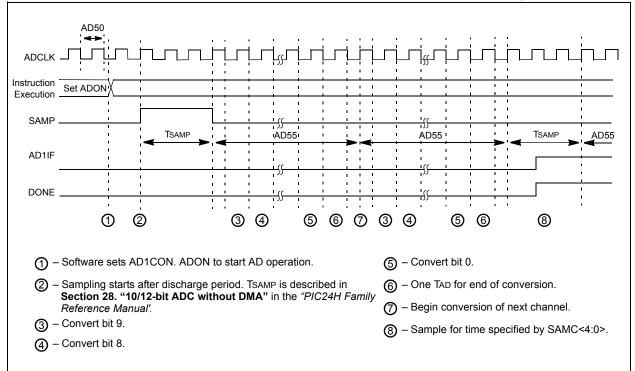



FIGURE 28-20: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

АС СН	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min. Typ ⁽¹⁾ Max. Units Conditions							
Clock Parameters										
AD50	Tad	ADC Clock Period	76			ns	—			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—			
		Con	version F	Rate						
AD55	tCONV	Conversion Time		12 Tad		—	—			
AD56	FCNV	Throughput Rate		_	1.1	Msps	—			
AD57	TSAMP	Sample Time	2 Tad	—	—	_	—			
		Timin	g Param	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad		3 Tad	—	Auto-Convert Trigger not selected			
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	_	3 Tad	—	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	_	—	_			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)	—	—	20	μs	_			

TABLE (28439:3 2ADG (CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON>='1'). During this time, the ADC result is indeterminate.

TABLE 28-40: COMPARATOR TIMING SPECIFICATIONS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Typ Max. Units Conditions				
300	TRESP	Response Time ^(1,2)	_	150	400	ns —			
301 TMC2OV Comparator Mode Change to Output Valid ⁽¹⁾					10	μs	_		

Note 1: Parameters are characterized but not tested.

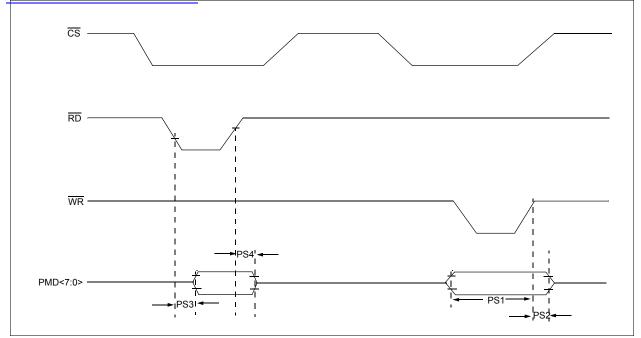
2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

查询 AB2E 2834 (P3COMPARATOR MODULE SPECIFICATIONS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
D300	VIOFF	Input Offset Voltage ⁽¹⁾	—	±10	—	mV	_	
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0 — AVDD-1.5V V —					
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54		—	dB	_	

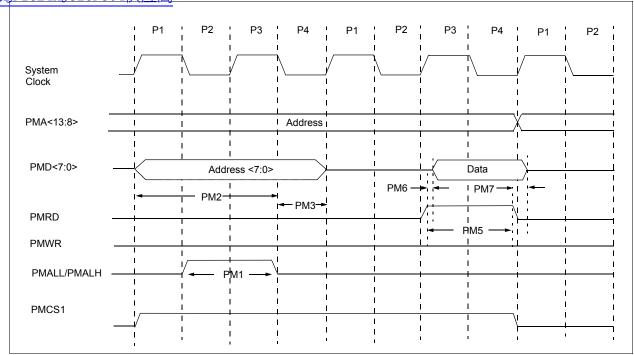
Note 1: Parameters are characterized but not tested.

TABLE 28-42: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS


			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Condition				Conditions	
VR310	TSET	Settling Time ⁽¹⁾	—	_	10	μs		

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

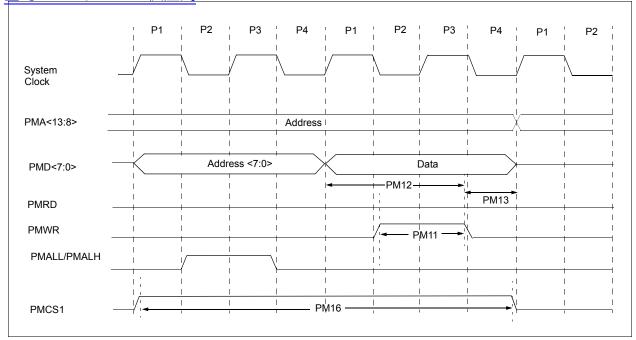
TABLE 28-43: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS


DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions							
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	_			
VRD311	CVRAA	Absolute Accuracy	— — 0.5 LSb —							
VRD312	CVRur	Unit Resistor Value (R)	—	2k	_	Ω	—			

TOURE 28-27B2GP RARACTEL SLAVE PORT TIMING DIAGRAM

TABLE 28-44:	SETTING TIME SPECIFICATIONS
--------------	-----------------------------

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditi			Conditions		
PS1	TdtV2wrH	Data in Valid before WR or CS Inactive (setup time)	20	_	_	ns	_	
PS2	TwrH2dtl	$\overline{\text{WR}}$ or $\overline{\text{CS}}$ Inactive to Data-In Invalid (hold time)	20	—	_	ns	_	
PS3	TrdL2dtV	RD and CS to Active Data-Out	—	_	80	ns	—	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10		30	ns	—	



查询**问 CURE 28 22**:304 (PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 28-45: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Characteristic		Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse Width	—	0.5 TCY	_	ns	—
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY		ns	_
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns	_
PM5	PMRD Pulse Width	_	0.5 TCY		ns	_
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	—	—	_	ns	_
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	—	ns	—

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

習(如RE 28-23-2GP RARACTEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 28-46: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM11	PMWR Pulse Width	—	0.5 TCY	_	ns	_
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	—	ns	—
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	_	ns	—
PM16	PMCSx Pulse Width	Тсү - 5	—	_	ns	—

查询29.024HHIGHTEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +140°C.

Note: Programming of the Flash memory is not allowed above 125°C.

The specifications between -40° C to $+140^{\circ}$ C are identical to those shown in **Section 28.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 28.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +140°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} < 3.0V^{(5)}$	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(5)}$	0.3V to 5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽²⁾	60 mA
Maximum junction temperature	+145°C
Maximum output current sunk by any I/O pin ⁽³⁾	1 mA
Maximum output current sourced by any I/O pin ⁽³⁾	1 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins.
 - **4:** AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

查询PIC24HJ32GP304供应商 29.1 High Temperature DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04
	3.0V to 3.6V	-40°C to +140°C	20

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+145	°C
Operating Ambient Temperature Range	erating Ambient Temperature Range TA -40 — +140				°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W

TABLE 29-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	S	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature				
Parameter No.	Min	Тур	Max	Units	Conditions		
Operating V	Voltage						
HDC10 Supply Voltage							
	Vdd		3.0	3.3	3.6	V	-40°C to +140°C

TABLE 29-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down Current (IPD)								
HDC60e	250	2000	μA	+140°C	3.3V	Base Power-Down Current ^(1,3)		
HDC61c	3	5	μA	+140°C 3.3V Watchdog Timer Current: ΔIwDT ^(2,4)				

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

DC CHARAC	DC CHARACTERISTICS (unless o			Operating Conditions: 3.0V to 3.6V herwise stated) temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature				
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions			
HDC72a	39	45	1:2	mA				
HDC72f	18	25	1:64	mA	+140°C 3.3V 20 MIF		20 MIPS	
HDC72g	18	25	1:128	mA				

查询PIC24HI32GP304供应商 TABLE 29-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

TABLE 29-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
HDO10		I/O ports	_	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
HDO16		OSC2/CLKO	_	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
	Voh	Output High Voltage						
HDO20		I/O ports	2.40	—	—	V	Iон = -1 mA, Vdd = 3.3V	
HDO26		OSC2/CLKO	2.41	—	—	V	Іон = -1 mA, Vdd = 3.3V	

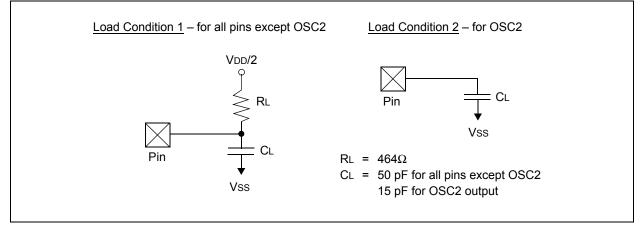
TABLE 29-7: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max			Units	Conditions		
		Program Flash Memory							
HD130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +140°C ⁽²⁾		
HD134	TRETD	Characteristic Retention	20	—	—	Year	1000 E/W cycles or less and no other specifications are violated		

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above 125°C.

292PICACHChatacteristics


The information contained in this section defines PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 28.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 28.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 29-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature Operating voltage VDD range as described in Table 29-1.							

FIGURE 29-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-9: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise Operating temperature $-40^{\circ}C \le T_A \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Co					
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but are not tested in manufacturing.

查询TAB2年129310:P3\$PIXMASTER MODE (CKE = 0) TIMING REQUIREMENTS

-	ACStandard Operating Conditions: 3.0V to 3.6V (unless other Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temp						,	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_			
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	_	ns	_			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	_	ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

© 2009 Microchip Technology Inc.

TABLE (29412:3 SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		I	35	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	_	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		-	ns	_
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15		55	ns	See Note 2

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 29-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	35	ns	—			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—		ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	_	ns	_			
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2			
HSP60	TssL2doV	<u>SDO</u> x Data Output Valid after SSx Edge	—	—	55	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

查询TABLE RP314P3APCMOEULE SPECIFICATIONS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature									
Param No. Symbol		Characteristic	Min	Тур	Typ Max Units		Conditions				
	Reference Inputs										
HAD08	IREF	Current Drain	Drain — 250 600 — — 50		600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1				

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 29-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

-	AC TERISTICS	Standard Operating Co Operating temperature			•		•						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions						
	ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾												
HAD20a Nr Resolution 12 data bits					bits	_							
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V						
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V						
HAD23a	Gerr	Gain Error	-2		10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V						
HAD24a	EOFF	Offset Error	-3		5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V						
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾						
HAD20a	Nr	Resolution	1	2 data bi	ts	bits	—						
HAD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V						
HAD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V						
HAD23a	Gerr	Gain Error	2		20	LSb	VINL = AVSS = 0V, AVDD = 3.6V						
HAD24a	Eoff	Offset Error	2	_	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V						
		Dynamic I	Performa	nce (12-	-bit Mode	e) ⁽²⁾							
HAD33a	Fnyq	Input Signal Bandwidth	—	—	200	kHz	—						

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

-	AC TERISTICS	Standard Operating Conc Operating temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	AD	C Accuracy (10-bit Mode)	– Measu	rements	with Ex	ternal V	'REF+/VREF- ⁽¹⁾
HAD20b	Nr	Resolution	1	0 data bi	ts	bits	—
HAD21b	INL	Integral Nonlinearity	-3	_	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD23b	Gerr	Gain Error	-5	—	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
	AD	C Accuracy (10-bit Mode)	– Measu	irements	s with Int	ernal V	REF+/VREF- ⁽¹⁾
HAD20b	Nr	Resolution	1	0 data bi	ts	bits	
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD24b	EOFF	Offset Error	-1.5	_	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
	•	Dynamic Po	erformar	nce (10-k	oit Mode)	(2)	•
HAD33b	Fnyq	Input Signal Bandwidth	_		400	kHz	_

TABLE (29416:3 ADG MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

查询TABLE 29377 ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature			,		
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Condition				Conditions
	Clock Parameters						
HAD50	Tad	ADC Clock Period ⁽¹⁾	147	_	_	ns	_
	Conversion Rate						
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

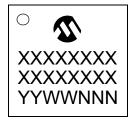
-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic Min		Тур	Мах	Units	Conditions
	Clock Parameters						
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	_	ns	_
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	—	800	Ksps	_
Nata di	These perspectors are observatorized but not tosted in manufacturing				tu uning au		

Note 1: These parameters are characterized but not tested in manufacturing.

© 2009 Microchip Technology Inc.

查**约JES**C24HJ32GP304供应商

查询30.024HPACKAGNG的FORMATION



28-Lead SOIC (.300")

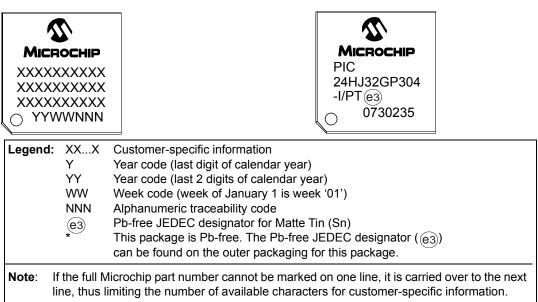
28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

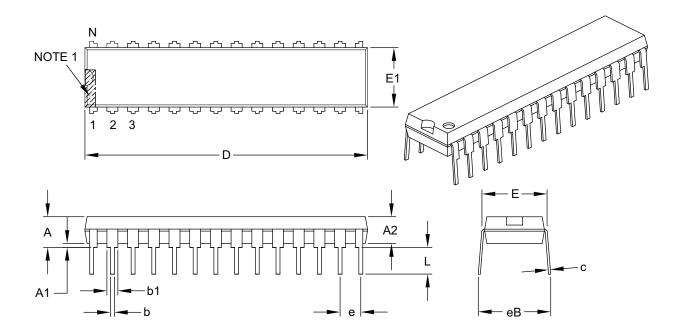
Example PIC24HJ32GP 302-E/SP @3 0730235

Example


Example

Example

Example



© 2009 Microchip Technology Inc.

查0月PI(Package Detaths 应商

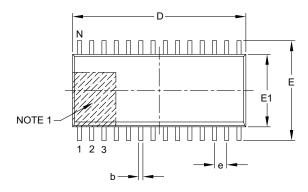
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

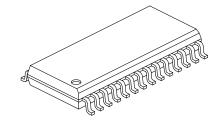
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

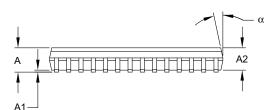
	Units		INCHES		
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		28	•	
Pitch	е		.100 BSC		
Top to Seating Plane	А	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

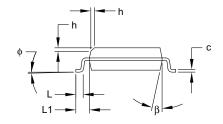
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B


查询PIC24HJ32GP304供应商 28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

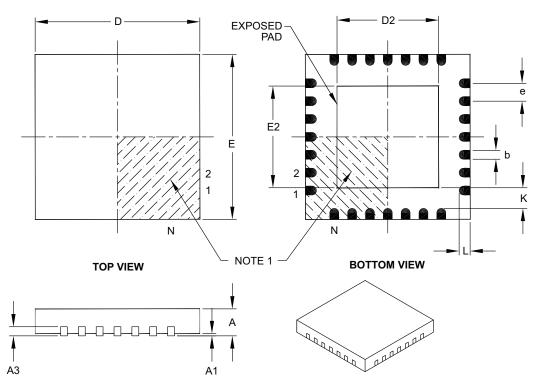
	Units		MILLMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		1.27 BSC	
Overall Height	A	_	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (optional)	h	0.25	-	0.75
Foot Length	L	0.40	_	1.27
Footprint	L1		1.40 REF	
Foot Angle Top	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	_	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

查询PIC24HJ32GP304供应产 28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

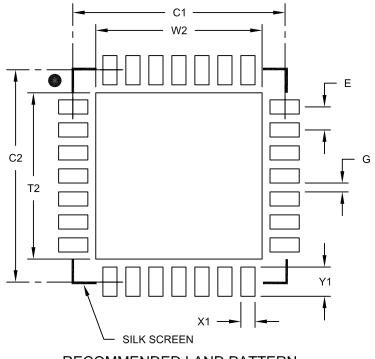
	Units		MILLIMETERS	5
Dime	nsion Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

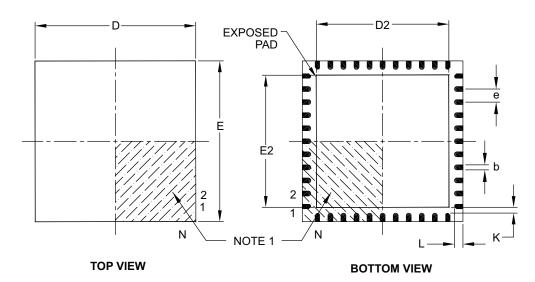
查询28-fead Plastic Quad Plat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

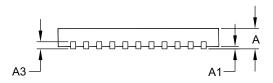
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	ontact Pitch E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

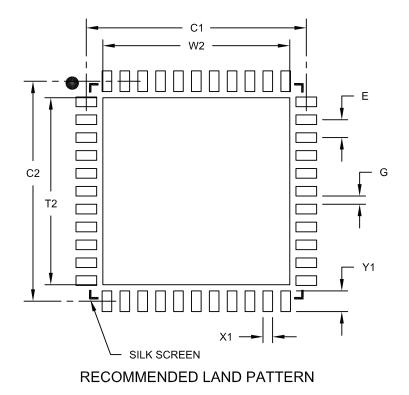
	Units		MILLIMETERS	5
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

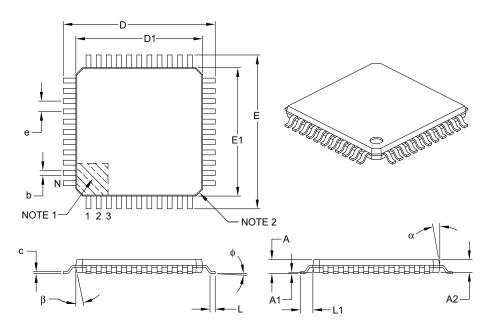
Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			MILLIN	IETERS
Dimensi	Dimension Limits		NOM	MAX
Contact Pitch	ontact Pitch E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

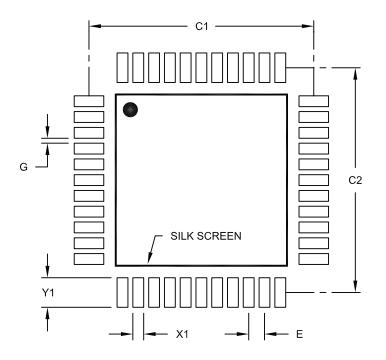
	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	-
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension Limits		MIN		MAX
Contact Pitch E		IVIIIN	0.80 BSC	101/-07
Contact Pad Spacing	 C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

查**约JES**C24HJ32GP304供应商

查询APPENDIX AD4保EVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F/PIC24H Family Reference Manual*, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Note 1 added to all pin diagrams (see "Pin Diagrams")
	Updated the "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Controller Families " table as follows:
	PIC24HJ128GP804 changed to PIC24HJ128GP504
	PIC24HJ128GP804 changed to PIC24HJ128GP504
	Added new column: External Interrupts
	Added Note 3
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1 and PMD0 through PMPD7 (Table 1-1)
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 19-3
Section 24.0 "Special Features"	Added Note 2 to Figure 24-1
	Added Note after second paragraph in Section 24.2 "On-Chip Voltage Regulator"

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
Section 27.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 27-1
	Updated typical values in Thermal Packaging Characteristics in Table 27-3
	Added parameters DI11 and DI12 to Table 27-9
	Updated minimum values for parameters D136 (TRw) and D137 (TPE) and removed typical values in Table 27-12
	Added Extended temperature range to Table 27-13
	Updated parameter AD63 and added Note 3 to Table 27-38 and Table 27-39

TABLE (A-4HJ3 MAJOR SECTION UPDATES (CONTINUED)

查询Revisian3C((Maya 2009)商

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
	Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated Reset value for IPC15 in the Interrupt Controller Register Map (see Table 4-4).
	Removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-19).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-31).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock Sources".
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).

查為調理 (A-2HJ3 MAJOR 埃威密 ON UPDATES (CONTINUED)

Section Name	Update Description
Section 10.0 "Power-Saving	Added the following registers:
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)
	PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 11.3 "Configuring Analog Port Pins".
	Added Note box regarding PPS functionality with input mapping to Section 11.6.2.1 "Input Mapping" .
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register (see Register 18-2).
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
Section 20.0 "10-bit/12-bit Analog-to- Digital Converter (ADC1)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 20-1 and Figure 20-2).
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 20-3).
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 20-7).
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 20-8).
Section 21.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 21-2).
Section 22.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 22-1).
Section 25.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 25-1).
	Updated Note 1 in the PIC24H Configuration Bits Description (see Table 25-2).

查询TAB2EIAF22GPMA4OR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 28.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 28-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 28-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 28-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 28-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 28-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 28-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 28-21).

Revision40 (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see "Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the ADC block diagrams (see Figure 20-1 and Figure 20-2).
Section 25.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 25.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 28-1).
Section 28.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28 and DI29 from the I/O Pin Input Specifications (see Table 28-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 28-12).
Section 29.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

A	
A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	67
Arithmetic Logic Unit (ALU)	24
Assembler	
MPASM Assembler	

В

٨

Block Diagrams
16-bit Timer1 Module 161
A/D Module
Connections for On-Chip Voltage Regulator
Device Clock 119, 121
ECAN Module 196
Input Capture 169
Output Compare 171
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X0412
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04, and
PIC24HJ128GPX02/X04 CPU Core
PLL
Reset System59
Shared Port Structure
SPI 175
Timer2 (16-bit) 163
Timer2/3 (32-bit) 165
UART
Watchdog Timer (WDT) 266

С

C Compilers	
Hi-Tech C	
MPLAB C	
Clock Switching	128
Enabling	128
Sequence	128
Code Examples	
Erasing a Program Memory Page	57
Initiating a Programming Sequence	58
Loading Write Buffers	
Port Write/Read	136
PWRSAV Instruction Syntax	129
Code Protection	
Configuration Bits	
Configuration Register Map	
Configuring Analog Port Pins	136
CPU	
Control Register	
CPU Clocking System	120
PLL Configuration	121
Selection	
Sources	120
Customer Change Notification Service	353
Customer Notification Service	
Customer Support	353

D

Data Address Space27
Alignment
Memory Map for PIC24HJ128GP202/204 and
PIC24HJ64GP202/204 Devices with 8 KB RAM 29
Memory Map for PIC24HJ32GP302/304 Devices with 4 KB RAM
Near Data Space
Software Stack
Width
DC Characteristics
Doze Current (IDOZE)
High Temperature
I/O Pin Input Specifications
I/O Pin Output 325
I/O Pin Output Specifications
Idle Current (IDOZE) 288
Idle Current (IIDLE) 287
Operating Current (IDD)
Operating MIPS vs. Voltage
Power-Down Current (IPD)
Power-down Current (IPD)
Program Memory
Temperature and Voltage
Temperature and Voltage Specifications
Thermal Operating Conditions
Starter Kits
Development Support
DAVelopment Support
DMA Register Map
DMAC Registers
DMAC Registers 100 DMAXCNT
DMAxCON
DMAxPAD
DMAxREQ 109
DMAxSTA
DMAxSTB 109
Doze Mode
E
-
ECAN Module
CiBUFPNT1 register
CiBUFPNT2 register
CiBUFPNT3 register
CiBUFPNT4 register
CiCFG1 register
CiCFG2 register
CiCTRL1 register
CiCTRL2 register
CiEC register
CiFEN1 register
CiFIFO register
CiFMSKSEL1 register
CiFMSKSEL2 register
CilNTE register
CiINTF register
CiRXFnEID register
CiRXFnSID register
CiRXFUL1 register
CiRXFUL2 register
CiRXMnEID register
CiRXMnSID register
CiRXOVF1 register

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

查询PTR20-APN 2999 90.4供应商 CiVEC register	.216
CiVEC register	200
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	
ECAN1 Register Map (C1CTRL1.WIN = 0)	
ECAN1 Register Map (C1CTRL1.WIN = 1)	
Frame Types	
Modes of Operation	
Overview	195
ECAN Registers	~~~
Acceptance Filter Enable Register (CiFEN1)	
Acceptance Filter Extended Identifier Register n (CiF	
nEID) Acceptance Filter Mask Extended Identifier Regist	.211
(CiRXMnEID) Acceptance Filter Mask Standard Identifier Regist	
(CiRXMnSID)	
Acceptance Filter Standard Identifier Register n (CiF	
nSID)	
Baud Rate Configuration Register 1 (CiCFG1)	
Baud Rate Configuration Register 2 (CiCFG2)	
Control Register 1 (CiCTRL1)	
Control Register 2 (CiCTRL2)	
FIFO Control Register (CiFCTRL)	
FIFO Status Register (CiFIFO)	202
Filter 0-3 Buffer Pointer Register (CiBUFPNT1)	207
Filter 12-15 Buffer Pointer Register (CiBUFPNT4)	209
Filter 15-8 Mask Selection Register (CiFMSKSEL2)	
Filter 4-7 Buffer Pointer Register (CiBUFPNT2)	
Filter 7-0 Mask Selection Register (CiFMSKSEL1)	
Filter 8-11 Buffer Pointer Register (CiBUFPNT3)	
Interrupt Code Register (CiVEC)	
Interrupt Enable Register (CiINTE)	
Interrupt Flag Register (CiINTF)	203
Receive Buffer Full Register 1 (CiRXFUL1)	
Receive Buffer Full Register 2 (CiRXFUL2) Receive Buffer Overflow Register 2 (CiRXOVF2)	
Receive Overflow Register (CiRXOVF2)	
ECAN Transmit/Receive Error Count Register (CiEC)	
ECAN TX/RX Buffer m Control Register (CiTRmnCON).	216
Electrical Characteristics	
AC	
Enhanced CAN Module	
Equations	
Device Operating Frequency	. 120
Errata	10
F	
•	
Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions Flexible Configuration	
	201
Н	
High Temperature Electrical Characteristics	. 323
1	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	. 136
I ² C	
Operating Modes	
Registers	
In-Circuit Debugger	
In-Circuit Emulation	.∠01

In-Circuit Serial Programming (ICSP)	. 261, 267
Input Capture	169
Registers	170
Input Change Notification	136
Instruction Addressing Modes	47
File Register Instructions	47
Fundamental Modes Supported	48
MCU Instructions	
Move and Accumulator Instructions	48
Other Instructions	48
Instruction Set	
Overview	273
Summary	271
Instruction-Based Power-Saving Modes	129
Idle	130
Sleep	129
Internal RC Oscillator	
Use with WDT	266
Internet Address	
Interrupt Control and Status Registers	71
IECx	71
IFSx	71
INTCON1	71
INTCON2	71
IPCx	71
Interrupt Setup Procedures	105
Initialization	105
Interrupt Disable	105
Interrupt Service Routine	105
Trap Service Routine	105
Interrupt Vector Table (IVT)	67
Interrupts Coincident with Power Save Instructions	130
1	

J

JTAG Boundary Scan Interface	261
JTAG Interface	267

Μ

Memory Organization	25
Microchip Internet Web Site	
Modes of Operation	
Disable	197
Initialization	197
Listen All Messages	197
Listen Only	197
Loopback	197
Normal Operation	197
MPLAB ASM30 Assembler, Linker, Librarian	280
MPLAB ICD 3 In-Circuit Debugger System	281
MPLAB Integrated Development Environment Software	279
MPLAB PM3 Device Programmer	282
MPLAB REAL ICE In-Circuit Emulator System	281
MPLINK Object Linker/MPLIB Object Librarian	280
Multi-Bit Data Shifter	24

Ν

NVM Module Register Map	
0	
Open-Drain Configuration	
Output Compare	171
Р	
Packaging	
Details	
Marking	

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

查询Peripheral Module Disable (RMD)
Debug Express
PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug Express
Pinout I/O Descriptions (table)
Register Map
PORTA
Register Map44, 45 PORTB
Register Map45
Power-on Reset (POR)64
Power-Saving Features 129
Clock Frequency and Switching 129
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility
Data Access from Program Memory Using Table Instruc-
tions
Data Access from, Address Generation
Memory Map25
Table Read Instructions
TBLRDH
TBLRDL
Visibility Operation
Program Memory
Interrupt Vector
Organization
Reset Vector
Resei vecioi
R
Reader Response
Register Map
CRC
Dual Comparator
Parallel Master/Slave Port
Real-Time Clock and Calendar44
Registers
AD1CHS0 (ADC1 Input Channel 0 Select231
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 230
AD1CON1 (ADC1 Control 1) 225
AD1CON2 (ADC1 Control 2) 227
AD1CON3 (ADC1 Control 3)
AD1CON4 (ADC1 Control 4)
AD1CSSL (ADC1 Input Scan Select Low)232
AD1PCFGL (ADC1 Port Configuration Low)
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CIBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 208
CIBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 209
CiCFG1 (ECAN Baud Rate Configuration 1)
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1)
CiCTRL2 (ECAN Control 2)
CIEC (ECAN Transmit/Receive Error Count)
CIEC (ECAN Transmir/Receive Endi Count)
CIFEN1 (ECAN Acceptance Filter Enable)
CiFIFO (ECAN FIFO Status)
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 211, 212
CiINTE (ECAN Interrupt Enable)
CiINTF (ECAN Interrupt Flag)
CilNTF (ECAN Interrupt Flag)
CiINTF (ECAN Interrupt Flag)

fier) 210
CiRXFUL1 (ECAN Receive Buffer Full 1) 214
CiRXFUL2 (ECAN Receive Buffer Full 2) 214
CiRXMnEID (ECAN Acceptance Filter Mask n Extended
Identifier)
CiRXMnSID (ECAN Acceptance Filter Mask n Standard
Identifier) 213
CiRXOVF1 (ECAN Receive Buffer Overflow 1) 215
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 215
CiTRBnSID (ECAN Buffer n Standard Identifier) 217,
218, 220
CiTRmnCON (ECAN TX/RX Buffer m Control) 216
CiVEC (ECAN Interrupt Code)
CLKDIV (Clock Divisor) 125
CORCON (Core Control) 23, 73
DMACS0 (DMA Controller Status 0) 114
DMACS1 (DMA Controller Status 1) 116
DMAxCNT (DMA Channel x Transfer Count) 113
DMAxCON (DMA Channel x Control)
DMAxPAD (DMA Channel x Peripheral Address) 113
DMAxREQ (DMA Channel x IRQ Select) 111
DMAxSTA (DMA Channel x RAM Start Address A). 112
DMAxSTB (DMA Channel x RAM Start Address B). 112
DSADR (Most Recent DMA RAM Address) 117
I2CxCON (I2Cx Control)
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status) 185
IFS0 (Interrupt Flag Status 0) 76, 83
IFS1 (Interrupt Flag Status 1)
IFS2 (Interrupt Flag Status 2) 80, 87
IFS3 (Interrupt Flag Status 3)
IFS4 (Interrupt Flag Status 4)
INTCON1 (Interrupt Control 1)74
INTCON2 (Interrupt Control 2)75
INTCON2 (Interrupt Control 2)
INTTREG Interrupt Control and Status Register 104
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0)
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC1 (Interrupt Priority Control 1) 91
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103IPC2 (Interrupt Priority Control 2)92
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103IPC2 (Interrupt Priority Control 2)92
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103IPC2 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC1 (Interrupt Priority Control 1) 91 IPC11 (Interrupt Priority Control 11) 100 IPC15 (Interrupt Priority Control 15) 101 IPC16 (Interrupt Priority Control 16) 102 IPC17 (Interrupt Priority Control 17) 103 IPC2 (Interrupt Priority Control 2) 92 IPC3 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 3) 93 IPC5 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 5) 95
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 3)93IPC5 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103IPC2 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC1 (Interrupt Priority Control 1) 91 IPC11 (Interrupt Priority Control 11) 100 IPC15 (Interrupt Priority Control 15) 101 IPC16 (Interrupt Priority Control 16) 102 IPC17 (Interrupt Priority Control 17) 103 IPC2 (Interrupt Priority Control 2) 92 IPC3 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 4) 94 IPC5 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 6) 96 IPC7 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 8) 98 IPC9 (Interrupt Priority Control 9) 99 NVMCON (Flash Memory Control) 55 NVMKEY (Nonvolatile Memory Key) 56
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 17)103IPC2 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173OSCCON (Oscillator Control)123
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173OSCCON (Oscillator Control)123OSCTUN (FRC Oscillator Tuning)127
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173OSCCON (Oscillator Control)127PLLFBD (PLL Feedback Divisor)126
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173OSCCON (Oscillator Control)123OSCTUN (FRC Oscillator Tuning)127
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)173OSCCON (Oscillator Control)127PLLFBD (PLL Feedback Divisor)126
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OXCCON (Output Compare x Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)131
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)131PMD2 (Peripheral Module Disable Control Register 2).
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC1 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OSCCON (Occillator Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)131PMD2 (Peripheral Module Disable Control Register 2)132
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 6)97IPC8 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)132PMD3 (Peripheral Module Disable Control Register 3)
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OSCCON (Oscillator Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)132PMD3 (Peripheral Module Disable Control Register 3)133
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)131PMD2 (Peripheral Module Disable Control Register 2)133RCON (Reset Control)60
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 8)98IPC9 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OSCCON (Oscillator Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)132PMD3 (Peripheral Module Disable Control Register 3)133
INTTREG Interrupt Control and Status Register104IPC0 (Interrupt Priority Control 0)90IPC11 (Interrupt Priority Control 1)91IPC11 (Interrupt Priority Control 11)100IPC15 (Interrupt Priority Control 15)101IPC16 (Interrupt Priority Control 16)102IPC17 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 2)92IPC3 (Interrupt Priority Control 3)93IPC4 (Interrupt Priority Control 4)94IPC5 (Interrupt Priority Control 5)95IPC6 (Interrupt Priority Control 6)96IPC7 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 7)97IPC8 (Interrupt Priority Control 9)99NVMCON (Flash Memory Control)55NVMKEY (Nonvolatile Memory Key)56OCxCON (Output Compare x Control)123OSCTUN (FRC Oscillator Tuning)127PLLFBD (PLL Feedback Divisor)126PMD1 (Peripheral Module Disable Control Register 1)131PMD2 (Peripheral Module Disable Control Register 2)133RCON (Reset Control)60SPIxCON1 (SPIx Control 1)177
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC11 (Interrupt Priority Control 1) 91 IPC15 (Interrupt Priority Control 15) 101 IPC16 (Interrupt Priority Control 15) 101 IPC17 (Interrupt Priority Control 16) 102 IPC17 (Interrupt Priority Control 17) 103 IPC2 (Interrupt Priority Control 2) 92 IPC3 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 4) 94 IPC5 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 6) 96 IPC7 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 8) 98 IPC9 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 9) 99 NVMCON (Flash Memory Control) 55 NVMKEY (Nonvolatile Memory Key) 56 OSCCON (Ocsillator Control) 123 OSCTUN (FRC Oscillator Tuning) 127 PLLFBD (PLL Feedback Divisor) 126 PMD1 (Peripheral Module Disable Control Register 1) 131 <
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC11 (Interrupt Priority Control 1) 91 IPC15 (Interrupt Priority Control 15) 101 IPC16 (Interrupt Priority Control 15) 101 IPC17 (Interrupt Priority Control 16) 102 IPC17 (Interrupt Priority Control 2) 92 IPC3 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 4) 94 IPC5 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 6) 96 IPC7 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 8) 98 IPC9 (Interrupt Priority Control 9) 99 NVMCON (Flash Memory Control) 55 NVMKEY (Nonvolatile Memory Key) 56 OSCCON (Oscillator Control) 123 OSCCUN (Oscillator Control) 126 PMD1 (Peripheral Module Disable Control Register 1) 131 PMD2 (Peripheral Module Disable Control Register 3) 133 RCON (Reset Control) 60
INTTREG Interrupt Control and Status Register 104 IPC0 (Interrupt Priority Control 0) 90 IPC11 (Interrupt Priority Control 1) 91 IPC15 (Interrupt Priority Control 15) 101 IPC16 (Interrupt Priority Control 15) 101 IPC17 (Interrupt Priority Control 16) 102 IPC17 (Interrupt Priority Control 17) 103 IPC2 (Interrupt Priority Control 2) 92 IPC3 (Interrupt Priority Control 3) 93 IPC4 (Interrupt Priority Control 4) 94 IPC5 (Interrupt Priority Control 5) 95 IPC6 (Interrupt Priority Control 6) 96 IPC7 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 7) 97 IPC8 (Interrupt Priority Control 8) 98 IPC9 (Interrupt Priority Control 9) 99 NVMCON (Flash Memory Control) 55 NVMKEY (Nonvolatile Memory Key) 56 OSCCON (Occillator Control) 123 OSCCUN (Oscillator Control) 124 PMD1 (Peripheral Module Disable Control Register 1) 127 PLLFBD (PLL Feedback Divisor) 126 PMD2 (Peripheral Module Disable Control Register 3)

查询INEXCON HID BE CARSING 供应时的	
TxCON (Type B Time Base Control)	
TyCON (Type C Time Base Control)	167
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
Reset	
Illegal Opcode	
Trap Conflict	
Uninitialized W Register	
Reset Sequence	67
Resets	
•	

S

-	
Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	65
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	47
Special Features of the CPU	
SPI Module	
SPI1 Register Map	35
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

Т т.

1			
Temperature and Voltage Specifications			
AC	326		
Timer1	161		
Timer2/3	163		
Timing Characteristics			
CLKO and I/O	295		
Timing Diagrams			
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM	= 0,		
ASAM = 0, SSRC<2:0> = 000)			
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM	= 0,		
ASAM = 1, SSRC<2:0> = 111, SAMC<4:0	> =		
00001)			
12-bit A/D Conversion (ASAM = 0, SSRC<2:0> = 00)0)		
315	,		
Brown-out Situations	65		
ECAN I/O	311		
External Clock	293		
I2Cx Bus Data (Master Mode)	307		
I2Cx Bus Data (Slave Mode)	309		
I2Cx Bus Start/Stop Bits (Master Mode)			
I2Cx Bus Start/Stop Bits (Slave Mode)			
Input Capture (CAPx)			
OC/PWM			
Output Compare (OCx)			
Reset, Watchdog Timer, Oscillator Start-up Timer			
Power-up Timer			
SPIx Master Mode (CKE = 0)			
SPIx Master Mode (CKE = 1)			
SPIx Slave Mode (CKE = 0)			
SPIx Slave Mode (CKE = 1)	305		
Timer1, 2 and 3 External Clock	298		
Timing Requirements			
ADC Conversion (10-bit mode)	331		
ADC Conversion (12-bit Mode)			
CLKO and I/O	295		
External Clock			
Input Capture	300		
SPIx Master Mode (CKE = 0)			
SPIx Module Master Mode (CKE = 1)			
SPIx Module Slave Mode (CKE = 0)			
SPIx Module Slave Mode (CKE = 1)			
• •			

Timing Specifications

10-bit A/D Conversion Requirements	318
12-bit A/D Conversion Requirements	316
CAN I/O Requirements	311
I2Cx Bus Data Requirements (Master Mode)	308
I2Cx Bus Data Requirements (Slave Mode)	
Output Compare Requirements	300
PLL Clock	294, 326
Reset, Watchdog Timer, Oscillator Start-up Tim	er, Pow-
er-up Timer and Brown-out Reset Require	ments
297	
Simple OC/PWM Mode Requirements	301
SPIx Master Mode (CKE = 0) Requirements	302
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 0) Requirements	304
SPIx Slave Mode (CKE = 1) Requirements	306
Timer1 External Clock Requirements	298
Timer2 External Clock Requirements	
Timer3 External Clock Requirements	299

U

UART Module

V

Voltage Regulator (On-Chip)	
-----------------------------	--

W

Watchdog Time-out Reset (WDTR)	65
Watchdog Timer (WDT)	261. 266
Programming Considerations	
WWW Address	
WWW, On-Line Support	

查询**PHE2MICROCHIPHWEB**SITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers receives e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://support.microchip.com

查EADERIRESPON\$E应商

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC24HJ32GP302/304, PIC24HJ64GPX and PIC24HJ128GPX02/X04	X02/X04 Literature Number: DS70293D
Que	stions:	
1. \	What are the best features of this document?	
-		
2. I	How does this document meet your hardware ar	nd software development needs?
-		
3. [Do you find the organization of this document ea	asy to follow? If not, why?
-		
4. \	Nhat additions to the document do you think wo	ould enhance the structure and subject?
-		
	AU - 1 - 1 - 1	
5. \	What deletions from the document could be mad	de without affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading information ((what and where)?
-		
-		
7. I	How would you improve this document?	
-		
-		

查询PRODUCTIDEN其近陵ATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel Fla Temperature Ran	amily - v Size (KB)		Examples: a) PIC24HJ32GP302-E/SP: General Purpose PIC24H, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =	General Purpose family	
Pin Count:	02 04	=		
Temperature Range:	I E H	= = =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended) -40°C to+140°C (High)	
Package:	SP SO ML MM PT	= = = =	Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN)	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09