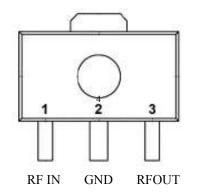
TAT746 | 75 Ω RF Amplifier

Applications

- Distribution Amplifiers
- Multi-Dwelling Units
- Drop Amplifiers
- Single-ended Gain Block

Product Features

- 50-1000 MHz bandwidth
- pHEMT device technology
- On-chip negative feedback providing excellent gain and return loss consistency.
- On-chip active bias for consistent bias current and repeatable performance.
- Simple external tuning allows excellent return loss.
- 6 V supply voltage
- 130 mA typical current consumption
- 16.1 dB typical gain
- 2.3 dB typical NF and < 2.6 dB up to 1000 MHz
- +39 dBm typical OIP3
- +22 dBm typical P1dB
- Low distortion: CSO -72 dBc, CTB -88 dBc
- (26 dBmV/ch at output, 80 ch)
- SOT-89 package


General Description

The TAT7461 is a 75 Ω RF Amplifier designed for CATV applications to 1000 MHz. The balance of low noise, excellent distortion, and high-gain is applicable for drop and other distribution amplifiers.

The TAT7461 is fabricated using 6-inch GaAs pHEMT technology to optimize performance and cost. It provides consistent gain and return loss from the use of extensive on-chip negative feedback. The TAT7461 also uses an on-chip active bias for consistent bias current and repeatable performance. Simple external tuning allows the TAT7461 to achieve excellent return loss.

Functional Block Diagram

Pin Configuration

Pin #	Symbol
1	RF IN
2	GND
3	RF OUT
4	GND PADDLE

Ordering Information

Part No.	Description		
TAT7461	75 Ω High linearity pHEMT amplifier (lead-free/RoHS compliant SOT-89 Pkg)		
TAT7461-EB Amplifier Evaluation Board			
Standard T/R size = 1000 pieces on a 7" reel.			

Preliminary Data Sheet: Rev C 04/30/10 © 2010 TriQuint Semiconductor, Inc. Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network[®]

Specifications

Absolute Maximum Ratings¹

Recommended Operating Conditions

Parameter	Rating	Parameter	Min	Тур	Max	Units
Storage Temperature	-65 to +150 °C	V _{DD}		6		V
Device Voltage	+10 V	I _{DD}	100	130	150	mA
Thermal Resistance ² (jnt to case) θ_{jc}	42 °C/W	T_J (for > 10 ⁶ hours MTTF)			150	°C

Notes:

1. Operation of this device outside the parameter ranges given above may cause permanent damage.

 Refer to Thermal Analysis Report TAT7461, Report No. 30-0011 Rev B. Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

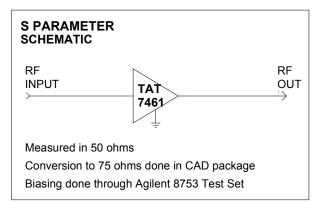
Electrical Specifications

Test conditions unless otherwise noted: 25 °C, +6 V V_{DD}

Parameter	Conditions	Min	Typical	Max	Units
Operational Frequency Range		50		1000	MHz
Gain			16.1		dB
Gain Flatness			+/- 0.3		dB
Noise Figure			2.3		dB
Input Return Loss			23		dB
Output Return Loss			23		dB
CSO	See Note 1.		-72		dBc
СТВ	See Note 1.		-88		dBc
Output IP2	See Note 2.		+61		dBm
Output IP3	See Note 2.		+39		dBm
Vsupply			+6		V
I _{DD}		100	130	150	mA

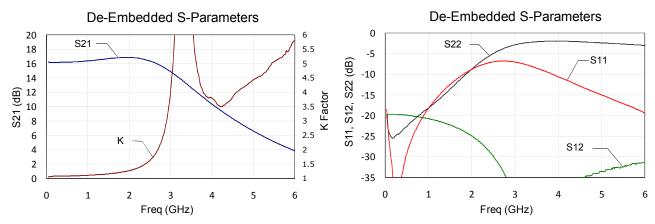
Notes:

1. 26 dBmV/ch at output, 80 ch flat

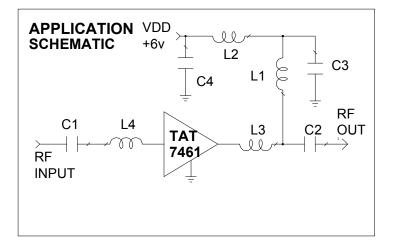

2. At 5 dBm/tone

3. Electrical specifications are measured at specified test conditions.

4. Specifications are not guaranteed over all recommended operating conditions.



Device Characterization Data


S-Parameter Data

 $V_{DD} = +6 \text{ V}, I_{DD} = 130 \text{ mA}$

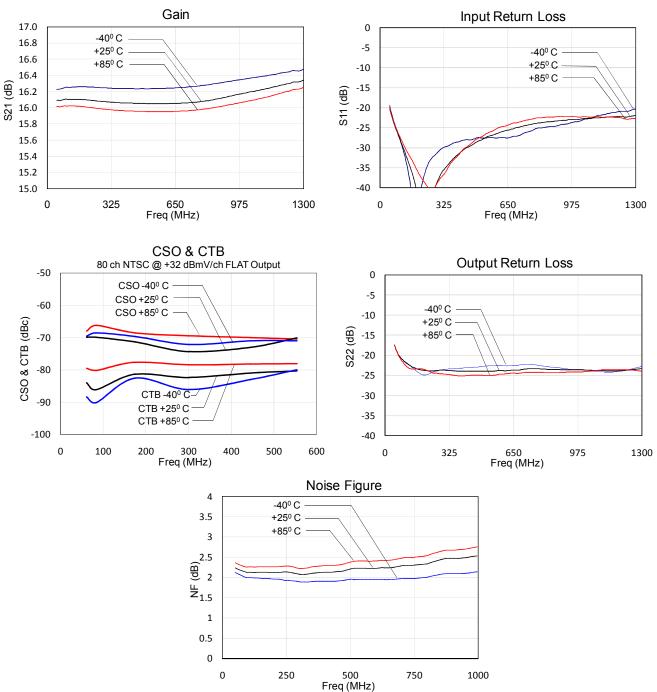
Application Circuit 50-1000 MHz

Notes:

1. See PC Board Layout, page 6 for more information.

Bill of Material

Ref. Desg.	Value	Description	Manufacturer	Part Number
U1		75 Ω High Linearity pHEMT Amplifier	TriQuint	TAT7461
L1, L2	880 nH	Chip Coil, Vertical Wire Wound Ferrite, 1206, 30 %	Murata ¹	LQH31HNR88K
L3	5.1 nH	Ceramic Chip Ind., Wire-wound, 0402, 5 %	Coilcraft	0402CS-5N1XJLW
L4	2.7 nH	Ceramic Chip Ind., Wire-wound, 0402, 5 %	Coilcraft	0402CS-2N7XJLW
C1	1000 pF	Ceramic Chip Cap., 0402, 50 V, 10 %, X7R	AVX ¹	04025C102KAT2A
C2	120 pF	Ceramic Chip Cap., 0402, 50 V, 5 %, NPO	AVX ¹	04025A121JAT2A
C3, C4	0.01 uF	Ceramic Chip Cap., 0402, 16 V, 10 %, X7R	AVX ¹	0402YC103KAT
J1, J2		75 Ω F connector	Lighthorse ¹	FSF55MGT-P-10A


Notes:

1. Or equivalent.

Application Board Typical Performance

 $V_{DD} = +6 \text{ V}, I_{DD} = 130 \text{ mA}$

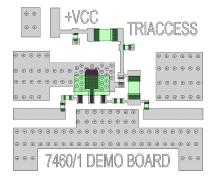
Applications Information

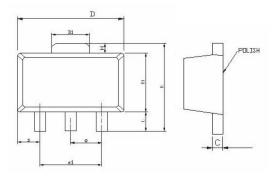
PC Board Layout

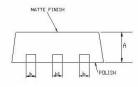
Core is .062" FR-4, $\varepsilon_r = 4.7$. Metal layers are 1-oz copper.

The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

For further technical information, refer to: <u>http://www.triquint.com/TAT7461</u>

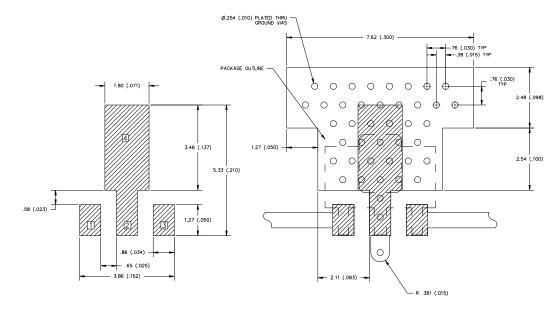

Mechanical Information


Package Information and Dimensions


This package is lead-free/RoHS-compliant. The plating material on the leads is 100 % Matte Tin. It is compatible with both lead-free (maximum 260 °C reflow temperature) and lead (maximum 245 °C reflow temperature) soldering processes.

The TAT7461 will be marked with a "TAT7461" designator and an 8 digit alphanumeric lot code (XXXXYYWW). The first four digits are the lot code (XXXX). The last four digits are a date code consisting of the year and work week (YYWW) of assembly.

	DIMENSIO	NS IN MIL	LIMETERS	DIMENS	IDNS IN	INCHES
SYMBOLS	MIN	NDM	MAX	MIN	NDM	MAX
A	1.40	1.50	1.60	0.055	0.059	0.063
L	0.89	1.04	1.20	0.0350	0.041	0.047
b	0.36	0.42	0,48	0.014	0.016	0.018
b1	0.41	0.47	0.53	0.016	0.018	0.020
C	0.38	0.40	0.43	0.014	0.015	0.017
D	4,40	4.50	4.60	0.173	0.177	0.181
D1	1.40	1.60	1.75	0.055	0.062	0.069
Е	3,64	<u>2001</u>	4,25	0.143	3 3	0.167
E1	2.40	2.50	2.60	0.094	0.09B	0.102
el	2.90	3.00	3,10	0.114	D.118	0.122
Н	0.35	0.40	0,45	0.014	0.016	0.018
2	0.65	0.75	0.85	0.026	0.030	0.034
e	1.40	1.50	1.60	0.054	0.059	0.063



Mounting Configuration

Notes:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35 mm (#80/.0135") diameter drill and have a final, plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. RF trace width depends upon the PC board material and construction.
- 4. All dimensions are in millimeters (inches). Angles are in degrees.

Product Compliance Information

ESD Information

Class 1 A
Passes \geq 450 V min.
Human Body Model (HBM)
JEDEC Standard JESD22-A114

ESD Rating:	Class IV
Value:	Passes $\geq 1000 \text{ V min.}$
Test:	Charged Device Model (CDM)
Standard:	JEDEC Standard JESD22-C101

MSL Rating

Level 3 at +260 °C convection reflow. The part is rated Moisture Sensitivity Level 3 at 260 °C per JEDEC standard IPC/JEDEC J-STD-020.

Preliminary Data Sheet: Rev C 04/30/10 © 2010 TriQuint Semiconductor, Inc.

Solderability

Compatible with the latest version of J-STD-020, Lead free solder, 260 °C.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.707.526.4498
Email:	info-sales@tqs.com	Fax:	+1.707.526.1485

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.