

CH7019 TV Encoder / LVDS Transmitter

Features

TV-Out:

- VGA to TV conversion supporting up to 1024x768
- MacrovisionTM 7.1.L1 copy protection support
- Two variable-voltage digital input ports.
- Simultaneous LVDS and TV output.
- True scale rendering engine supports under-scan in all TV output resolutions †¥
- Enhanced text sharpness and adaptive flicker removal with up to 7 lines of filtering ¥
- Support for NTSC and PAL TV formats
- · Outputs CVBS, S-Video, RGB and YPrPb
- · Support for SCART connector
- TV / Monitor connection detect
- · Output video switch for easy wiring to connectors

LVDS-Out:

- Single / Dual LVDS transmitter
- Dual LVDS supports pixel rate up to 330Mpixels/sec. when both 12-bit input ports are ganged together
- LVDS low jitter PLL accepts emission reduction input
- LVDS 18-bit output
- 2D dither engine
- · Panel protection and power down sequencing
- · Programmable power management
- Support for second CRT DAC bypass mode
- Four 10-bit video DAC outputs
- Fully programmable through serial port
- Complete Windows and DOS driver support
- Variable voltage interface to graphics device
- Offered in a 128-pin LQFP package

General Description

The CH7019 is a Display Controller device which accepts two digital graphics input data streams. One data stream outputs through an LVDS transmitter to an LCD panel, while the other data stream is encoded for NTSC or PAL TV and outputs through a 10-bit high speed DAC. The TV encoder device encodes a graphics signal up to 1024x768 resolution and outputs the video signals according to NTSC or PAL standards. The LVDS transmitter operates at pixel speeds up to 165MHz per link, supporting 1600x1200 panels at 60Hz refresh rate.

The device can also accept one graphics data stream over two 12-bit wide variable voltage ports which support nine different data formats including RGB and YCrCb (RGB must be used for LVDS output). A maximum of 330M pixels per second can be output through dual LVDS links.

The TV-Out processor will perform non-interlaced to interlaced conversion with scaling, flicker filtering, and encoding into any of the NTSC or PAL video standards. The scaler and flicker filter are adaptive and programmable for superior text display. Eight graphics resolutions are supported up to 1024 by 768 with full vertical and horizontal under-scan capability in all modes. A high accuracy low jitter phase locked loop is integrated to create outstanding video quality. Support is provided for Macrovision TM. In addition to TV encoder modes, bypass modes are included which allow the TV DACs to be used as a second CRT DAC.

The LVDS transmitter includes a programmable dither function for support of 18-bit panels. Data is encoded into commonly used formats, including those detailed in the OpenLDI and the SPWG specifications. Serialized data outputs on three to six differential channels.

† Patent number 5,781,241

¥ Patent number 5,914,753

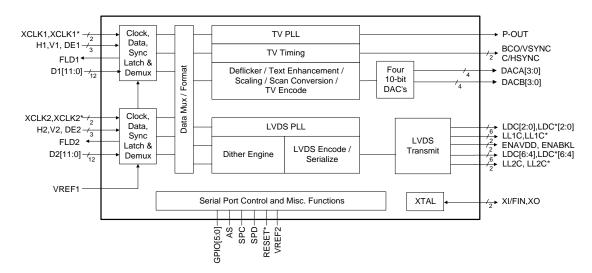


Figure 1: CH7019 Functional Block Diagram

Table of Contents

Pin Assignment	3
Package Diagram	3
Pin Description	4
Overview	7
Input Interface Timing	7
Input Data Formats	10
TV-Out	16
LVDS-Out	25
Power Down	30
Register Control	31
Non-Macrovision Control Registers Index	31
Non-Macrovision Control Registers Description	34
Recommended Settings	67
Electrical Specifications	68
Absolute Maximum Ratings	68
Recommended Operating Conditions	68
Electrical Characteristics (Operating Conditions: $T_A = 0^{\circ}\text{C} - 70^{\circ}\text{C}$, VDD =3.3V ± 5%)	69
Digital Inputs / Outputs	70
AC Specifications	71
	72
Package Dimensions	77
	78
	Overview

1.0 Pin Assignment

Disclaimer: The information contained in this document is preliminary and subject to change without notice. Chrontel Inc. bears no responsibility for any errors in this document. Please contact Chrontel Inc. for design reviews prior to finalize your design.

1.1 Package Diagram

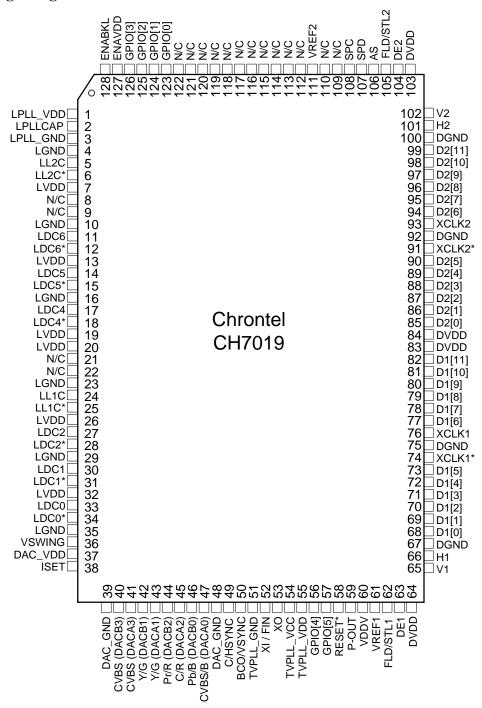


Figure 2: CH7019 128 Pin LQFP Package (Top View)

1.2 Pin Description

Table 1: Pin Description

Pin #	# of Pins	Type	Symbol	Description
66, 101	2	In/Out	H1, H2	Horizontal Sync Input / Output
				When the SYO control bit is low, these pins accept a horizontal sync inputs for use with the input data. The amplitude will be 0 to VDDV. VREF1 is the threshold level for these inputs. These pins must be used as inputs in RGB Bypass mode.
				When the SYO control bit is high, the TV encoder will output a horizontal sync pulse 64 pixels wide to one of these pins. The output is driven from the DVDD supply. This output is valid only when TV-Out is in operation.
65, 102	2	In/Out	V1, V2	Vertical Sync Input / Output
				When the SYO control bit is low, these pins accept a vertical sync inputs for use with the input data. The amplitude will be 0 to VDDV. VREF1 signal is the threshold level. These pins must be used as inputs in RGB Bypass mode.
				When the SYO control bit is high, the TV encoder will output a vertical sync pulse one line wide to one of these pins. The output is driven from the DVDD supply. This output is valid only when TV-Out is in operation.
63, 104	2	In	DE1, DE2	Data Enable
				These pins accept a data enable signal which is high when active video data is input to the device, and remains low during all other times. The levels are 0 to VDDV. VREF1 is the threshold level. The TV-Out function uses H and V sync signals and values in the SAV register as reference to active video.
62, 105	2	Out	FLD1,	TV Field Signal
,			FLD2	These outputs can be programmed to be a TV Field output from the TV encoder. These outputs are tri-stated upon power up.
107	1	In/Out	SPD	Serial Port Data Input / Output
				This pin functions as the bi-directional data pin of the serial port and can operate with inputs from VDDV to DVDD. Outputs are driven from 0 to VREF2.
108	1	In	SPC	Serial Port Clock Input
				This pin functions as the clock input of the serial port and can operate with inputs from VDDV to DVDD.
106	1	In	AS	Address Select (Internal Pull-up)
				This pin determines the device address of the serial port.
111	1	In	VREF2	Reference Voltage 2
				Used to generate the output supply level for SPD port. This pin should be tied externally to the maximum voltage seen by the ports. (1.5V to 3.3V).
123-126, 56,	6	In/Out	GPIO[5:0]	General Purpose Input / Output [5:0]
57		III/Out	G110[5.0]	These pins provide general purpose I/O and are controlled via the serial port. (3.3V). See description of GPIO Controls for I/O configuration.
127	1	Out	ENAVDD	Panel Power Enable
				Enable panel VDD. (3.3V)
128	1	Out	ENABLK	Back Light Enable
36	1	In	VCWINC	Enable Back-Light of LCD Panel. (3.3V)
30	1	1111	VSWING	LVDS Voltage Swing Control This pin sets the swing level of the LVDS outputs. A 2.4K Ohm resistor
				should be connected between this pin and LGND (pin 35) using short and wide traces.
58	1	In	RESET*	Reset * Input (Internal Pull-up)
				When this pin is low, the device is held in the power on reset condition. When this pin is high, reset is controlled through the serial port.

	Description			In
Pin #	# of Pins	Type	Symbol	Description
2	1	Analog	LPLLCAP	LVDS PLL Capacitor
				This pins allows coupling of any signal to the on-chip loop filter capacitor.
5, 24	2	Out	LL2C, LL1C	Positive LVDS differential Clock2 & Clock1
6, 25	2	Out	LL2C*, LL1C*	Negative LVDS differential Clock2 & Clock1
11, 14, 17	3	Out	LDC[6:4]	Positive LVDS differential data[6:4]
12, 15, 18	3	Out	LDC[6:4]*	Negative LVDS differential data[6:4]
27, 30, 33	3	Out	LDC[2:0]	Positive LVDS differential data[2:0]
28, 31, 34	3	Out	LDC[2:0]*	Negative LVDS differential data [2:0]
38	1	Analog	ISET	Current Set Resistor Input
				This pin sets the DAC current. A 140-ohm resistor should be connected between this pin and DAC_GND (pin 39) using short and wide traces.
40	1	Out	CVBS	Composite Video
			(DACB3)	This pin outputs a composite video signal capable of driving a 75 ohm doubly terminated load. During bypass modes this output is valid only if the data format is compatible with one of the TV-Out display modes.
41	1	Out	CVBS	Composite Video
			(DACA3)	This pin outputs a composite video signal capable of driving a 75 ohm doubly terminated load. During bypass modes this output is valid only if the data format is compatible with one of the TV-Out display modes.
42	1	Out	Y/G	Luma / Green Output
			(DACB1)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to be the luminance component of YPrPb or green (for VGA bypass)
43	1	Out	Y/G	Luma / Green Output
			(DACA1)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to be s-video luminance or green (for SCART type 1 connections)
44	1	Out	Pr/R	Pr / Red Output
			(DACB2)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to be the Pr component of YPrPb or red (for VGA bypass)
45	1	Out	C/R	Chroma / Red Output
			(DACA2)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to be s-video chrominance or red (for SCART type 1 connections)
46	1	Out	Pb/B	Pb / Blue Output
			(DACB0)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to the Pb component of YPrPb or blue (for VGA bypass).
47	1	Out	CVBS/B	Composite Video / Blue Output
			(DACA0)	This pin outputs a selectable video signal. The output is designed to drive a 75 ohm doubly terminated load. The output can be selected to be composite video or blue (for SCART type 1 connections)
49	1	Out	C/HSYNC	Composite / Horizontal Sync
				Provides composite sync in TV modes and horizontal sync in bypass RGB mode. This pin is driven by the DVDD supply.
50	1	Out	BCO/VSYNC	Buffered Clock Outputs / Vertical Sync
				This output pin provides buffered crystal oscillator clock output or VSYNC output in bypass RGB mode. This pin is driven by the DVDD supply.
52	1	In	XI / FIN	Crystal Input / External Reference Input
				A parallel resonant 14.31818MHz crystal (± 20 ppm) should be attached between this pin and XO. However, an external CMOS compatible clock can drive the XI/FIN input.

Table 1: Pin Description (continued)

Fable 1: Pin D Pin #	# of Pins	Type	Symbol	Description
53	1	Out	XO	Crystal Output
				A parallel resonance 14.31818MHz crystal (± 20 ppm) should be attached between this pin and XI / FIN. However, if an external CMOS clock is attached to XI/FIN, XO should be left open.
59	1	Out	P-Out	Pixel Clock Output
				This pin provides a pixel clock signal to the VGA controller which can be used as a reference frequency. The output is selectable between 1X and 2X of the pixel clock frequency. The output driver is driven from the VDDV supply (pin 60). This output has a programmable tri-state. The capacitive loading on this pin should be kept to a minimum.
61	1	In	VREF1	Reference Voltage Input 1
				The VREF1 pin inputs a reference voltage of VDDV / 2. The signal is derived externally through a resistor divider and decoupling capacitor, and will be used as a reference level for data, sync and clock inputs.
68-73, 77-82	12	In	D1[11:0]	Data1[11] through Data1[0] Inputs
				These pins accept the 12 data inputs from a digital video port of a graphics controller. The levels are 0 to VDDV. VREF1 is the threshold level.
76, 74	2	In	XCLK1,	External Clock Inputs
			XCLK1*	These inputs form a differential clock signal input to the device for use with the H1, V1 and D1[11:0] data. If differential clocks are not available, the XCLK1* input should be connected to VREF1. The clock polarity can be selected by the MCP1 control bit.
85-90, 94-99	12	In	D2[11:0]	Data2[11] through Data2[0] Inputs
				These pins accept the 12 data inputs from a digital video port of a graphics controller. The levels are 0 to VDDV. VREF1 is the threshold level.
93, 91	2	In	XCLK2,	External Clock Inputs
			XCLK2*	These inputs form a differential clock signal input to the device for use with the H2, V2 and D2[11:0] data. If differential clocks are not available, the XCLK2* input should be connected to VREF1. The clock polarity can be selected by the MCP2 control bit.
64, 83, 84, 103	4	Power	DVDD	Digital Supply Voltage (3.3V)
67, 75, 92, 100	4	Power	DGND	Digital Ground
60	1	Power	VDDV	I/O Supply Voltage (1.1V to 3.3V)
55	1	Power	TVPLL_VDD	TV PLL Supply Voltage (3.3V)
54	1	Power	TVPLL_VCC	TV PLL Supply Voltage (3.3V)
51	1	Power	TVPLL_GND	TV PLL Ground
37	1	Power	DAC_VDD	DAC Supply Voltage (3.3V)
39, 48	1	Power	DAC_GND	DAC Ground
7, 13, 19, 20, 26, 32	6	Power	LVDD	LVDS Supply Voltage (3.3V)
4, 10, 16, 23, 29, 35	6	Power	LGND	LVDS Ground
1	1	Power	LPLL_VDD	LVDS PLL Supply Voltage (3.3V)
3	1	Power	LPLL_GND	LVDS PLL Ground
8, 9, 21, 22, 109, 110, 112- 122	17		N/C	Not Connected

2.0 Overview

The CH7019 is a VGA to TV encoder with dual LVDS output for the graphics subsystem. Both TV-Out and LVDS-Out can operate simultaneously if the two 12-bit input ports are driven from different timing generators. TV timing requirements are usually different from that of the TFT-LCD panels. If the graphic controller can generate only one set of timing, simultaneous display on both the TV and the flat panel may not be available for all graphic modes. Descriptions of each of the operating modes with block diagrams of the data flow within the device are shown below.

The CH7019 also supports 24-bit input mode by ganging D1 and D2 together as a single 24-bit data port. In this case the timing signals H1, V1, DE1, XCLK1 and XCLK1* are equal to H2, V2, DE2, XCLK2 and XCL2*, respectively. Video data are sent to either the TV encoder (including RGB bypass) or to the LVDS data path, but not both. Maximum data rate supported through the dual LVDS links is 330M Pixels/sec. The maximum pixel rate supported by the RGB bypass mode is 165 Mpixels/sec.

2.1 Input Interface Timing

Four distinct methods of transferring data to the CH7019 are described below. In each of the four modes, DEx is used to signal active LVDS data for the panel and register SAV value denotes the start of active TV video.

A. 12-bit Multiplexed Data – Dual-edge Transfer

- Multiplexed data two 12-bit words per pixel from either D1[11:0] or D2[11:0]
- Clock frequency equals 1X pixel rate with 12-bit data transfer at both rising and falling clock edges.
- Maximum pixel rate is 165M pixels per second with a 165 MHz pixel clock.
- Simultaneous TV and panel display.

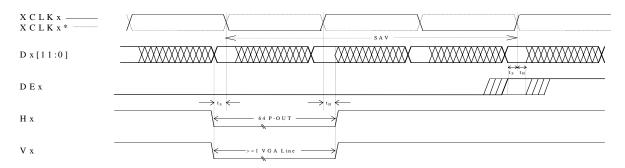


Figure 3: Interface Timing for Multiplexed Data – Dual-edge Transfer

B. 12-bit Multiplexed Data – Single-edge Transfer

- Multiplexed data two 12-bit words per pixel from either D1[11:0] or D2[11:0]
- Clock frequency equals 2X pixel rate with 12-bit data transfer at either rising or falling edge of clock (programmable via serial port).
- Maximum pixel rate is 165M pixels per second with a 330 MHz pixel clock.
- Simultaneous TV and panel display.

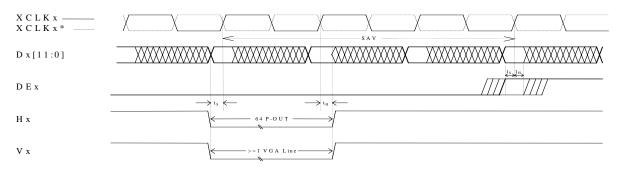


Figure 4: Interface Timing for Multiplexed Data – Single-edge Transfer

C. 24-bit Ganged Data - Dual-edge Transfer

- Multiplexed data two 24-bit words per pixel from both D1[11:0] and D2[11:0]
- Clock frequency equals 1/2X pixel rate with 24-bit data transfer at both rising and falling clock edges.
- Maximum pixel rate is 330M pixels per second with a 165 MHz pixel clock.
- No Simultaneous TV and panel display.

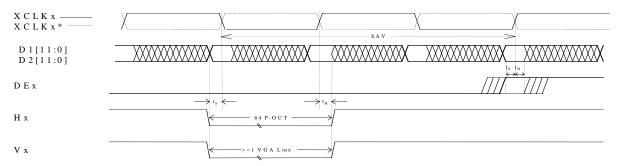


Figure 5: Interface Timing for 24-bit Multiplexed Data – Dual-edge Transfer

D. 24-bit Ganged Data – Single-edge Transfer

- Non-multiplexed data one 24-bit word per pixel from both D1[11:0] and D2[11:0].
- Clock frequency equals 1X pixel rate with 24-bit data transfer at either rising or falling edge of clock (programmable via serial port).
- Maximum pixel rate is 330M pixels per second with a 330 MHz pixel clock.
- No simultaneous TV and panel display.

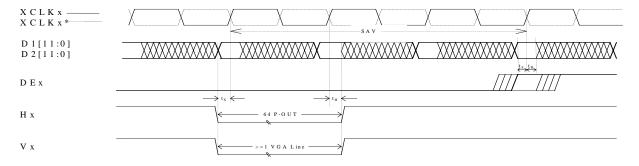
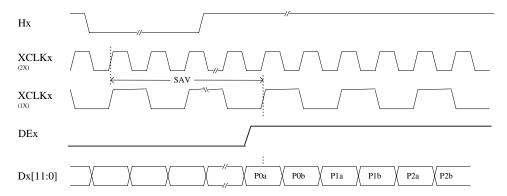


Figure 6: Interface Timing for Non-multiplexed Data – Single-edge Transfer

Table 2: Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
t_{S}	Setup time	See section 5.5			nS
t_{H}	Hold time	See section 5.5			nS

Note: t_S , t_H , setup time and hold time are programmable through serial port – X1CMD [3:0] and X2CMD[3:0] by delay or advance of clock relative to data.


2.2 Input Data Formats

2.2.1 12-Bit Multiplexed Data Formats

Multiplexed pixel data inputs to the CH7019 through D1[11:0] or D2[11:0] using data transfer method A or B described in 3.1. Received data is formatted and sent through an internal data bus P1[23:0] to TV encoder or directly to the TV DACs, or through bus P2[23:0] to the LVDS data path. The multiplexed input data formats are (IDF1[3:0]=0,1,2,3 and 4 for D1 and IDF2[3:0]=0,1,2,3 and 4 for D2):

IDFx	Description
0	RGB 8-8-8 (2x12-bit)
1	RGB 8-8-8 (2x12-bit) or RGB 5-6-5 (2x8-bit)
2	RGB 5-6-5 (2x8bit)
3	RGB 5-5-5 (2x8-bit)
4	YCrCb 8-8 (2x8-bit)

For multiplexed input data formats, data can be latched from the graphics controller by either rising only or falling only clock edges, or by both rising and falling clock edges. The MCPx bits select the rising or the falling clock edge, where rising refers to rising edge on the XCLKx signals and falling edge on the XCLKx* signals. The multiplexed input data formats are shown in Figure 7 below. The input data bus Dx[11:0], where x can be either 1 or 2, transports a 12-bit or 8-bit multiplexed data stream containing either RGB or YcrCb formatted data. The input data rate is 2X the pixel rate and each pair of Pn values (e.g.; P0a and P0b) contains a complete pixel encoded as shown in the Tables 3 to 6 below and can be placed onto one or both of the internal pixel buses Py[23:0], where y equals 1 or 2. It is assumed that the first clock cycle following the leading edge of the incoming horizontal sync signal contains the first word (Pxa) of a pixel, if an active pixel was present immediately following the horizontal sync. When the input is a YCrCb data stream the color-difference data will be transmitted at half the data rate of the luminance data with the sequence being set as Cb0, Y0, Cr0, Y1, where Cb0, Y0, Cr0 refers to co-sited luminance and color-difference samples and the following Y1 byte refers to the next luminance sample, per CCIR-656 standards (the clock frequency is dependent upon the current mode, and is not 27MHz as specified in CCIR-656). All non-active pixels should be 0 in RGB formats, and 16 for Y and 128 for CrCb in YCrCb formats.

Figure 7: 12-bit Multiplexed Input Data Formats (IDFx = 0,1,2,3,4)

Table 3: Multiplexed Input Data Formats (IDFx = 0, 1)

IDFx =			(0		1				
Format =			RGB 8-8-8	3 (2x12-bit))		RGB 8-8-8 (2x12-bit)			
		For T	V/Bypass R	GB or/and	LVDS			6-5 (2x8-bit	,	
						For T	V/Bypass R	GB or/and	LVDS	
Pixel #		P0a	P0b	P1a	P1b	P0a	P0b	P1a	P1b	
Bus Data	Dx[11]	G0[3]	R0[7]	G1[3]	R1[7]	G0[4]	R0[7]	G1[4]	R1[7]	
	Dx[10]	G0[2]	R0[6]	G1[2]	R1[6]	G0[3]	R0[6]	G1[3]	R1[6]	
	Dx[9]	G0[1]	R0[5]	G1[1]	R1[5]	G0[2]	R0[5]	G1[2]	R1[5]	
	Dx[8]	G0[0]	R0[4]	G1[0]	R1[4]	B0[7]	R0[4]	B1[7]	R1[4]	
	Dx[7]	B0[7]	R0[3]	B1[7]	R1[3]	B0[6]	R0[3]	B1[6]	R1[3]	
	Dx[6]	B0[6]	R0[2]	B1[6]	R1[2]	B0[5]	G0[7]	B1[5]	G1[7]	
	Dx[5]	B0[5]	R0[1]	B1[5]	R1[1]	B0[4]	G0[6]	B1[4]	G1[6]	
	Dx[4]	B0[4]	R0[0]	B1[4]	R1[0]	B0[3]	G0[5]	B1[3]	G1[5]	
	Dx[3]	B0[3]	G0[7]	B1[3]	G1[7]	G0[0]	R0[2]	G1[0]	R1[2]	
	Dx[2]	B0[2]	G0[6]	B1[2]	G1[6]	B0[2]	R0[1]	B1[2]	R1[1]	
	Dx[1]	B0[1]	G0[5]	B1[1]	G1[5]	B0[1]	R0[0]	B1[1]	R1[0]	
	Dx[0]	B0[0]	G0[4]	B1[0]	G1[4]	B0[0]	G0[1]	B1[0]	G1[1]	

Table 4: Multiplexed Input Data Formats (IDFx = 2, 3)

IDFx =				2		3			
Format			RGB 5-6 -	5 (2x8bit)			RGB 5-5-	5 (2x8-bit)	
=		for TV	//Bypass R	GB or/and	LVDS	for TV	/Bypass Ro	GB or/and	LVDS
Pixel #		P0a	P0b	P1a	P1b	P0a	P0b	P1a	P1b
Bus	Dx[11]	G0[4]	R0[7]	G1[4]	R1[7]	G0[5]	X	G1[5]	X
Data									
	Dx[10]	G0[3]	R0[6]	G1[3]	R1[6]	G0[4]	R0[7]	G1[4]	R1[7]
	Dx[9]	G0[2]	R0[5]	G1[2]	R1[5]	G0[3]	R0[6]	G1[3]	R1[6]
	Dx[8]	B0[7]	R0[4]	B1[7]	R1[4]	B0[7]	R0[5]	B1[7]	R1[5]
	Dx[7]	B0[6]	R0[3]	B1[6]	R1[3]	B0[6]	R0[4]	B1[6]	R1[4]
	Dx[6]	B0[5]	G0[7]	B1[5]	G1[7]	B0[5]	R0[3]	B1[5]	R1[3]
	Dx[5]	B0[4]	G0[6]	B1[4]	G1[6]	B0[4]	G0[7]	B1[4]	G1[7]
	Dx[4]	B0[3]	G0[5]	B1[3]	G1[5]	B0[3]	G0[6]	B1[3]	G1[6]

Table 5: Multiplexed Input Data Formats (IDFx = 4)

Table 5. Mu	iupiezeu i	i input Data Formats (IDFX = 4)									
IDFx =			4								
Format =			YCrCb 4:2:2 (2x8-bit)								
			for TV								
Pixel #		P0a	Oa P0b P1a P1b P2a P2b P3a P3b								
Bus Data	Dx[7]	Cb0[7]	Y0[7]	Cr0[7]	Y1[7]	Cb2[7]	Y2[7]	Cr2[7]	Y3[7]		
	Dx[6]	Cb0[6]	Y0[6]	Cr0[6]	Y1[6]	Cb2[6]	Y2[6]	Cr2[6]	Y3[6]		
	Dx[5]	Cb0[5]	Y0[5]	Cr0[5]	Y1[5]	Cb2[5]	Y2[5]	Cr2[5]	Y3[5]		
	Dx[4]	Cb0[4]	Y0[4]	Cr0[4]	Y1[4]	Cb2[4]	Y2[4]	Cr2[4]	Y3[4]		
	Dx[3]	Cb0[3]	Y0[3]	Cr0[3]	Y1[3]	Cb2[3]	Y2[3]	Cr2[3]	Y3[3]		
	Dx[2]	Cb0[2]	Y0[2]	Cr0[2]	Y1[2]	Cb2[2]	Y2[2]	Cr2[2]	Y3[2]		
	Dx[1]	Cb0[1]	Y0[1]	Cr0[1]	Y1[1]	Cb2[1]	Y2[1]	Cr2[1]	Y3[1]		
	Dx[0]	Cb0[0]	Y0[0]	Cr0[0]	Y1[0]	Cb2[0]	Y2[0]	Cr2[0]	Y3[0]		

When IDFx = 4 (YCrCb mode), the data inputs can also be used to transmit sync information to the device. In this mode, the embedded sync will follow the VIP2 convention, and the first byte of the 'video timing reference code' will be assumed to occur when a Cb sample would occur, if the video stream was continuous. This is shown below:

	Table 6: Multi	plexed Input	Data Formats ((IDFx = 4)) with Embedded Sync
--	----------------	--------------	----------------	------------	----------------------

IDFx =			4								
Format =			YCrCb 4:2:2 (2x8-bit) for TV								
Pixel #		P0a	Da P0b P1a P1b P2a P2b P3a P3b								
Bus Data	Dx[7]	1	0	0	S[7]	Cb2[7]	Y2[7]	Cr2[7]	Y3[7]		
	Dx[6]	1	0	0	S[6]	Cb2[6]	Y2[6]	Cr2[6]	Y3[6]		
	Dx[5]	1	0	0	S[5]	Cb2[5]	Y2[5]	Cr2[5]	Y3[5]		
	Dx[4]	1	0	0	S[4]	Cb2[4]	Y2[4]	Cr2[4]	Y3[4]		
	Dx[3]	1	0	0	S[3]	Cb2[3]	Y2[3]	Cr2[3]	Y3[3]		
	Dx[2]	1	0	0	S[2]	Cb2[2]	Y2[2]	Cr2[2]	Y3[2]		
	Dx[1]	1	0	0	S[1]	Cb2[1]	Y2[1]	Cr2[1]	Y3[1]		
	Dx[0]	1	0	0	S[0]	Cb2[0]	Y2[0]	Cr2[0]	Y3[0]		

In this mode, the S[7..0] byte contains the following data:

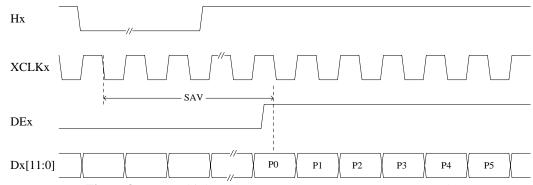
S[6] = F = 1 during field 2, 0 during field 1

S[5] = V = 1 during field blanking, 0 elsewhere

S[4] = H = 1 during EAV (synchronization reference at the end of active video)

0 during SAV (synchronization reference at the start of active video)

S[7] and S[3:0] are ignored


2.2.2 24-Bit Data Formats

The two 12-bit input data ports, D1[11:0] and D2[11:0], can be grouped together to form a single 24-bit interface to the graphic controller. In this case the timing signals H1, V1, DE1, XCLK1 and XCLK1* are equal to H2, V2, DE2, XCLK2 and XCLK2*, respectively. The CH7019 supports 5 different 24-bit data formats. Each of which is used with a 1X pixel rate clock latching data with one of the clock edges (default is falling edge). The 24-bit input data formats are IDFx[3:0]=5,6,7,8 and 9 (note that IDF1 must be set equal to IDF2) and are illustrated in Figure 8 below.

IDFx Description

- 5 RGB 8-8-8 (1x24-bit) for TV/Bypass RGB
- 6 YCrCb 8-8 (1x16-bit with CrCb multiplexed and decimated by 2) for TV
- 7 YCrCb 8-8-8 (1x24-bit) for TV
- 8 RGB 8-8-8 (2x24-bit) Odd / Even Ganged for LVDS
- 9 RGB 8-8-8 (1x24-bit) Normal Ganged for LVDS

The pixel data bus represents a 24-bit or 16-bit data stream containing either RGB or YCrCb formatted data. When the input is a 16-bit YCrCb data stream the color-difference data will be transmitted at half the data rate of the luminance data, with the sequence being set as Cb0, Y0 transmitted during one clock cycle, followed by Cr0, Y1 the following clock cycle, where Cb0, Y0, Cr0 refers to co-sited luminance and color-difference samples and the Y1 data refers to the next luminance sample, per CCIR-601 sampling. Non-active data must be 0 in RGB format, and 16 for Y, 128 for Cr and Cb in YCrCb formats.

Figure 8: Non-Multiplexed Input Data Formats (IDFx = 5,6,7,8 and 9)

Table 7: No	n-Multiplexed Data Formats								
IDFx =		5 6							7
Format =		24-bit RG			16-bit	24-bit YCrCb			
		TV/Bypa:				R TV	7	FOR TV	
Pixel #		P0	P1	P0	P1	P2	P3	P0	P1
Bus Data	D1[11]	R0[7]	R1[7]	Y0[7]	Y1[7]	Y2[7]	Y3[7]	Y0[7]	Y1[7]
	D1[10]	R0[6]	R1[6]	Y0[6]	Y1[6]	Y2[6]	Y3[6]	Y0[6]	Y1[6]
	D1[9]	R0[5]	R1[5]	Y0[5]	Y1[5]	Y2[5]	Y3[5]	Y0[5]	Y1[5]
	D1[8]	R0[4]	R1[4]	Y0[4]	Y1[4]	Y2[4]	Y3[4]	Y0[4]	Y1[4]
	D1[7]	R0[3]	R1[3]	Y0[3]	Y1[3]	Y2[3]	Y3[3]	Y0[3]	Y1[3]
DVOB	D1[6]	R0[2]	R1[2]	Y0[2]	Y1[2]	Y2[2]	Y3[2]	Y0[2]	Y1[2]
	D1[5]	R0[1]	R1[1]	Y0[1]	Y1[1]	Y2[1]	Y3[1]	Y0[1]	Y1[1]
	D1[4]	R0[0]	R1[0]	Y0[0]	Y1[0]	Y2[0]	Y3[0]	Y0[0]	Y1[0]
	D1[3]	G0[7]	G1[7]	Cr0[7]	Cb0[7]	Cr2[7]	Cb2[7]	Cr0[7]	Cr1[7]
	D1[2]	G0[6]	G1[6]	Cr0[6]	Cb0[6]	Cr2[6]	Cb2[6]	Cr0[6]	Cr1[6]
	D1[1]	G0[5]	G1[5]	Cr0 [5]	Cb0 [5]	Cr2 [5]	Cb2 [5]	Cr0 [5]	Cr1 [5]
	D1[0]	G0[4]	G1[4]	Cr0 [4]	Cb0 [4]	Cr2 [4]	Cb2 [4]	Cr0 [4]	Cr1 [4]
	D2[11]	G0[3]	G1[3]	Cr0 [3]	Cb0 [3]	Cr2 [3]	Cb2 [3]	Cr0 [3]	Cr1 [3]
	D2[10]	G0[2]	G1[2]	Cr0 [2]	Cb0 [2]	Cr2 [2]	Cb2 [2]	Cr0 [2]	Cr1 [2]
	D2[9]	G0[1]	G1[1]	Cr0 [1]	Cb0 [1]	Cr2 [1]	Cb2 [1]	Cr0 [1]	Cr1 [1]
	D2[8]	G0[0]	G1[0]	Cr0 [0]	Cb0 [0]	Cr2 [0]	Cb2 [0]	Cr0 [0]	Cr1 [0]
	D2[7]	B0[7]	B1[7]					Cb0[7]	Cb1[7]
DVOC	D2[6]	B0[6]	B1[6]					Cb0[6]	Cb1[6]
	D2[5]	B0[5]	B1[5]					Cb0 [5]	Cb1[5]
	D2[4]	B0[4]	B1[4]					Cb0 [4]	Cb1[4]
	D2[3]	B0[3]	B1[3]					Cb0 [3]	Cb1[3]
	D2[2]	B0[2]	B1[2]					Cb0 [2]	Cb1[2]
	D2[1]	B0[1]	B1[1]					Cb0 [1]	Cb1[1]
	D2[0]	B0[0]	B1[0]					Cb0 [0]	Cb1[0]

When IDFx = 6 or 7 (YCrCb modes), the data inputs can be used to transmit sync information to the device. In these modes the embedded sync follows a subset of the VIP2 convention, and the first byte of the video timing reference code is assumed to occur when a Cb sample occurs, if the video stream is continuous. This is shown in Table 8 below.

Table 8: Non-Multiplexed YCrCb modes with Embedded Sync

IDFx =				6			ı	7			
Format =				YCrCb		24-bit YCrCb					
			for	TV			for TV				
Pixel #		P0	P1	P2	P3	P0	P1	P2	P3		
Bus Data	D1[11]	0	S[7]	Y0[7]	Y1[7]	0	S[7]	Y0[7]	Y1[7]		
	D1[10]	0	S[6]	Y0[6]	Y1[6]	0	S[6]	Y0[6]	Y1[6]		
	D1[9]	0	S[5]	Y0[5]	Y1[5]	0	S[5]	Y0[5]	Y1[5]		
	D1[8]	0	S[4]	Y0[4]	Y1[4]	0	S[4]	Y0[4]	Y1[4]		
	D1[7]	0	S[3]	Y0[3]	Y1[3]	0	S[3]	Y0[3]	Y1[3]		
	D1[6]	0	S[2]	Y0[2]	Y1[2]	0	S[2]	Y0[2]	Y1[2]		
	D1[5]	0	S[1]	Y0[1]	Y1[1]	0	S[1]	Y0[1]	Y1[1]		
	D1[4]	0	S[0]	Y0[0]	Y1[0]	0	S[0]	Y0[0]	Y1[0]		
	D1[3]	1	0	Cr0[7]	Cb0[7]	1	X	Cr0[7]	Cr1[7]		
	D1[2]	1	0	Cr0[6]	Cb0[6]	1	X	Cr0[6]	Cr1[6]		
	D1[1]	1	0	Cr0 [5]	Cb0 [5]	1	X	Cr0 [5]	Cr1[5]		
	D1[0]	1	0	Cr0 [4]	Cb0 [4]	1	X	Cr0 [4]	Cr1[4]		
	D2[11]	1	0	Cr0 [3]	Cb0 [3]	1	X	Cr0 [3]	Cr1[3]		
	D2[10]	1	0	Cr0 [2]	Cb0 [2]	1	X	Cr0 [2]	Cr1[2]		
	D2[9]	1	0	Cr0 [1]	Cb0 [1]	1	X	Cr0 [1]	Cr1[1]		
	D2[8]	1	0	Cr0 [0]	Cb0 [0]	1	X	Cr0 [0]	Cr1[0]		
	D2[7]					0	X	Cb0[7]	Cb1[7]		
	D2[6]					0	X	Cb0[6]	Cb1[6]		
	D2[5]					0	X	Cb0 [5]	Cb1 [5]		
	D2[4]					0	X	Cb0 [4]	Cb1 [4]		
	D2[3]					0	X	Cb0 [3]	Cb1 [3]		
	D2[2]					0	X	Cb0 [2]	Cb1 [2]		
	D2[1]					0	X	Cb0 [1]	Cb1 [1]		
	D2[0]					0	X	Cb0 [0]	Cb1 [0]		

In this mode, the S[7..0] byte contains the following data:

S[6] = F = 1 during field 2, 0 during field 1

S[5] = V = 1 during field blanking, 0 elsewhere

S[4] = H = 1 during EAV (synchronization reference at the end of active video)

0 during SAV (synchronization reference at the start of active video)

S[7] and S[3:0] are ignored

Under mode 8 and 9, the CH7019 takes 24-bit data from both D1 and D2 and outputs to the dual LVDS links. A maximum throughput of 330M pixels per second can be achieved. The timing signals of both input ports shall be identical. H1, V1 and XCLK1 equal H2, V2 and XCLK2, respectively. Up-scaling and dithering functions are not available in these modes.

Table 9: Ganged Data Formats

IDFx =	8 9							
Format =		24-bit]	RGB	24-bit RGB				
		Odd/Even		Normal Ganged				
		for LV	/DS	for I	for LVDS			
Pixel #		P0	P1	P0	P1			
Bus Data	D1[11]	G0[3]	R0[7]	R0[7]	R1[7]			
	D1[10]	G0[2]	R0[6]	R0[6]	R1[6]			
	D1[9]	G0[1]	R0[5]	R0[5]	R1[5]			
	D1[8]	G0[0]	R0[4]	R0[4]	R1[4]			
	D1[7]	B0[7]	R0[3]	R0[3]	R1[3]			
DVOB	D1[6]	B0[6]	R0[2]	R0[2]	R1[2]			
	D1[5]	B0[5]	R0[1]	R0[1]	R1[1]			
	D1[4]	B0[4]	R0[0]	R0[0]	R1[0]			
	D1[3]	B0[3]	G0[7]	G0[7]	G1[7]			
	D1[2]	B0[2]	G0[6]	G0[6]	G1[6]			
	D1[1]	B0[1]	G0[5]	G0[5]	G1[5]			
	D1[0]	B0[0]	G0[4]	G0[4]	G1[4]			
	D2[11]	G1[3]	R1[7]	G0[3]	G1[3]			
	D2[10]	G1[2]	R1[6]	G0[2]	G1[2]			
	D2[9]	G1[1]	R1[5]	G0[1]	G1[1]			
	D2[8]	G1[0]	R1[4]	G0[0]	G1[0]			
	D2[7]	B1[7]	R1[3]	B0[7]	B1[7]			
DVOC	D2[6]	B1[6]	R1[2]	B0[6]	B1[6]			
	D2[5]	B1[5]	R1[1]	B0[5]	B1[5]			
	D2[4]	B1[4]	R1[0]	B0[4]	B1[4]			
	D2[3]	B1[3]	G1[7]	B0[3]	B1[3]			
	D2[2]	B1[2]	G1[6]	B0[2]	B1[2]			
	D2[1]	B1[1]	G1[5]	B0[1]	B1[1]			
	D2[0]	B1[0]	G1[4]	B0[0]	B1[0]			

2.3 TV-Out

Multiplexed input data, sync and clock signals from the graphics controller inputs to the CH7019 through one of the two 12-bit variable voltage input ports, D1[11:0] or D2[11:0], and is directed to the TV data path. Non-multiplexed 24-bit input data also inputs through both of the two input ports. Detailed descriptions of the eight input data formats are given in Section 2.2. Clock signal (P-Out) outputs as a frequency reference to the graphics controller to ensure accurate frequency generation. Horizontal and vertical sync signals are normally sent to the CH7019 from the graphics controller, but can be optionally generated by the CH7019 and output to the graphics controller. Using the serial port, the CH7019 can be programmed as the clock master, clock slave, sync master or sync slave. Data will be 2X multiplexed (2x12 bits) or non-multiplexed (1x24 bits), and the XCLK clock signal can be 1X or 2X times the pixel rate. The input data will be encoded into the selected video standard, and output from the video DACs.

2.3.1 Display Modes

The CH7019 display mode is controlled by three independent factors: input resolution, TV format, and scale factor, which are programmed via the display mode register. It is designed to accept input resolutions of 512x384, 640x480, 640x400, 720x400, 720x480, 720x576, 800x600, and 1024x768.

It is designed to support output to either NTSC or PAL television formats. The CH7019 provides interpolated scaling with selectable factors of 5:4, 1:1, 7:8, 5:6, 3:4, 7:10 and 25:21 in order to support adjustable overscan or underscan operation when displayed on a TV. The modes supported for TV-Out are shown in the Table 10 below.

Table 10: TV Output Modes

Table 10. 1 v Ou	tput Modes			
Graphics	Active Aspect	Pixel Aspect	TV Output	Scaling Ratios
Resolution	Ratio	Ratio	Standard	
512x384	4:3	1:1	PAL	5/4, 1/1
512x384	4:3	1:1	NTSC	5/4, 1/1
720x400	4:3	1.35:1.00	PAL	5/4, 1/1
720x400	4:3	1.35:1.00	NTSC	5/4, 1/1, 25/21
640x400	8:5	1:1	PAL	5/4, 1/1
640x400	8:5	1:1	NTSC	5/4, 1/1, 7/8, 25/21
640x480	4:3	1:1	PAL	5/4, 1/1, 5/6, 25/21
640x480	4:3	1:1	NTSC	1/1, 7/8, 5/6
$720x480^{1}$	4:3	9:8	NTSC	1/1
$720x480^2$	4:3	9:8	NTSC	1/1, 7/8, 5/6
720x576 ¹	4:3	15:12	PAL	1/1
$720x576^2$	4:3	15:12	PAL	1/1, 5/6, 5/7
800x600	4:3	1:1	PAL	1/1, 5/6, 5/7
800x600	4:3	1:1	NTSC	3/4, 7/10, 5/8
1024x768	4:3	1:1	PAL	5/7, 5/8, 5/9
1024x768	4:3	1:1	NTSC	5/8, 5/9, 1/2

¹ These DVD modes operate with interlaced input. Scan conversion and flicker filter are bypassed.

2.3.2 Adaptive Flicker Filter

The CH7019 integrates an advanced 2-line, 3-line, 4-line, 5-line, 6-line and 7-line (depending on mode) vertical deflickering filter circuit to help eliminate the flicker associated with interlaced displays. This flicker circuit provides an adaptive filter algorithm for implementing flicker reduction with selections of high, medium or low flicker content for both luma and chroma channels (see register descriptions). In addition, a special text enhancement circuit incorporates additional filtering for enhancing the readability of test. These modes are fully programmable via serial port interface using the flicker filter register.

² These DVD modes operate with non-interlaced input. Scan conversion and flicker filter are not bypassed.

2.3.3 Color Burst Generation

The CH7019 allows the subcarrier frequency to be accurately generated from a 14.31818 MHz crystal oscillator, leaving the subcarrier frequency independent of the graphics pixel clock frequency. As a result, the CH7019 may be used with most VGA chips (with an appropriate digital interface) since the CH7019 subcarrier frequency can be generated without being dependent on the precise pixel rates of VGA controllers. This feature is important since even a $\pm 0.01\%$ subcarrier frequency variation is enough to cause some televisions to lose color lock.

In addition, the CH7019 has the capability to genlock the color burst signal to the VGA horizontal sync frequency, which enables a fully synchronous system between the graphics controller and the television. When genlocked, the CH7019 can stop "dot crawl" motion (for composite NTSC modes), thus eliminating the annoyance of moving borders. Both of these features are under programmable control through the register set.

2.3.4 NTSC and PAL Operation

Composite and S-Video outputs are supported in either NTSC or PAL format. The general parameters used to characterize these outputs are listed in Table 11 and shown in Figure 9. (See Figure 12 through Figure 17 for illustrations of composite and S-Video output waveforms).

ITU-R BT.470 Compliance

The CH7019 is predominantly compliant with the recommendations called out in ITU-R BT.470. The following are the only exceptions to this compliance:

- The frequencies of Fsc, Fh, and Fv can only be guaranteed in clock/sync master mode, not in clock/sync slave mode when the graphics device generates these frequencies.
- It is assumed that gamma correction, if required, is performed in the graphics device which establishes the color reference signals.
- All modes provide the exact number of lines called out for NTSC and PAL modes respectively, except mode 21, which outputs 800x600 resolution, scaled by 3:4, to PAL format with a total of 627 lines (vs. 625).
- Chroma signal frequency response will fall within 10% of the exact recommended value.
- Pulse widths and rise/fall times for sync pulses, front/back porches, and equalizing pulses are designed to
 approximate ITU-R BT.470 requirements, but will fall into a range of values due to the variety of clock frequencies
 used to support multiple operating modes.

Table 11: NTSC/PAL Composite Output Timing Parame

Symbol	Description	Level	(mV)	Duratio	on (uS)
		NTSC	PAL	NTSC	PAL
А	Front Porch	287	300	1.49 - 1.51	1.48 - 1.51
В	Horizontal Sync	0	0	4.69 - 4.72	4.69 - 4.71
С	Breezeway	287	300	0.59 - 0.61	0.88 - 0.92
D	Color Burst	287	300	2.50 - 2.53	2.24 - 2.26
Е	Back Porch	287	300	1.55 - 1.61	2.62 - 2.71
F	Black	340	300	0.00 - 7.50	0.00 - 8.67
G	Active Video	340	300	37.66 - 52.67	34.68 - 52.01
Н	Black	340	300	0.00 - 7.50	0.00 - 8.67

For this table and all subsequent figures, key values are:

Note:

- 1. RSET = 140 ohms; V(ISET) = 1.235V; 75 ohms doubly terminated load. RSET is the resistor connected to the ISET pin.
- 2. Durations vary slightly in different modes due to the different clock frequencies used.
- 3. Active video and black (F, G, H) times vary greatly due to different scaling ratios used in different modes.
- 4. Black times (F and H) vary with position controls.

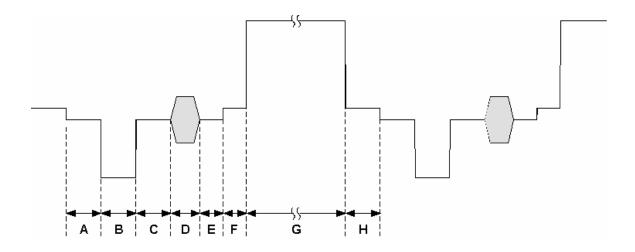


Figure 9: NTSC / PAL Composite Output

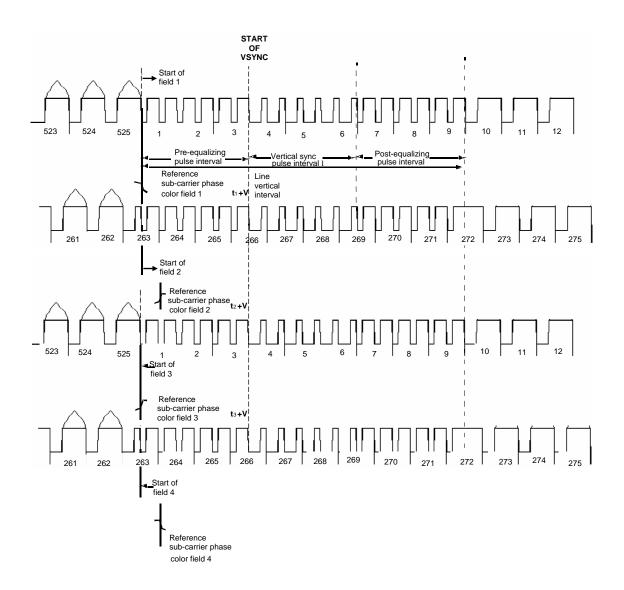


Figure 10: Interlaced NTSC Video Timing

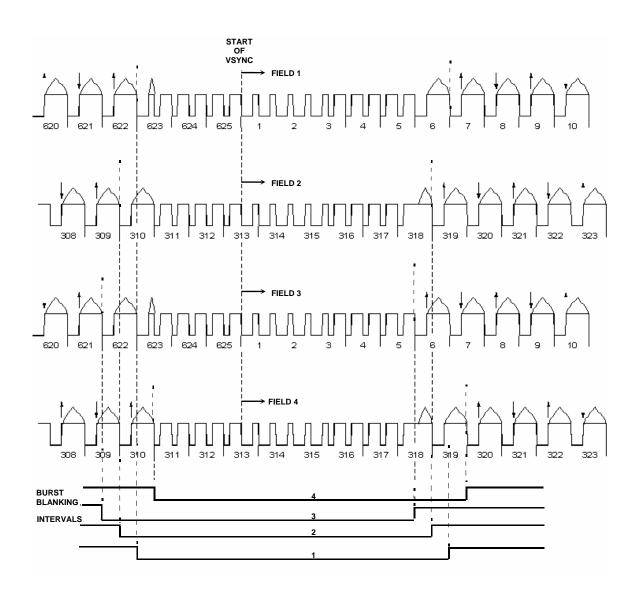


Figure 11: Interlaced PAL Video Timing

201-0000-048 Rev. 2.4, 12/18/2006

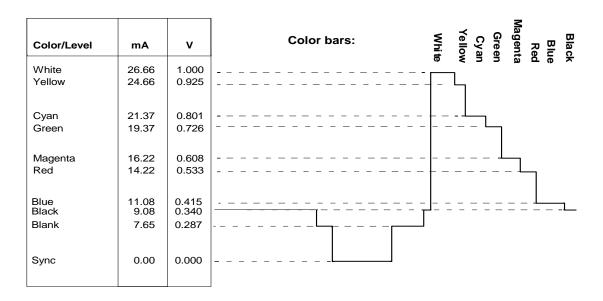
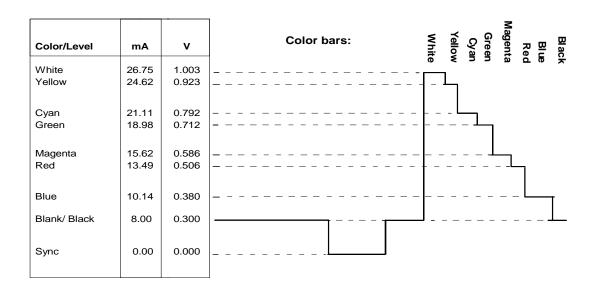
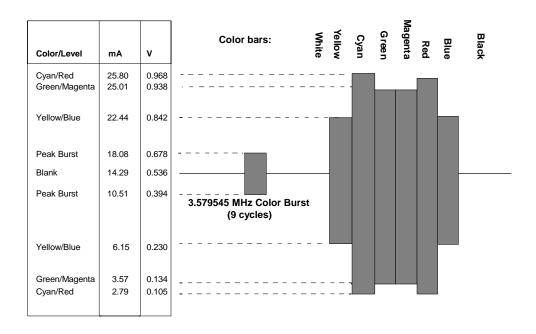
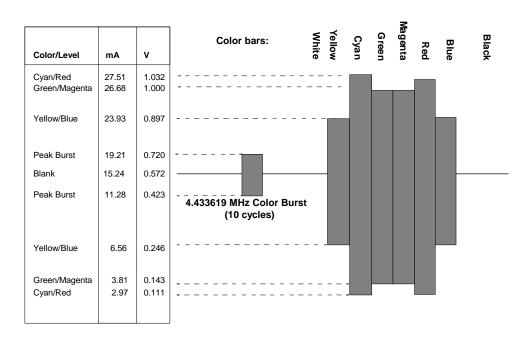
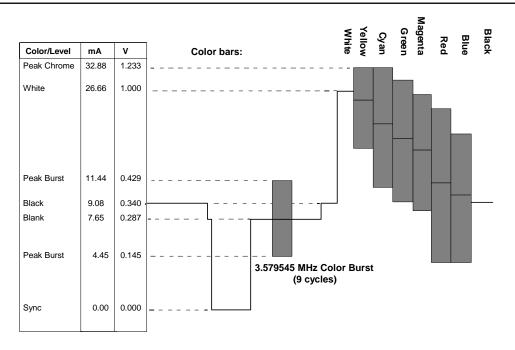



Figure 12: NTSC Y (Luminance) Output Waveform (DACG = 0)

Figure 13: PAL Y (Luminance) Video Output Waveform (DACG = 1)

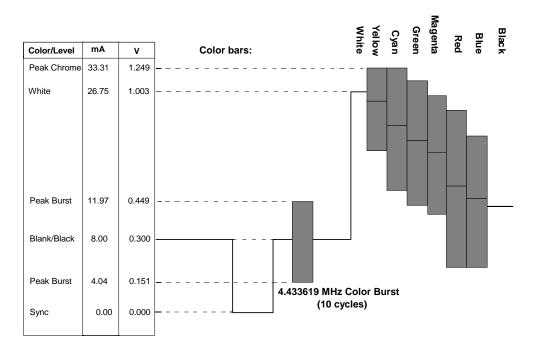

Figure 14: NTSC C (Chrominance) Video Output Waveform (DACG = 0)

Figure 15: PAL C (Chrominance) Video Output Waveform (DACG = 1)

Figure 16: Composite NTSC Video Output Waveform (DACG = 0)

Figure 17: Composite PAL Video Output Waveform (DACG = 1)

2.3.5 TV Encoder / Bypass RGB / Component Video Outputs

The four TV encoder DAC outputs in the CH7019 can be switched to two sets of output pins DACA[3:0] and DACB[3:0] via video switches. This feature facilitates simple connection to two sets of video connectors as listed in Table 12 below:

Table 12: TV Output Configurations

	2 RCA + 1 S-Video	SCART
DACA0 (pin 47)	CVBS	В
DACA1 (pin 43)	Y	G
DACA2 (pin 45)	C	R
DACA3 (pin 41)	CVBS	CVBS
	VGA – Bypass RGB	HDTV
DACB0 (pin 46)	В	Pb
DACB1 (pin 42)	G	Y
DACB2 (pin 44)	R	Pr
DACB3 (pin 40)		CVBS

If the application calls for CVBS/S-video, SCART, RGB and YPrPb to output on the DAC output pins, different reconstruction filters for each type of signal can be implemented on the break-out cables.

The TV Encoder can be bypassed with input data driving the DACs directly. This mode can go to 165 MP/s. The CH7019 supports YPrPb output for driving 480i TV sets and SCART RGB for European TV.

2.4 LVDS-Out

Multiplexed input data, sync and clock signals from the graphics controllers input to the CH7019 through one of the two 12-bit variable voltage input ports, D1[11:0] or D2[11:0]. Non-multiplexed 24-bit input data input through both of the two input ports. For correct LVDS operation, the input data format must be selected to be IDFx=0, 1, 2, 3, 5, 8 or 9. Note for 24-bit formats, IDF1 must be set equal to IDF2.

If the two 12-bit input ports are driven from different timing generators then data can be sent to both the LVDS data path and the DACs in the TV data path. The DACs can output these data at 165 M pixels/sec to drive a second CRT monitor.

2.4.1 Single LVDS Channel Signal Mapping

Table 13: Signal Mapping for Single LVDS Channel

	18-bit
LDC[0](1)	R0
LDC[0](2)	R1
LDC[0](3)	R2
LDC[0](4)	R3
LDC[0](5)	R4
LDC[0](6)	R5
LDC[0](7)	G0
LDC1	G1
LDC[1](2)	G2
LDC[1](3)	G3
LDC[1](4)	G4
LDC[1](5)	G5
LDC[1](6)	В0
LDC[1](7)	B1
LDC[2](1)	B2
LDC2	В3
LDC[2](3)	B4
LDC[2](4)	B5
LDC[2](5)	HSYNC
LDC[2](6)	VSYNC
LDC[2](7)	DE

2.4.2 Dual LVDS Channel Signal Mapping

Table 14: Signal Mapping for Dual LVDS Channel

	18-bit
LDC[0](1)	Ro0
LDC[0](2)	Ro1
LDC[0](3)	Ro2
LDC[0](4)	Ro3
LDC[0](5)	Ro4
LDC[0](6)	Ro5
LDC[0](7)	Go0
LDC1	Go1
LDC[1](2)	Go2
LDC[1](3)	Go3
LDC[1](4)	Go4
LDC[1](5)	Go5
LDC[1](6)	Bo0
LDC[1](7)	Bo1
LDC[2](1)	Bo2
LDC2	Bo3
LDC[2](3)	Bo4
LDC[2](4)	Bo5
LDC[2](5)	HSYNC
LDC[2](6)	VSYNC
LDC[2](7)	DE
LDC[4](1)	Re0
LDC[4](2)	Re1
LDC[4](3)	Re2
LDC4	Re3
LDC[4](5)	Re4
LDC[4](6)	Re5
LDC[4](7)	Ge0
LDC[5](1)	Ge1
LDC[5](2)	Ge2
LDC[5](3)	Ge3
LDC[5](4)	Ge4
LDC5	Ge5
LDC[5](6)	Be0
LDC[5](7)	Be1
LDC[6](1)	Be2
LDC[6](2)	Be3
LDC[6](3)	Be4
LDC[6](4)	Be5
LDC[6](5)	LCTLE ¹
LDC6	LCTLF ¹
LDC[6](7)	LA6RL ¹

Note:

1. See description for register 65h.

2.4.3 Dithering

The dither engine in the CH7019 converts 24-bit per pixel to 18-bit per pixel RGB data before sending to the LVDS encoder. The 1D or the 2D dither algorithm can be selected via serial port programming. Maximum pixel rate supported is 165 M Pixels / sec. This function must be bypassed when pixel rate exceeds 165MHz.

2.4.4 Power Sequencing

The CH7019 conforms to SPWG's requirements on power sequencing. The timing specification shown in Figure 18 is a superset of the requirements dictated by the SPWG specification. The power sequencing block consists of a state machine and 5 hardware timers, which are programmable through serial port to suit requirements by different panels. It provides 2 signals ENAVDD and ENABKL to the LCD panel.

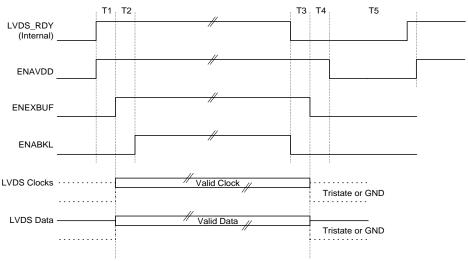


Figure 18: Power Sequencing

Table 15: Power Sequencing

	Range	Increment
T1	1-512 ms	1 ms
T2	2-256 ms	2ms
Т3	2-256 ms	2ms
T4	1-512 ms	1 ms
T5	0-1600 ms	50ms

Power-on sequence begins when the LVDS software registers are set properly via serial port and the internal PLL lock detection circuit and the internal Sync detection circuits (see section 2.4.5) indicate that HSYNC, VSYNC and XCLK are stable. Note that the BKLEN bit (register 66h) must be set in order for the ENABKL signal to be asserted. Power-off sequence begins when any detection circuits indicate an instability in the timing signals (see section 2.4.5), or through software programming. Once power-off sequence starts, the internal state machine will complete the sequence and power-on sequence is allowed only after T5 is passed.

When the LVDS output clock and data signals become invalid, these outputs are tri-stated or grounded depending on the value of the LODP bit.

2.4.5 Panel Protection

The LCD panel can be damaged if HSYNC is absent from the LVDS link. This situation can happen when there is a catastrophic failure in the PC or the graphics system. The CH7019 is designed to prevent damage to the panel under such a failure. If the system fails, the CH7019 does not expect any software instruction from the graphics controller to power down the panel. Detection circuits are used to monitor the three timing signals – HSYNC, VSYNC and XCLK. If any one, combination of, or all of these signals becomes unstable, the CH7019 will commence Power Down Sequencing according to section 2.4.4. A description of these detection circuits is shown in Figure 19.

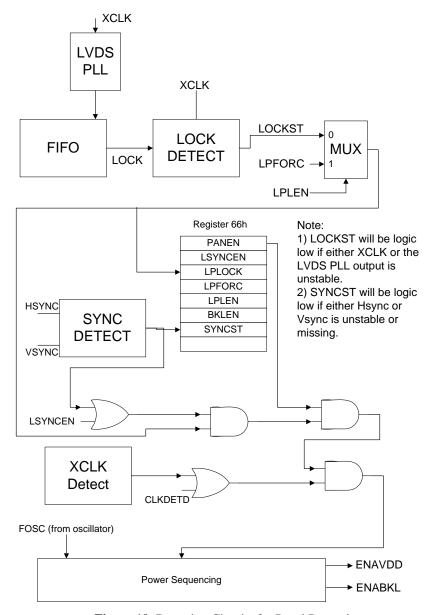


Figure 19: Detection Circuits for Panel Protection

The power up sequence can occur only if (a) XCLK is not missing, (b) there are no missing HSYNC and VSYNC, (c) the PLL CLOCK is stable, and (d) PANEN is set to 1. The power down sequence happens if any of those conditions fails. The power up sequence can also occur if the panel protection circuitry is bypassed.

The panel protection circuitry is comprised of a LOCKDET block, which detects an unstable clock from the LVDS PLL, a SYNCDET block, which detects missing inputs HSYNC and VSYNC, and an XCLK Detect block, which detects missing XCLK. XCLK stability (assuming it is not missing) is determined by the number of PLL unlock signals generated within one frame. This number is programmable via serial port using the BGLMT register (register 7Fh).

The SYNCDET block consists of counters to count HSYNC and VSYNC pulses. One counter is used to count the number of HSYNC pulses per frame over 3 frames. The end counts for all 3 frames must be equal to enable the power up sequence. In addition, the SYNCDET block checks for the presence of VSYNC and HSYNC. If VSYNC is missing for 2 frames or if HSYNC is missing for 32us the power up sequence is disabled. Conversely, if the panel has already been enabled and if the check of the number of HSYNC pulses over 3 frames yields different counts for any frame or if VSYNC is missing for 2 frames or if HSYNC is missing for 32us the CH7019 will go into a power down sequence.

The XCLK Detect block detects if XCLK is missing for more than approximately 1.2us.

The LOCKDET block and SYNCDET block can be defeated or bypassed independently through the LPMC register (register 66h) controls. To defeat the LOCKDET block set LPFORC to '1' and LPLEN to '1'; to defeat the SYNCDET block set LSYNCEN to 1. The XCLK Detect block can be defeated or bypassed independently through the CLKDETD bit in register 14h, bit 2. To defeat the XCLK Detect block set CLKDETD to '1'.

The order of programming the control registers for the power up sequence is very important. Both LPLOCK and SYNCST must read as 1 before setting PANEN to 1. Doing so will eliminate unexpected results on the LCD panel.

2.4.6 Clock for Emission Reduction

LVDS data path can support a +- 2.5% spread spectrum clock to reduce EMI emission. The frequency and amplitude of the spread spectrum triangle waveform can be programmed via the serial port. Please refer to AN-59 for details.

2.5 Power Down

The CH7019 can be powered down under software control to achieve very low standby current. The matrix in table 16 shows the function of all the power down control bits for the CH7019. For a complete description of each individual bit please refer to the appropriate register description in sections 3.1 and 3.3.

Table 16: Power Down Control Bits

T V P D	D A C P D 3	D A C P D	D A C P D	D A C P D	L V D S P D	L O D P D B	L O D P D B	Description
1	X	X	X	X	1	X	X	Full Power Down
0	1	1	1	0	1	X	X	TV path powered up, DAC 0 on, DACs 1, 2, 3 off. LVDS path powered down.
0	0	0	0	1	1	X	X	TV path powered up, DAC 0 off, DACs 1, 2, 3 on. LVDS path powered down.
0	0	0	0	0	1	X	X	TV path powered up, DACs 0, 1, 2, 3 on. LVDS path powered down
1	X	X	X	X	0	0	0	TV path powered down LVDS path powered up. Both channels off
1	X	X	X	X	0	0	1	TV path powered down. LVDS path powered up. Channel A on, channel B off.
1	X	X	X	X	0	1	0	TV path powered down. LVDS path powered up. Channel A off, channel B on.
1	X	X	X	X	0	1	1	TV path powered down. LVDS path powered up. Channel A on, channel B on.
0	0	0	0	0	0	1	1	TV path powered up, DACs 0, 1, 2, 3 on. LVDS path powered up. Channel A on, channel B on.

Note:

- 1. X = do not care.
- 2. TV bit (register 49h, bit 5) enables the TV path but does not control power down. In order for the TV path to function, TV must be set to 1 and TVPD set to 0.
- 3. An input channel which is routing data to an inactive path (TV or LVDS) is automatically powered down. For example, if PTSEL[1:0] = 10 (D1 input routed to TV and D2 input routed to LVDS) and if TVPD = 1 (TV path powered down) then data channel D1 is automatically powered down.
- 4. LDEN[1:0] (register 73h, bits 4-3) enable the LVDS outputs but do not control power down. In order for an LDVS channel to be active LVDSPD must be set to 0, the channel must be powered up (LODPDBx=1) and enabled (LDENx=1).

3.0 Register Control

The CH7019 is controlled via a serial control port. The serial bus uses only the SPC clock to latch data into registers, and does not use any internally generated clocks so that the device can be written to in all power down modes. The device should retain all register values during power down modes.

3.1 Non-Macrovision Control Registers Index

The non-Macrovision controls are listed below, divided into four sections: General & Power Down controls, Input/Output controls, LVDS controls, TV-Out controls.

GENERAL & POV	VER DOWN CONTROLS	Address
DACPD[3:0]	DAC Power Down	49h
DID[7:0]	Device ID register	4Bh
LODPDB[1:0]	LVDS Output Driver Power Down control	76h
LVDSPD	LVDS Power Down	63h
PANEN	Panel Enable (0 – begin Power off sequence, 1 Power-on)	66h
RESETIB	Software SPP (serial port) reset	48h
RESETDB	Software datapath reset	48h
STFDEN[1:0]	Enables FLD2 and FLD1 pins	10h
STFDS[1:0]	Controls FLD2 and FLD1 output to VGA controller	60h
TPBLD [6:0]	Timer – Black Light Disable (T3)	69h
TPBLE [6:0]	Timer – Black Light Enable (T2)	68h
TPOFF [8:0]	Timer – Power Off (T4)	69h-6Ah
TPON [8:0]	Timer - Power On (T1)	67h-68h
TPPWD [5:0]	Timer – Power Cycle (T5)	6Bh
TSTP[1:0]	Enable/select test pattern generation (color bar, ramp)	48h
TV	TV Data and Channel select	49h
TVPD	TV Out Power Down	49h
VID[7:0]	Version ID register	4Ah

INPUT/OUTPUT CONTROLS A					
BCO[2:0]	Select output signal for BCO pin	22h			
BCOEN	Enable BCO Output	22h			
ВСОР	BCO polarity	22h			
BGBST	Bandgap Boost	14h			
C3GP[5:0]	GPIO Controls	6Eh, 6Dh			
C4GP[5:0]	GPIO Controls	6Bh-6Dh			
C5GP[5:0]	GPIO Controls	5Ch, 65h			
DACBP	DAC bypass	21h			
DACG[1:0]	DAC gain control	21h			
DACT[3:0]	DAC termination sense	20h			
DES	Decode embedded sync (TV-Out data only)	1Fh			
GOENB[1:0]	Direction control for GPIO pins	1Eh			
GOENB[5:2]	Direction control for GPIO pins	6Eh			
GPIOL[1:0]	Read or Write Data for GPIO pins	1Eh			
GPIOL[5:2]	Read or Write Data for GPIO pins	6Dh			
GPIODR[5:0]	GPIO Driver Type – Open Drain or TTL	6Ch			
HSPTV	H sync polarity control TV	1Fh			
IBS1	Input buffer type select for D1	1Fh			
IBS2	Input Buffer type select for D2	1Ch			
IDF1[3:0]	Input Data Format for D1	1Fh, 21h			
IDF2[3:0]	Input Data Format for D2	53h			
MCP1	XCLK Polarity Control for D1	1Ch			
MCP2	XCLK Polarity Control for D2	1Ch			
PCM	P-Out 1X, 2X select	1Ch			
POUTE	P-Out enable	1Eh			
POUTP	P-Out clock polarity	1Eh			
PTSEL[1:0]	Control data path from D1 and D2 to TV and/or or LVDS blocks	03h			
SENSE	TV Sense	20h			
SHF[2:0]	K3 Divider Selection	22h			
SYNCO[1:0]	Enables/selects sync output for Scart and bypass modes	21h			
SYOTV	H/V sync direction control (for TV-Out modes only)	1Fh			
VSPTV	V sync polarity control for TV	1Fh			
XCM1	XCLK 1X / 2X select for D1	1Ch			
XCM2	XCLK 1X / 2X select for D2	1Ch			
X1CMD[3:0]	Delay adjust between XCLK and D1[11:0]	1Dh			
X2CMD[3:0]	Delay adjust between XCLK and D2[11:0]	53h			
XOSC[2:0]	Crystal oscillator adjustments	21h, 20h			

LVDS CONTROL	S	Address
BGLMT[7:0]	Bang Limit control of internal LVDS FIFO over/under run	7Fh
BKLEN	Backlight enable	66h
FRSTB	FIFO Reset Enable	76h
LDD	LVDS Dithering Defeat	64h
LDEN[1:0]	LVDS Output Driver enable	73h
LDM2D	LVDS Dithering Mode – 2D	64h
LEOSWP	Odd/even sample output swap on LVDS link	64h
L1ODA[2:0]	LVDS Output Driver Amplitude control for bank 1	74h
L2ODA[2:0]	LVDS Output Driver Amplitude control for bank 2	74h
LODP	LVDS Output Driver Pull-down	74h
LODPE	LVDS Output Driver Pre-emphasis	74h
LODST	LVDS Output Driver Source Termination control	75h
LPCP[2:0]	LVDS PLL Charge pump control	73h
LPFBD[3:0]	LVDS PLL feed back divider controls	71h
LPFFD[1:0]	LVDS PLL feed forward divider controls	71h
LPFORC	Bypass LVDS PLL Lock Detect Sentry	66h
LPLEN	Enable Bypass of LVDS PLL Lock Detect	66h
LPLF[2:0]	LVDS PLL Loop Filter Resistor Value	76h
LPLF[4:3]	LVDS PLL Loop Filter Capacitor Value	78h
LPLOCK	LVDS PLL Lock – read only register	66h
LPPD[4:0]	LVDS PLL phase detector trim	78h
LPPDN	LVDS PLL Power Down	76h
LPPRB	LVDS PLL Reset	76h
LPPSD[1:0]	LVDS PLL post scale divider controls	72h
LPVCO[3:0]	LVDS PLL VCO frequency range controls	72h
LSYNCEN	Bypass Sync Detection	66h
LVDSDC	LVDS Dual Channel Select	64h
SYNCST	HSYNC and VSYNC stability status	66h

TV-OUT CONTROL	LS	Address
BL[7:0]	TV-Out Black level control	07h
BLKEN	Black Level control register update	1Dh
CBW	Chroma video bandwidth	02h
CE[2:0]	TV-Out contrast enhancement	08h
CFF[1:0]	Chroma flicker filter setting	01h
CFRB	Chroma sub-carrier free run (bar) control	02h
CIV[25:0]	Calculated sub-carrier increment value read out	10h-13h
CIVC[1:0]	Calculated sub-carrier control (hysteresis)	10h
CIVEN	Calculated sub-carrier enable (was called ACIV)	10h
CVBW	CVBS DAC receives black&white (S-Video) signal	02h
DVS	Defeat External Vsync	47h
FSCI[32:0]	Sub-carrier generation increment value (when CIVEN=0)	0Ch-0Fh
HP[8:0]	TV-Out horizontal position control	05h, 03h
IR[2:0]	Input data resolution (when used for TV-Out)	00h
M/S*	TV-Out PLL reference input control	1Ch
M[8:0]	TV-Out PLL M divider	0Ah, 09h
MEM[2:0]	Memory sense amp reference adjust	09h
N[9:0]	TV-Out PLL N divider	0Bh, 09h
PALN	Select PAL-N when in a CIV mode	10h
PEDL[7:0]	Pedestal level register	4Fh
PEDLEN	Pedestal Enable	23h
PLLCAP	TV-Out PLL Capacitor Control	09h
PLLCPI	TV-Out PLL Charge Pump control settings	09h
SAV[8:0]	Horizontal start of active video	04h, 03h
SR[2:0]	TV-Out scaling ratio	00h
TE[2:0]	Text enhancement	03h
VBID	Vertical blanking interval defeat	02h
VOF[1:0]	TV-Out video format (s-video & composite, YPrPb or RGB)	01h
VOS[1:0]	TV-Out video standard	00h
VP[8:0]	TV-Out vertical position control	06h, 03h
YCV[1:0]	Composite video luma bandwidth	02h
YFFH[1:0]	Luma text enhancement flicker filter setting	01h
YFFL[1:0]	Luma flicker filter setting (incorporates old FLFF control bit)	01h
YSV[1:0]	S-Video luma bandwidth	02h

Table 17: Non-Macrovision Serial Port Register Map

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h	VOF1	VOF0	CFF1	CFF0	YFFH1	YFFH0	YFFL1	YFFL0
02h	VBID	CFRB	CVBW	CBW	YSV1	YSV0	YCV1	YCV0
)3h	PTSEL1	PTSEL0	SAV8	HP8	VP8	TE2	TE1	TE0
)4h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
)5h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BLO
08h	1 22.	BEG	1 220	122.	220	CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
OCh	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
ODh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
OEh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
)Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h	STFDEN1	STFDEN0	CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22		CIV24	CIVC1	CIV18	CIV17	CIVEN CIV16
12h	CIV25 CIV15	CIV22 CIV14	CIV21 CIV13	CIV20	CIV19 CIV11	CIV18	CIV1/	CIV16
13h	CIV15	CIV14 CIV6	CIV13	CIV12 CIV4	CIV11	CIV10	CIV9 CIV1	CIV8 CIV0
14h	BGBST	CIVU	CIVJ	CIV4	CIVS	CLKDETD	CIVI	CIVU
14n 1Ch	1 Caua	IBS2	MCP2	XCM2	M/S*	MCP1	PCM	XCM1
		BLKEN	WICF2	ACIVIZ			X1CMD1	
l Dh	COENDI	GOENB0	CDIOL 1	CDIOLO	X1CMD3	X1CMD2	XICMDI	X1CMD0
lEh	GOENB1		GPIOL1	GPIOL0	HODEN	IDE12	POUTE	POUTP
l Fh	IBS1	DES	SYOTV	VSPTV	HSPTV	IDF12	IDF11	IDF10
20h	********	XOSC2	TDTIA	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0	IDF13	SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h				BCOEN	BCOP	BCO2	BCO1	BCO0
23h								PEDLEN
47h	DVS							
48h			TVPLLR	ResetIB	ResetDB		TSTP1	TSTP0
49h			TV	DACPD3	DACPD2	DACPD1	DACPD0	TVPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
4Fh	PEDL7	PEDL6	PEDL5	PEDL4	PEDL3	PEDL2	PEDL1	PEDL0
53h	X2CMD3	X2CMD2	X2CMD1	X2CMD0	IDF23	IDF22	IDF21	IDF20
5Ch	C5GP2	C5GP1	C5GP0	PSR				
60h	STFDS1	STFDS0						
63h		LVDSPD						
64h			LVDS24	LVDSDC	LDD	LDM2D	LEOSWP	
65h	C5GP5	C5GP4	C5GP3		LA6RL		LCNTLE	LCNTLF
66h		SYNCST	BKLEN	LPLEN	LPFORC	LPLOCK	LSYNCEN	PANEN
67h	TPON7	TPON6	TPON5	TPON4	TPON3	TPON2	TPON1	TPON0
68h	TPON8	TPBLE6	TPBLE5	TPBLE4	TPBLE3	TPBLE2	TPBLE1	TPBLE0
69h	TPOFF8	TPBLD6	TPBLD5	TPBLD4	TPBLD3	TPBLD2	TPBLD1	TPBLD0
6Ah	TPOFF7	TPOFF6	TPOFF5	TPOFF4	TPOFF3	TPOFF2	TPOFF1	TPOFF0
6Bh	C4GP5	C4GP4	TPPWD5	TPPWD4	TPPWD3	TPPWD2	TPPWD1	TPPWD0
5Ch	C4GP3	C4GP2	GPIODR5	GPIODR4	GPIODR3	GPIODR2	GPIODR1	GPIODR0
5Dh	C4GP1	C4GP0	C3GP5	C3GP4	GPIOL5	GPIOL4	GPIOL3	GPIOL2
5Eh	C3GP3	C3GP2	C3GP1	C3GP0	GOENB5	GOENB4	GOENB3	GOENB2
71h	0.501.5	0.3012	LPFFD1	LPFFD0	LPFBD3	LPFBD2	LPFBD1	LPFBD0
72h	+	+	LPPSD1	LPPSD0	LPVCO3	LPVCO2	LPVCO1	LPVCO0
73h	+	DAS1	DAS0	LDEN1	LPVCO3	LPCP2	LPCP1	LPCP0
	LODP	LODPE	L2ODA2	L2ODA1	L2ODA0	L1ODA2	L10DA1	L1ODA0
74h		LODPE	LZODAZ	L20DA1	L2ODA0	LIODAZ	LIUDAI	LIODAU
75h	LODST	I DI E2	I DI C1	I DI CO	I DDDA	I DDDD	I ODDDD1	LODDDDD
76h 78h	FRSTB	LPLF2	LPLF1	LPLF0	LPPDN	LPPRB	LODPDB1	LODPDB0
/ X D	1	LPLF4	LPLF3	LPPD4	LPPD3	LPPD2	LPPD1	LPPD0

3.3 Non-Macrovision Control Registers Description

Display Mode Register

Symbol:
Address:

Bits: 8

 \mathbf{DM}

00h

BIT:	7	6	5	4	3	2	1	0
SYMBOL :	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAUL	0	1	1	0	1	0	1	0

Register DM provides programmable control of the CH7019 VGA to TV display mode, including input resolution (IR[2:0]), video output standard (VOS[1:0]), and scaling ratio (SR[2:0]). The mode of operation is determined according to Table 18 below. Entries in which the output standard is shown as PAL, PAL-B,D,G,H,I,N, N_C can be supported through proper selection of the chroma sub-carrier. Entries in which the output standard is shown as NTSC, NTSC-M,J and PAL-M can be supported through proper selection of VOS[1:0] and chroma sub-carrier.

Table 18: Display Modes

Mode	IR[2:0]	VOS [1:0]	SR[2:0]	Input Data Format (Active Video)	Total Pixels/Line x Total Lines/Frame	Output Standard [TV Standard]	Scaling	Percent Overscan	Pixel Clock (MHz)
0	000	00	000	512x384	840x500	PAL	5/4	-17	21.000000
1	000	00	001	512x384	840x625	PAL	1/1	-33	26.250000
2	000	01	000	512x384	800x420	NTSC	5/4	0	20.139860
3	000	01	001	512x384	784x525	NTSC	1/1	-20	24.671329
4	001	00	000	720x400	1125x500	PAL	5/4	-13	28.125000
5	001	00	001	720x400	1152x625	PAL	1/1	-30	36.000000
6	001	01	000	720x400	945x420	NTSC	5/4	+4	23.790210
7	001	01	001	720x400	936x525	NTSC	1/1	-16	29.454545
8	010	00	000	640x400	1000x500	PAL	5/4	-13	25.000000
9	010	00	001	640x400	1008x625	PAL	1/1	-30	31.500000
10	010	01	000	640x400	840x420	NTSC	5/4	+4	21.146854
11	010	01	001	640x400	832x525	NTSC	1/1	-17	26.181819
12	010	01	010	640x400	840x600	NTSC	7/8	-27	30.209791
13	011	00	000	640x480	840x500	PAL	5/4	+4	21.000000
14	011	00	001	640x480	840x625	PAL	1/1	-17	26.250000
15	011	00	011	640x480	840x750	PAL	5/6	-30	31.500000
16	011	01	001	640x480	784x525	NTSC	1/1	0	24.671329
17	011	01	010	640x480	784x600	NTSC	7/8	-13	28.195805
18	011	01	011	640x480	800x630	NTSC	5/6	-18	30.209790
19	100	01	001	720x480	882x525	NTSC	1/1	0	27.755245
20	100	01	010	720x480	882x600	NTSC	7/8	-13	31.720280
21	100	01	011	720x480	900x630	NTSC	5/6	-18	33.986015
22	101	00	001	720x576	882x625	PAL	1/1	0	27.562500
23	101	00	011	720x576	900x750	PAL	5/6	-18	33.750000
24	101	00	100	720x576	900x875	PAL	5/7	-30	39.375000
25	110	00	001	800x600	944x625	PAL	1/1	+4	29.500000
26	110	00	011	800x600	960x750	PAL	5/6	-14	36.000000
27	110	00	100	800x600	960x875	PAL	5/7	-27	42.000000
28	110	01	110	800x600	1040x700	NTSC	3/4	-6	43.636364
29	110	01	111	800x600	1064x750	NTSC	7/10	-14	47.832169
30	110	01	101	800x600	1040x840	NTSC	5/8	-22	52.363637

31	111	00	100	1024x768	1400x875	PAL	5/7	-4	61.250000
32	111	00	101	1024x768	1400x1000	PAL	5/8	-16	70.000000
33	111	00	110	1024x768	1400x1125	PAL	5/9	-25	78.750000
34	111	01	101	1024x768	1160x840	NTSC	5/8	0	58.405595
35	111	01	110	1024x768	1160x945	NTSC	5/9	-10	65.706295
36	111	01	111	1024x768	1168x1050	NTSC	1/2	-20	73.510491
37 ¹	101	00	000	720x576	864x625	PAL	1/1	0	13.500000
38 ¹	100	01	000	720x480	858x525	NTSC	1/1	0	13.500000
39	001	01	111	720x400	900x441	NTSC	25/21	-1	23.790210
40	010	01	111	640x400	800x441	NTSC	25/21	-1	21.146854
41	011	00	111	640x480	800x525	PAL	25/21	-1	21.000000
42	100	01	101	720x480	880x525	NTSC	1/1	0	27.692308
43	100	01	110	720x480	784x600	NTSC	7/8	-13	28.195805
44	100	01	111	720x480	880x630	NTSC	5/6	-18	33.230770
45	101	00	101	720x576	888x625	PAL	1/1	0	27.750000
46	101	00	110	720x576	880x750	PAL	5/6	-18	33.000000
47	101	00	111	720x576	880x875	PAL	5/7	-30	38.500000

¹ These DVD modes operate with interlaced input. Scan conversion and flicker filter are bypassed.

Table 19: Video Output Standard Selection

VOS[1:0]	00	01	10	11
Output Format	PAL	NTSC	PAL-M	NTSC-J

Flicker Filter Register

Symbol: FF Address: 01h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	VOF1	VOF0	CFF1	CFF0	YFFH1	YFFH0	YFFL1	YFFL0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	1	1	0	0	1	1	1

YFFL[1:0] (bits 1-0) of register FF control the filter used in the scaling and flicker reduction block applied to the non-text portion (low frequency) of the luminance signal as shown in Table 20 below.

YFFH[1:0] (bits 3-2) of register FF control the filter used in the scaling and flicker reduction block applied to the text portion (high frequency) of the luminance signal as shown in Table 20 below.

Table 20: Luma Flicker Filter Control

	YFFH	and YFFL Flick	er Filter Settin	gs (lines)				
Scaling Ratio	00 01 10 11							
5/4	2	3	3	3				
1/1, 7/8, 5/6, 3/4, 5/7, 7/10	2	3	4	5				
5/8	2	3	4	6				
25/21	2	3	6	6				
5/9	3	4	5	6				
1/2	3	5	5	7				

CFF[1:0] (bits 5-4) of register FF control the filter used in the scaling and flicker reduction block applied to the chrominance signal as shown in Table 21 below. A setting of '11' applies a dot crawl reduction filter which can reduce the 'hanging dots' effect of an NTSC composite video signal when displayed on a TV with a comb filter.

Table 21: Chroma Flicker Filter Control

	C	CFF Flicker Filter Settings (lines)						
Scaling Ratio	00	01	10	11				
5/4	2	3	3	3				
1/1, 7/8, 5/6, 3/4, 5/7, 7/10	2	3	4	5				
5/8	2	3	4	5				
25/21	2	3	4	6				
5/9	3	4	5	6				
1/2	3	5	5	7				

VOF[1:0] (bits 7-6) of register FF control the video output format. Must be set per the table below:

Table 22: TV Output Configurations

VOF1	VOF0	TV Output Configuration
0	0	YCrCb
0	1	Composite, S-Video
1	0	YPrPb (480I component HDTV set)
1	1	SCART + Composite

For the TV out DAC by-pass for RGB out, refer to DACBP (bit0 of Register 21h). Refer to Table 12 in section 2.3.5 for TV Output DAC configuration.

Video Bandwidth Register

Symbol: VBW Address: 02h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	VBID	CFRB	CVBW	CBW	YSV1	YSV0	YCV1	YCV0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	1	1	1	1	0

YCV[1:0] (bits 1-0) of register VBW control the filter used to limit the bandwidth of the luma signal in the CVBS output signal. A table of –3dB bandwidth values is given in Table 23 below.

YSV[1:0] (bits 3-2) of register VBW control the filter used to limit the bandwidth of the luma signal in the S-Video output signal. A table of –3dB bandwidth values is given in Table 23 below.

CBW (bit 4) of register VBW controls the filter used to limit the bandwidth of the chroma signal in the CVBS and S-Video output signals. A table of –3dB bandwidth values is given in Table 23 below.

Table 23: Video Bandwidth

Mode	C	BW		YSV[1:0] an	d YCV[1:0]	
	0	1	00	01	10	11
0	0.620	0.856	2.300	2.690	3.540	5.880
1	0.775	1.070	2.880	3.360	4.430	7.350
2	0.529	0.730	1.960	2.290	3.020	5.010
3	0.648	0.894	2.410	2.810	3.700	6.140
4	0.831	1.150	3.080	3.600	4.750	7.870
5	1.060	1.470	3.950	4.610	6.080	10.100
6	0.703	0.970	2.610	3.040	4.010	6.660
7	0.870	1.200	3.230	3.770	4.970	8.240
8	0.738	1.020	2.740	3.200	4.220	7.000
9	0.930	1.280	3.460	4.030	5.320	8.820
10	0.624	0.862	2.320	2.710	3.570	5.920
11	0.773	1.070	2.870	3.350	4.420	7.330
12	0.892	1.230	3.310	3.870	5.100	8.450
13	0.620	0.856	2.300	2.690	3.540	5.880
14	0.775	1.070	2.880	3.360	4.430	7.350
15	0.930	1.280	3.460	4.030	5.320	8.820
16	0.648	0.894	2.410	2.810	3.700	6.140
17	0.740	1.020	2.750	3.210	4.230	7.010
18	0.793	1.100	2.950	3.440	4.530	7.510
19	0.729	1.010	2.710	3.160	4.160	6.900
20	0.833	1.150	3.090	3.610	4.760	7.890
21	0.892	1.230	3.310	3.870	5.100	8.450
22	0.724	0.999	2.690	3.140	4.130	6.860
23	0.886	1.220	3.290	3.840	5.060	8.400
24	1.030	1.430	3.840	4.480	5.910	9.790
25	0.774	1.070	2.880	3.360	4.430	7.340
26	0.945	1.310	3.510	4.100	5.400	8.960
27	1.100	1.520	4.100	4.780	6.300	10.400
28	0.859	1.190	3.190	3.720	4.910	8.140
29	0.942	1.300	3.500	4.080	5.380	8.920
30	1.030	1.420	3.830	4.470	5.890	9.770
31	0.804	1.110	2.990	3.480	4.590	7.620
32	0.919	1.270	3.410	3.980	5.250	8.710
33	1.030	1.430	3.840	4.480	5.910	9.790
34	0.767	1.060	2.850	3.320	4.380	7.260
35	0.862	1.190	3.200	3.740	4.930	8.170
36	0.965	1.330	3.580	4.180	5.510	9.140
37	0.709	0.979	2.630	3.070	4.050	6.720
38	0.466	0.643	1.730	2.020	2.660	4.410
39	0.703	0.970	2.610	3.040	4.010	6.660
40	0.624	0.862	2.320	2.710	3.570	5.920
41	0.620	0.856	2.300	2.690	3.540	5.880
42	0.727	1.003	2.696	3.153	4.149	6.892
43	0.833	1.150	3.090	3.610	4.760	7.890
44	0.892	1.231	3.309	3.870	5.093	8.459
45	0.728	1.005	2.702	3.160	4.158	6.907
46	0.866	1.196	3.213	3.757	4.945	8.213
47	1.010	1.395	3.748	4.384	5.769	9.582

CVBW (bit 5) of register VBW controls the chroma component of the CVBS signal. CVBW = '0' disables the chroma signal being added to the CVBS signal, CVBW = '1' enables the chroma signal being added to the CVBS signal.

CFRB (bit 6) of register VBW controls whether the chroma sub-carrier free-runs, or is locked to the video signal. A '1' causes the sub-carrier to lock to the TV vertical rate, and should be used when the CIVEN bit (register 10h) is set to '0'. A '0' causes the sub-carrier to free-run, and should be used when the CIVEN bit is set to '1'.

VBID (bit 7) of register VBW controls the vertical blanking interval defeat function. A '1' in this register location forces the flicker filter to minimum filtering during the vertical blanking interval. A '0' in this location causes the flicker filter to remain at the same setting inside and outside of the vertical blanking interval.

Text Enhancement Register

Symbol: TE Address: 03h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	PTSEL1	PTSEL0	SAV8	HP8	VP8	TE2	TE1	TE0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	0	0	1	0	1

TE[2:0] (bits 2-0) of register TE control the text enhancement circuitry within the CH7019. A value of '000' minimizes the enhancement feature, while a value of '111' maximizes the enhancement.

SAV8, HP8 and VP8 (bits 5-3) of register TE contain the MSB values for the start of active video, horizontal position and vertical position controls. They are described in detail in the SAV (address 04h), HP (address 05h) and VP (address 06h) register descriptions.

PTSEL[1:0] (bits 7-6) of register TE control the data path from D1[11:0] and D2[11:0] inputs to internal TV and LVDS blocks. These bits allow one to swap the input data paths to internal TV or LVDS blocks. The default setting which routes D1 input to TV block and D2 input to LVDS block is recommended.

PTSEL1	PTSEL0	Description
0	0	D1 input is routed to both internal TV and LVDS block
0	1	D1 input is routed to LVDS and D2 input is routed to TV block
1	0	D1 input is routed to TV and D2 input is routed to LVDS block
1	1	D2 input is routed to both internal TV and LVDS block

Start of Active Video Register

Symbol: SAV Address: 04h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
TYPE:	R/W							
DEFAULT:	0	1	0	1	0	0	0	0

Register SAV controls the delay, in pixel increments, from leading edge of horizontal sync to start of active video. The entire bit field SAV[8:0] is comprised of this register SAV[7:0], plus SAV[8] contained in the Text Enhancement register (03h, bit 5). This is decoded as a whole number of pixels, which can be set anywhere between 0 and 511 pixels. Therefore, in any 2X clock mode the number of 2X clocks from the leading edge of Hsync to the first active data must be a multiple of two clocks.

Horizontal Position Register

Symbol: HP Address: 05h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
TYPE:	R/W							
DEFAULT:	0	1	0	1	0	0	0	0

Register HP is used to shift the displayed TV image in a horizontal direction (left or right) to achieve a horizontally centered image on screen. The entire bit field, HP[8:0], is comprised of this register HP[7:0] plus HP[8] contained in the Text Enhancement register (03h, bit 4). Increasing values move the displayed image position right, and decreasing values move the image position left.

Vertical Position Register

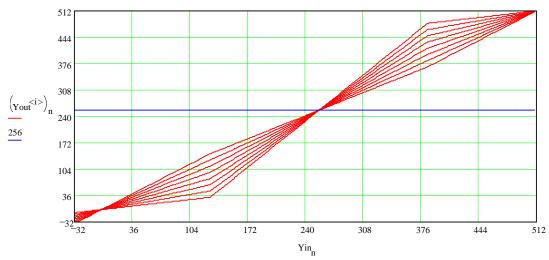
Symbol: VP Address: 06h

Bits: 8 BIT: 7 3 5 4 2 1 6 0 SYMBOL: VP7 VP4 VP3 VP2 VP1 VP6 VP5 VP0 TYPE: R/W R/W R/W R/W R/W R/W R/W R/W **DEFAULT:** 0 0 0 0 0 0 0 0

Register VP is used to shift the displayed TV image in a vertical direction (up or down) to achieve a vertically centered image on screen. The entire bit field, VP[8:0], is comprised of this register VP[7:0] plus VP[8] contained in the Text Enhancement register (03h, bit 3). The value represents the TV line number (relative to the VGA vertical sync) used to initiate the generation and insertion of the TV vertical interval (i.e. the first sequence of equalizing pulses). Increasing values delay the output of the TV vertical sync, causing the image position to move up on the TV screen. Decreasing values, therefore, move the image position DOWN. Each increment moves the image position by one TV line (approximately 2 input lines). The maximum value that should be programmed into VP[8:0] is the number of TV lines per field minus one half (262 or 312). When panning the image up, the number should be increased until (TVLPF-1/2) is reached, the next step should be to reset the register to zero. When panning the image down the screen, decrement the VP[8:0] value until the value zero is reached. The next step should set the register to TVLPF-1/2, and then decrement for further changes.

Symbol: BL Address: 07h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
TYPE:	R/W							
DEFAULT:	1	0	0	0	0	0	1	1


Register BL controls the black level. The luminance data is added to this black level, which must be set between 65 and 170. When the input data format is 0 through 3 or 5 the default values are 131 for NTSC and PAL-M with DACG[1:0] (register 21h) = '00' and 109 for PAL with DACG[1:0] = '01' and 102 for NTSC-J with DACG[1:0] = '01'. When the input data format is 4, 6 or 7 the default values are 113 for NTSC and PAL-M with DACG[1:0] = '10', 94 for PAL with DACG[1:0] = '11' and 88 for NTSC-J with DACG[1:0] = '11'. See also the description for the BLKEN bit (register 1Dh, bit 6).

Contrast Enhancement Register

Symbol: CE Address: 08h Bits: 3

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	Reserved	Reserved	Reserved	CE2	CE1	CE0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	1	1

CE[2:0] (bits 2-0) of register CE control the contrast enhancement feature of the CH7019, according to Figure 20 below. A setting of '0' results in reduced contrast, a setting of '1' leaves the image contrast unchanged, and values beyond '1' result in increased contrast. [Note: The straight line denotes Yout = Yin and therefore no enhancement.]

Figure 20: Contrast Enhancement of the CH7019

TV PLL Control Register

Symbol: TPC Address: 09h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	0	0	0	0	0

PLLCAP (bit 0) of register TPC controls the TV PLL loop filter capacitor. A recommended listing of PLLCAP settings versus mode is given in Table 24 below.

Table 24: PLLCAP setting vs. Display Mode

Mode	PLLCAP	Mode	PLLCAP
	Value		Value
0	1	24	1
1	1	25	0
2	0	26	1
3	0	27	1
4	1	28	1
5	1	29	0
6	0	30	1
7	1	31	1
8	0	32	1
9	1	33	1
10	0	34	0
11	1	35	0
12	0	36	0
13	1	37	1
14	1	38	1
15	1	39	0
16	0	40	0
17	0	41	1
18	0	42	0
19	0	43	0
20	0	44	0
21	0	45	0
22	1	46	0
23	1	47	1

PLLCPI (bit 1) of register TPC should be left at the default value.

M8 and N[9:8] (bits 4-2) of register TPC contain the MSB values for the TV PLL divider ratio's. These controls are described in detail in the PLLM (address 0Ah) and PLLN (address 0Bh) register descriptions.

MEM[0] (bit 5) of register TPC controls the input latch bias current level. The default value is recommended.

MEM[2:1] (bits 7-6) of register TPC control the memory sense amp reference level. The default value is recommended.

TV PLL M Value Register

Symbol: PLLM Address: 0Ah Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	M7	M6	M5	M4	M3	M2	M1	M0
TYPE:	R/W							
DEFAULT:	0	0	1	1	1	1	1	1

Register PLLM controls the division factor applied to the 14.31818MHz frequency reference clock before it is input to the TV PLL phase detector when the CH7019 is operating in clock master mode. The entire bit field, M[8:0], is comprised of this register M[7:0] plus M[8] contained in the TV PLL Control register (09h, bit2). In slave mode, an external pixel clock is used instead of the 14.31818MHz frequency reference, but the division factor is also controlled by M[8:0]. In slave mode, the value of 'M' is internally set to 1. A table of values (Table 25) versus display mode is given following the PLLN register description.

TV PLL N Value Register

Symbol: PLLN Address: 0Bh

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	N7	N6	N5	N4	N3	N2	N1	N0
TYPE:	R/W							
DEFAULT:	0	1	1	1	1	1	1	0

Register PLLN controls the division factor applied to the VCO output before being applied to the PLL phase detector, when the CH7019 is operating in clock master mode. The entire bit field, N[9:0], is comprised of this register N[7:0] plus N[9:8] contained in the TV PLL Control register (09h, bits 3 and 4). In slave mode, the value of 'N' is internally set to 1. The pixel clock generated in clock master modes is calculated according to the equation Fpixel = Fref * [(N+2)/(M+2)]. When using a 14.31818MHz frequency reference, the required M and N values for each mode are shown in Table 25 below:

Table 25: TV PLL M and N values vs. Display Mode

Mode	VGA Resolution,	N	N	M	M
	TV Standard,	10-bits	10-bits	9-bits	9-bits
	Scaling Ratio	(dec)	(hex)	(dec)	(hex)
0	512x384, PAL, 5:4	20	0x14	13	0x0D
1	512x384, PAL, 1:1	9	0x09	4	0x04
2	512x384, NTSC, 5:4	126	0x7E	89	0x59
3	512x384, NTSC, 1:1	110	0x6E	63	0x3F
4	720x400, PAL, 5:4	53	0x35	26	0x1A
5	720x400, PAL, 1:1	86	0x56	33	0x21
6	720x400, NTSC, 5:4	106	0x6A	63	0x3F
7	720x400, NTSC, 1:1	70	0x46	33	0x21
8	640x400, PAL, 5:4	108	0x6C	61	0x3D

Mode	VGA Resolution,	N	N	M	M
1,1000	TV Standard.	10-bits	10-bits	9-bits	9-bits
	Scaling Ratio	(dec)	(hex)	(dec)	(hex)
9	640x400, PAL, 1:1	9	0x09	3	0x03
10	640x400, NTSC, 5:4	94	0x5E	63	0x3F
11	640x400, NTSC, 1:1	62	0x40	33	0x21
12	640x400, NTSC, 7:8	190	0xBE	89	0x59
13	640x480, PAL, 5:4	20	0x14	13	0x0D
14	640x480, PAL, 1:1	9	0x09	4	0x04
15	640x480, PAL, 5:6	9	0x09	3	0x03
16	640x480, NTSC, 1:1	110	0x6E	63	0x3F
17	640x480, NTSC, 7:8	126	0x7E	63	0x3F
18	640x480, NTSC, 5:6	190	0xBE	89	0x59
19	720x480, NTSC, 1:1	124	0x7C	63	0x3F
20	720x480, NTSC, 7:8	142	0x8E	63	0x3F
21	720x480, NTSC, 5:6	214	0xD6	89	0x59
22	720x480, PAL, 1:1	75	0x4B	38	0x26
23	720x480, PAL, 5:6	31	0x1F	12	0x0C
24	720x480, PAL, 5:7	9	0x09	2	0x02
25	800x600, PAL, 1:1	647	0x287	313	0x139
26	800x600, PAL, 5:6	86	0x56	33	0x21
27	800x600, PAL, 5:7	42	0x2A	13	0x0D
28	800x600, NTSC, 3:4	62	0x3E	19	0x13
29	800x600, NTSC, 7:10	302	0x12E	89	0x59
30	800x600, NTSC, 5/8	126	0x7E	33	0x21
31	1024x768, PAL, 5:7	75	0x4B	16	0x10
32	1024x768, PAL, 5:8	42	0x2A	7	0x07
33	1024x768, PAL, 5:9	20	0x14	2	0x02
34	1024x768, NTSC, 5:8	565	0x235	137	0x89
35	1024x768, NTSC, 5:9	333	0x14D	71	0x47
36	1024x768, NTSC, 1:2	917	0x395	177	0xB1
37	720x576, PAL, 1:1	31	0x1F	33	0x21
38	720x480, NTSC, 1:1	31	0x1F	33	0x21
39	720x480, NTSC, 1:1	106	0x6A	63	0x3F
40	640x400, NTSC, 25:21	94	0x5E	63	0x3F
41	640x480, PAL,25:21	20	0x14	13	0x0D
42	720x480, NTSC, 1:1	174	0xAE	89	0x59
43	720x480, NTSC, 7:8	126	0x7E	63	0x3F
44	720x480, NTSC, 5:6	309	0x135	132	0x84
45	720x576, PAL, 1:1	405	0x195	208	0xD0
46	720x576, PAL, 5:6	240	0xF0	103	0x67
47	720x576, PAL, 5:7	119	0x77	43	0x2B

Sub-carrier Value Register

Symbol: FSCI
Address: 0Ch -0Fh
Bits: 8 each

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	FSCI#							
TYPE:	R/W							
DEFAULT:								

Registers FSCI contain a 32-bit value which is used as an increment value for the ROM address generation circuitry when CIVEN=0. The bit locations are specified as follows:

Register	Contents
0Ch	FSCI[31:24]
0Dh	FSCI[23:16]
0Eh	FSCI[15:8]
0Fh	FSCI[7:0]

When the CH7019 is used in the clock master mode, the tables below should be used to set the FSCI registers. When using these values, the CIVEN bit in register 10h should be set to '0', and the CFRB bit in register 02h should be set to '1'.

Table 26: FSCI Values (525-Line TV-Out Modes)

Mode	NTSC	NTSC	NTSC	NTSC	PAL-M	PAL-M
	"Normal Dot	"Normal Dot	"No Dot	"No Dot	"Normal Dot	"Normal Dot
	Crawl"	Crawl"	Crawl"	Crawl"	Crawl"	Crawl"
	(dec)	(hex)	(dec)	(hex)	(dec)	(hex)
2	763,363,328	0x2D800000	763,366,524	0x2D800C7C	762,524,467	0x2D733333
3	623,153,737	0x25249249	623,156,346	0x25249C7A	622,468,953	0x251A1F59
6	574,429,782	0x223D1A56	574,432,187	0x223D23BB	573,798,541	0x2233788D
7	463,962,517	0x1BA78195	463,964,459	0x1BA7892B	463,452,668	0x1B9FB9FC
10	646,233,505	0x2684BDA1	646,236,211	0x2684C833	645,523,358	0x2679E79E
11	521,957,831	0x1F1C71C7	521,960,019	0x1F1C7A53	521,384,251	0x1F13B13B
12	452,363,454	0x1AF684BE	452,365,347	0x1AF68C23	451,866,351	0x1AEEEEEF
16	623,153,737	0x25249249	623,156,346	0x25249C7A	622,468,953	0x251A1F59
17	545,259,520	0x20800000	545,261,803	0x208008EB	544,660,334	0x2076DB6E
18	508,908,885	0x1E555555	508,911,016	0x1E555DA8	508,349,645	0x1E4CCCCD
19	553,914,433	0x21041041	553,916,752	0x21041950	553,305,736	0x20FAC688
20	484,675,129	0x1CE38E39	484,677,158	0x1CE39626	484,142,519	0x1CDB6DB7
21	452,363,454	0x1AF684BE	452,365,347	0x1AF68C23	451,866,351	0x1AEEEEEF
28	469,762,048	0x1C000000	469,764,015	0x1C0007AF	469,245,826	0x1BF81F82
29	428,554,851	0x198B3A63	428,556,645	0x198B4165	428,083,911	0x19840AC7
30	391,468,373	0x17555555	391,470,012	0x17555BBC	391,038,188	0x174EC4EC
34	526,457,468	0x1F611A7C	526,459,671	0x1F612317	525,878,943	0x1F58469F
35	467,962,193	0x1BE48951	467,964,152	0x1BE490F8	467,447,949	0x1BDCB08D
36	418,281,276	0x18EE773C	418,283,027	0x18EE7E13	417,821,626	0x18E773BA
38	569,408,543	0x21F07C1F	569,410,927	0x21F0856F	568,782,819	0x21E6EFE3
39	574,429,782	0x223D1A56	574,432,187	0x223D23BB	573,798,541	0x2233788D
40	646,233,505	0x2684BDA1	646,236,211	0x2684C833	645,523,358	0x2679E79E
42	553,173,329	0x20F8C151	555,175,654	0x21174EE6	554,563,249	0x210DF6B1
43	484,675,129	0x1CE38E39	484,677,158	0x1CE39626	484,142,519	0x1CDB6DB7
44	462,644,441	0x1B9364D9	462,646,378	0x1B936C6A	462,136,041	0x1B8BA2E9

Table 27: FSCI Values (625-Line TV-Out Modes)

MODE	PAL	PAL	PAL-N	PAL-N
	"Normal Dot	"Normal Dot	"Normal Dot	"Normal Dot
	Crawl"	Crawl"(hex)	Crawl"	Crawl"(hex)
0	806,021,060	0x300AE7C4	651,209,077	0x26D0A975
1	644,816,848	0x266F1FD0	520,967,262	0x1F0D545E
4	601,829,058	0x23DF2EC2	486,236,111	0x1CFB5FCF
5	470,178,951	0x1C065C87	379,871,962	0x16A462DA
8	677,057,690	0x285B149A	547,015,625	0x209ACBC9
9	537,347,373	0x2007452D	434,139,385	0x19E070F9
13	806,021,060	0x300AE7C4	651,209,077	0x26D0A975
14	644,816,848	0x266F1FD0	520,967,262	0x1F0D545E
15	537,347,373	0x2007452D	434,139,385	0x19E070F9
22	690,875,194	0x292DEB3A	558,179,209	0x21452389
23	564,214,742	0x21A13BD6	455,846,354	0x1B2BF022
24	483,612,636	0x1CD357DC	390,725,446	0x1749FF46
25	645,499,916	0x26798C0C	521,519,134	0x1F15C01E
26	528,951,320	0x1F872818	427,355,957	0x1978EF35
27	453,386,846	0x1B06225E	366,305,106	0x15D55F52
31	621,787,675	0x250FBA1B	502,361,288	0x1DF16CCB
32	544,064,215	0x206DC2D7	439,566,127	0x1A333F2F
33	483,612,636	0x1CD357DC	390,725,446	0x1749FF46
37	705,268,427	0x2A098ACB	569,807,942	0x21F69446
41	806,021,060	0x300AE7C4	651,209,077	0x26D0A975
45	686,207,118	0x28E6B08E	554,407,728	0x210B9730
46	577,037,804	0x2264E5EC	466,206,498	0x1BC9BF22
47	494,603,832	0x1D7B0E38	399,605,570	0x17D17F42

CIV Control Register

Symbol: CIVC Address: 10h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	STFDEN1	STFDEN0	CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
TYPE:	R/W	R/W	R	R	R/W	R/W	R/W	R/W
DEFAULT:	0	0	X	X	0	0	0	1

CIVEN (bit 0) of register CIVC controls whether the FSCI value is used to set the sub-carrier frequency, or the automatically calculated (CIV) value. When the CIVEN value is '1', the number calculated and present at the CIV registers will automatically be used as the increment value for sub-carrier generation. Whenever this bit is set to '1', the CFRB bit should be set to '0'.

PALN (bit 1) of register CIVC forces the CIV algorithm to generate the PAL-N (Argentina) sub-carrier frequency when it is set to '1'. When this bit is set to '0', the VOS[1:0] value is used by the CIV algorithm to determine which sub-carrier frequency to generate.

CIVC[1:0] (bits 3-2) of register CIVC control the hysteresis circuit which is used to calculate the CIV value. The default value should be used.

CIV[25:24] (bits 5-4) of register CIVC contain the MSB values for the calculated increment value (CIV) readout. This is described in detail in the CIV (address 11h-13h) register description.

STFDEN0 (bit6) of register CIVC enables the FLD1 output on pin 62.

 $STFDEN0 = 0 \Rightarrow FLD1$ pin high impedance

= 1 => Field output depending on the value of the STFDS0 bit in register 60h, bit 6.

STFDEN1 (bit6) of register CIVC enables the FLD2 output on pin 105.

 $STFDEN1 = 0 \implies FLD2 pin high impedance$

= 1 => Field output depending on the value of the STFDS1 bit in register 60h, bit 7.

Calculated Increment Value Register

Symbol: CIV
Address: 11h –13h
Bits: 8 each

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	CIV#							
TYPE:	R	R	R	R	R	R	R	R
DEFAULT:	X	X	X	X	X	X	X	X

Registers CIV contain the value that was calculated by the CH7019 as the sub-carrier increment value. The entire bit field, CIV[25:0], is comprised of these three registers CIV[23:0] plus CIV[25:24] contained in the CIV Control register (10h, bits 4 and 5). This value is used when the CIVEN bit is set to '1'. The bit locations are specified below.

Register	Contents
10h	CIV[25:24]
11h	CIV[23:16]
12h	CIV[15:8]
13h	CIV[7:0]

Bandgap Boost Register

Symbol: BGB Address: 14h

Bits: 141

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	BGBST	Reserved	Reserved	Reserved	Reserved	CLKDETD	Reserved	Reserved
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

CLKDETD (bit 2) of register BGB controls the XCLK detection circuit. When CLKDETD is 1, the XCLK detection circuit is turned off. When CLKDETD is 0, the XCLK detection circuit is turned on.

BGBST (bit 7) of register CB boost the bandgap voltage which controls the DAC output by 6% when set to 1. This has the effect of boosting the DAC output by about 6%. The recommended value is 1.

Clock Mode Register

Symbol: CM Address: 1Ch Bits: 7

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	IBS2	MCP2	XCM2	M/S*	MCP1	PCM	XCM1
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

XCM1 (bit 0) of register CM signifies the XCLK frequency for the D1 input. A value of '0' is used when XCLK1 is at the pixel frequency (dual edge clocking mode) and a value of '1' is used when XCLK1 is twice the pixel frequency (single edge clocking mode).

PCM (bit 1) of register CM controls the P-Out clock frequency. A value of '0' generates a clock output at the pixel frequency, while a value of '1' generates a clock at twice the pixel frequency.

MCP1 (bit 2) of register CM controls the phase of the XCLK clock input for the D1 input. A value of '1' inverts the XCLK signal at the input of the device. This control is used to select which edge of the XCLK signal to use for latching input data.

M/S* (bit 3) of register CM controls whether the device operates in master or slave clock mode. In master mode (M/S* = '1'), the 14.31818MHz clock is used as a frequency reference in the TV PLL, and the M and N values are used to determine the TV PLL's operating frequency. In slave mode (M/S* = '0') the XCLK input is used as a reference to the TV PLL. The M and N TV PLL divider values are forced to one.

XCM2 (bit 4) of register CM signifies the XCLK frequency for the D2 input. A value of '0' is used when XCLK2 is at the pixel frequency (dual edge clocking mode) and a value of '1' is used when XCLK3 is twice the pixel frequency (single edge clocking mode).

MCP2 (bit 5) of register CM controls the phase of the XCLK clock input for the D2 input. A value of '1' inverts the XCLK signal at the input of the device. This control is used to select which edge of the XCLK signal to use for latching input data.

IBS2 (bit 6) of register CM selects the data and clock input buffer type for the D2 data, this bit has to set to "1" (differential clock and data type).

Input Clock Register

Symbol: IC Address: 1Dh Bits: 5

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	BLKEN	Reserved	Reserved	X1CMD3	X1CMD2	X1CMD1	X1CMD0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	1	0	0	1	0	0	0

X1CMD[3:0] (bits 3-0) of register IC control the delay applied to the XCLK1 signal before latching input data D1[11:0] per the following table. 1 unit is approximately 70 ps worst case.

Table 28: Delay applied to XCLK1 before latching input data D1

X1CMD3	X1CMD2	X1CMD1	X1CMD0	Adjust phase of Clock relative to
				Data
0	0	0	0	0 unit, XCLK1 ahead of Data
0	0	0	1	1 unit, XCLK1 ahead of Data
0	0	1	0	2 unit, XCLK1 ahead of Data
0	0	1	1	3 unit, XCLK1 ahead of Data
0	1	0	0	4 unit, XCLK1 ahead of Data
0	1	0	1	5 unit, XCLK1 ahead of Data
0	1	1	0	6 unit, XCLK1 ahead of Data
0	1	1	1	7 unit, XCLK1 ahead of Data
1	0	0	0	0 unit, XCLK1 behind Data
1	0	0	1	1 unit, XCLK1 behind Data
1	0	1	0	2 unit, XCLK1 behind Data
1	0	1	1	3 unit, XCLK1 behind Data
1	1	0	0	4 unit, XCLK1 behind Data
1	1	0	1	5 unit, XCLK1 behind Data
1	1	1	0	6 unit, XCLK1 behind Data
1	1	1	1	7 unit, XCLK1 behind Data

BLKEN (bit 6) of register IC controls the Black Level control register update during the vertical sync blanking period. A value of '0' disables the Black Level control register update. A value of '1' enables the Black Level control register update.

GPIO Control Register

Symbol: GPIO Address: 1Eh

Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	GOENB1	GOENB0	GPIOL1	GPIOL0	Reserved	Reserved	POUTE	POUTP
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	1	1	0	0	0	0

POUTP (bit 0) of register GPIO controls the polarity of the P-Out signal. A value of '0' does not invert the clock at the output pad.

POUTE (bit 1) of register GPIO enables the P-Out signal. A value of '1' drives the P-Out clock signal out of the P-Out pin. A value of '0' disables the P-Out signal.

GPIOL[1:0] (bits 5-4) of register GPIO define the GPIO Read or Write Data bits [1:0]. The entire bit field is made up of these bits GPIOL[1:0] plus GPIOL[5:2] contained in the GPIO Data register (address 6Dh, bits 3-0). Refer to the description of the GPIOD register (6Dh) for more information.

GOENB[1:0] (bits 7-6) of register GPIO define the GPIO Direction Control bits [1:0]. The entire bit field is made up of these bits GOENB[1:0] plus GOENB[5:2] contained in the GPIO Direction Control register (address 6Eh, bits 3-0). Refer to the description of the GPIODC register (6Eh) for more information.

Input Data Format Register

Symbol: IDF Address: 1Fh Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	IBS1	DES	SYOTV	VSPTV	HSPTV	IDF12	IDF11	IDF10
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

IDF1[2:0] (bits 2-0) of register IDF select the input data format for the D1 input. The entire bit field, IDF1[3:0], is comprised of this register IDF1[2:0] plus IDF3 contained in the DAC Control Register (21h, bit5). See Section 3.2 for a listing of available formats.

HSPTV (bit 3) of register IDF controls the horizontal sync polarity for TV. A value of '0' defines the horizontal sync to be active low, and a value of '1' defines the horizontal sync to be active high.

VSPTV (bit 4) of register IDF controls the vertical sync polarity for TV. A value of '0' defines the vertical sync to be active low, and a value of '1' defines the vertical sync to be active high.

SYOTV (bit 5) of register IDF controls the sync direction for TV. A value of '0' defines sync to be input to the CH7019, and a value of '1' defines sync to be output from the CH7019. The CH7019 can only output sync signals when operating as a VGA to TV encoder, not when operating as an LVDS transmitter.

DES (bit 6) of register IDF signifies when the CH7019 is to decode embedded sync signals present in the input data stream instead of using the H and V pins. This feature is only available for input data formats # 4, 6 or 7. A value of '0' selects the H and V pins to be used as the sync inputs, and a value of '1' selects the embedded sync signal.

IBS1 (bit 7) of register IDF selects the data and clock input buffer type for the D1 data, this bit has to set to "1" (differential clock and data type).

Connection Detect Register

Symbol: CD Address: 20h Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	XOSC2	Reserved	DACT3	DACT2	DACT1	DACT0	SENSE
TYPE:	R/W	R/W	R	R	R	R	R	R/W
DEFAULT:	0	1	0	X	X	X	X	0

DACT[3:0] (bits 4-1) and SENSE (bit 0) of register CD provide a means to sense the connection of a TV to the four DAC outputs. The status bits, DACT[3:0] correspond to the termination of the four DAC outputs. However, the values contained in these status bits ARE NOT VALID until a sensing procedure is performed. Use of this register requires a sequence of events to enable the sensing of outputs, then reading out the applicable status bits. The detection sequence works as follows:

- 1) Set the power management register (address 49h) to enable all DAC's.
- 2) Set the SENSE bit to a 1. This forces a constant output from the DAC's. Note that during SENSE = 1, these 4 analog outputs are at steady state and no TV synchronization pulses are asserted.
- 3) Reset the SENSE bit to 0. This triggers a comparison between the voltage present on these analog outputs and the reference value. During this step, each of the four status bits corresponding to individual DAC outputs will be reset to "0" if they are NOT CONNECTED.
- 4) Read the status bits. The status bits, DACT[3:0] now contain valid information which can be read to determine which outputs are connected to a TV. Again, a "1" indicates a valid connection, a "0" indicates an unconnected output.

XOSC2 (bit 6) of register CD contains the MSB value for the XOSC (crystal oscillator gain control) word which is described in detail in the DC (address 21h) register description.

DAC Control Register

Symbol: DC Address: 21h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	XOSC1	XOSC0	IDF13	SYNC01	SYNCO0	DACG1	DACG0	DACBP
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

DACBP (bit 0) of register DC selects the DAC bypass mode. A value of '1' outputs the incoming data directly at the DAC[3:0] outputs for the VGA-Bypass RGB output. For the other TV output modes such as S-Video, RCA, SCART and 480I HDTV, DACBP bit must be set to 0.

DACG[1:0] (bits 2-1) of register DC control the DAC gain. DACG0 should be set to '0' for NTSC and PAL-M video standards, and '1' for PAL and NTSC-J video standards. DACG1 should be '0' when the input data format is RGB (IDF = 0-3, 5, 8 and 9), and '1' when the input data format is YCrCb (IDF = 4, 6 and 7).

SYNCO[1:0] (bits 4-3) of register DC select the signal to be output from the C/H Sync pin according to Table 29 below.

Table 29: Composite / Horizontal Sync Output

SYNCO[1:0]	Composite / Horizontal Sync Output
00	No Output
01	VGA Horizontal Sync
10	TV Composite Sync
11	TV Horizontal Sync

IDF13 (bit 5) of register DC is the MSB of the IDF1 word which is described in the IDF (address 1Fh) register description.

XOSC[1:0] (bits 7-6) of register DC control the crystal oscillator. The entire bit field, XOSC[2:0], is comprised of XOSC[1:0] from this register plus XOSC2 contained in the Connection Detect register (20h, bit 6). The default value is recommended.

Buffered Clock Output Register

Symbol: BCO Address: 22h Bits: 5

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	Reserved	BCOEN	ВСОР	BCO2	BCO1	BCO0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

BCO[2:0] (bits 2-0) of register BCO select the signal output at the BCO pin, according to Table 30 below:

Table 30: BCO Output Signal

BCO[2:0]	Buffered Clock Output	BCO[2:0]	Buffered Clock Output
000	The 14MHz crystal	100	Sine ROM MSB
001		101	Cosine ROM MSB
010		110	VGA Vertical Sync
011	Field ID	111	TV Vertical Sync

BCOP (bit 3) of register BCO selects the polarity of the BCO output. A value of '1' does not invert the signal at the output pad.

BCOEN (bit 4) of register BCO enables the BCO output pin. When BCOEN is high, the BCO pin will output the selected signal. When BCOEN is low, the BCO pin will be held in tri-state mode.

Pedestal Enable Symbol: PEN

Address: 23h Bits: 1

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	PEDLEN						
TYPE:	R/W	R/W						
DEFAULT:	0	0	0	0	0	0	0	0

PEDLEN (bit 0) of register PEN enables the pedestal (in register 4Fh). When PEDLEN is '0' the pedestal function is disabled. When PEDLEN is '1' the pedestal is enabled.

Defeat External Vsync Register

Symbol: Address:

DVS 47h **Bits:**

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	DVS	Reserved						
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

DVS (bit 7) of register DVS defeats the input Vertical SYNC signal going into the VSYNC timing block when set to '1'. As a result of this, the internal self generated TV SYNC will be used.

Test Pattern Register

Symbol: STP 48h

Address: Bits: 5

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	TVPLLR	ResetIB	ResetDB	Reserved	TSTP1	TSTP0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	1	1	0	0	0

TSTP[1:0] (bits 1:0) of register STP enable and select test pattern generation (color bar, ramp). This test pattern can be used for both the LVDS output and the TV Output. The pattern generated is determined by the table below:

Table 31: Test Pattern Selection

14010 011 100	t i utter ir se	
TSTP1	TSTP0	Test Pattern
0	0	No test pattern – Input data is used
0	1	Color Bars
1	0	Horizontal Luminance Ramp
1	1	Horizontal Luminance Ramp

ResetDB (bit 3) of register STP resets the datapath. When ResetDB is '0' the datapath is reset. When ResetDB is '1' the datapath is enabled. The datapath is also reset at power on by an internally generated power-on-reset signal.

ResetIB (bit 4) of register STP resets all control registers (addresses 00h - 7Fh). When ResetIB is '0' the control registers are reset to the default values. When ResetIB is '1' the control registers operate normally. The control registers are also reset at power on by an internally generated power on reset signal.

TVPLLR (bit 5) of register STP resets the TV PLL. When TVPLLR is '1' the PLL is reset. When TVPLLR is '0' the PLL is enabled. The PLL is also reset at power on by an internally generated power-on-reset signal. In addition it can be reset using the ResetDB bit above.

Power Management Register

Symbol: PM Address: 49h Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	TV	DACPD3	DACPD2	DACPD1	DACPD0	TVPD
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	1

TVPD (bit 0) of register PM controls the TV Out block power down. When TVPD is '0' the TV block is ON. When TVPD is '1' the TV block is powered down.

DACPD[3:0] (bits 4:1) of register PM control DAC0 through DAC3 Power Down. DAC0 through DAC3 will be turned on only if TVPD bit is set to '0'. If TVPD bit is set to '1', then DAC0 through DAC3 will be in power down state regardless of DACPD0 through DACPD3 state.

Table 32: DAC Power Down Control

TVPD	DACPD[3:0]	Functional Description
0	0000	All DACs on
0	0001	DAC 0 powered down, DACs 1, 2, 3 on
0	0010	DAC 1 powered down, DACs 0, 2, 3 on
0	0100	DAC 2 powered down, DACs 0, 1, 3 on
0	1000	DAC 3 powered down, DACs 0, 1, 2 on
1	XXXX	All DACs powered down

TV (bit 5) of register PM enables the TV path. When TV is '0', the TV data path is disabled. When TV is '1' the TV data path is enabled.

Version ID Register

Symbol: VID Address: 4Ah

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
TYPE:	R	R	R	R	R	R	R	R
DEFAULT:	1	0	0	0	1	0	0	0

Register VID is a read only register containing the version ID number of the CH7019 family.

Note:

The Current Version ID of CH7019B is 88h.

Device ID Register

Symbol: DID Address: 4Bh Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
TYPE:	R	R	R	R	R	R	R	R
DEFAULT:	0	0	0	1	1	0	0	1

Register DID is a read only register containing the device ID number of the CH7019 family.

Note:

56

The Device ID of CH7019B is 19h.

Pedestal Level Control Register

Symbol: PEDL

Address: 4Fh 8

						DIUD.		
BIT:	7	6	5	4	3	2	1	0
SYMBOL:	PEDL7	PEDL6	PEDL5	PEDL4	PEDL3	PEDL2	PEDL1	PEDL0
TYPE:	R/W							
DEFAULT:	1	0	0	0	0	0	1	1

Register PEDL defines the pedestal level.

XCLK and D2 Adjust & IDF2

Symbol: XDIDF2 Address: 53h

Bits: 8

								-
BIT:	7	6	5	4	3	2	1	0
SYMBOL:	X2CMD3	X2CMD2	X2CMD1	X2CMD0	IDF23	IDF22	IDF21	IDF20
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	0	0	0	0	0

IDF2[3:0] (bits 3-0) of register XDIDF2 select the input data format for the D2 input. See section 3.2 for a listing of available formats.

X2CMD[3:0] (bits 7-4) of register XDIDF2 control the delay applied to the XCLK2 signal before latching input data D2[11:0] per the following table. 1 unit is approximately 70 ps worst case.

Table 33: Delay applied to XCLK2 before latching input data D2

X2CMD3	X2CMD2	X2CMD1	X2CMD0	Adjust phase of Clock relative to Data
0	0	0	0	0 unit, XCLK2 ahead of Data
0	0	0	1	1 unit, XCLK2 ahead of Data
0	0	1	0	2 unit, XCLK2 ahead of Data
0	0	1	1	3 unit, XCLK2 ahead of Data
0	1	0	0	4 unit, XCLK2 ahead of Data
0	1	0	1	5 unit, XCLK2 ahead of Data
0	1	1	0	6 unit, XCLK2 ahead of Data
0	1	1	1	7 unit, XCLK2 ahead of Data
1	0	0	0	0 unit, XCLK2 behind Data
1	0	0	1	1 unit, XCLK2 behind Data
1	0	1	0	2 unit, XCLK2 behind Data
1	0	1	1	3 unit, XCLK2 behind Data
1	1	0	0	4 unit, XCLK2 behind Data
1	1	0	1	5 unit, XCLK2 behind Data
1	1	1	0	6 unit, XCLK2 behind Data
1	1	1	1	7 unit, XCLK2 behind Data

GPIO Invert Symbol: GPIOINV

Address: 5Ch Bits: 3

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C5GP2	C5GP1	C5GP0	Reserved	Reserved	Reserved	Reserved	Reserved
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	1	0	1	0

C5GP[2:0] (bits 7-5) of register GPIOINV define the GPIO C5 Control bits [5:4]. The entire bit field is made up of these bits C5GP[2:0] plus C5GP[5:3] contained in the LVDS Encoding 2 register (65h, bits 7-5). Refer to the description of the LVDSE2 register (address 65h) for more information.

Active Pixel Input & Line Output Symbol: APILO

Address: 60h Bits: 2

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	STFDS1	STFDS0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	1	1	0	1	0

STFDS[1:0] (bits 8-7) of register APILO control FLD2 and FLD1 output to a VGA controller. These bits can be programmed to be a TV field output from the TV encoder. These outputs are tri-stated upon power up. A value of '1' allows FLD output. STFDS0 controls FLD1 and STFDS1 controls FLD2 output. Note that the FLDx pins must first be enabled using the STFDENx bits located in register 10h, bits 7-6.

LVDS Power Down

Symbol: LPD Address: 63h Bits: 1

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	LVDSPD	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	1	0	1	1

LVDSPD (bit 6) of register LPD controls the LVDS power down. When LVDSPD is '0' the LVDS path is ON, when LVDSPD is '1' the LVDS path is powered down.

LVDS Encoding 1 Register

Symbol: LVDSE1 Address: 64h Bits: 5

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	LVDS24	LVDSDC	LDD	LDM2D	LEOSWP	Reserved
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	1	1	0	1

LEOSWP (bit 1) of register LVDSE1 provides the added flexibility to swap odd/even samples output on the LVDS link.

LDM2D (bit 2) of register LVDSE1 selects the dithering function to minimize quantization noise by spreading it out spatially. A '1' turns on the 2D dither function, and a '0' turns off the dither function.

LDD (bit 3) of register LVDSE1 bypasses the dither function. A '1' bypasses the dither function. A '0' does not bypass the dither function.

LVDSDC (bit 4) of register LVDSE1 allows single or dual channel LVDS to be selected. If the bit is 1, dual channel is selected. If the bit is 0, single channel is selected.

LVDS24 (bit 5) of register LVDSE1 selects LVDS 24 bit or 18 bit output format. A '1' provides 24- bit output mode and a '0' provides 18- bit output mode.

LVDS Encoding 2 Register

Symbol: LVDSE2 Address: 65h

Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C5GP5	C5GP4	C5GP3	Reserved	LA6RL	Reserved	LCNTLE	LCNTLF
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

LCNTLF and LCNTLE (bits 1-0) of register LVDSE2 are OpenLDI miscellaneous control signals, Cntl F and Cntl E, for the Display Source Serializer respectively. Refer to the OpenLDI specification v0.95. See section 2.4.2.

LA6RL (bit 3) of register LVDSE2 is an OpenLDI reserved bit for future use and may take any value. Refer to the OpenLDI specification v0.95, P5. See section 2.4.2.

C5GP[5:3] (bits 7-5) of register LVDSE2 define the GPIO C5 Control bits [5:3]. The entire bit field is made up of these bits C5GP[5:3] plus C5GP[2:0] contained in the GPIO Invert register (5Ch, bits 7-5). C5GP[5:0] invert the data output on the GPIO[5:0] pins when the pins are configured in output mode. When the corresponding GOENB bits (GOENB[5:0], see GPIODC register, address 6Eh, bits 3-0 and GPIO register, address 1Eh, bits 7-6) are '0' and the corresponding C5GP bits are '1' the values in GPIOL[5:0] are driven out inverted at the corresponding GPIO pins.

LVDS PLL Miscellaneous Control Register

Symbol: LPMC Address: 66h Bits: 7

BIT:	7	6	3	4	3	2	1	0
SYMBOL:	Reserved	SYNCST	BKLEN	LPLEN	LPFORC	LPLOCK	LSYNCEN	PANEN
TYPE:	R/W	R	R/W	R/W	R/W	R	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	1

The LMPC register controls panel protection circuits which control the LVDS panel power up and down sequence. Refer to section 3.4.5 and to Figure 19.

PANEN (bit 0) of the LPMC register controls the LVDS panel enable.

PANEN = $0 \Rightarrow$ Begin Power off sequence

 $= 1 \Rightarrow Power-on$

LSYNCEN (bit 1) of the LMPC register controls the Sync Detection Bypass

LSYNCEN = 0 => Normal Operation. HSYNC and VSYNC detection enabled.

= 1 => HSYNC and VSYNC detection circuit is bypassed enabling forced power up sequence.

LPLOCK (bit 2) of the LMPC register indicates the status of the PLL Lock

LPLOCK = $0 \Rightarrow$ PLL is not stable.

= 1 => PLL is stable and properly locked.

LPFORC (bit 3) of the LMPC register: Bypass LVDS Lock Detect Sentry

Bit 3 = 0 => Lock detect sentry is active.

= 1 => Lock detect sentry is overridden if LPLEN is set to '1'.

LPLEN (bit 4) of the LMPC register controls LVDS PLL Lock Enable between LPLOCK and LPFORC.

LPLEN = 0 => Select LPLOCK (normal operation)

= 1 => Select LPFORC (Lock detect sentry is overridden if LPFORC is set to '1')

BKLEN (bit 5) of the LMPC register enables the panel backlight.

BKLEN = 0 => Disable Backlight

=1 => Enable Backlight

SYNCST(bit 6) of the LMPC register is the Hsync and Vsync stability status bit. Refer to section 3.4.5.

SYNCST $= 0 \Rightarrow$ Hsync or Vsync are not stable

= 1 => Hsync and Vsync are stable

Note: The order of programming the control registers for the power up sequence is very important. Both LPLOCK and SYNCST must read as 1 before setting PANEN to 1. Doing so will eliminate unexpected results on the LCD panel.

Power Sequencing T1

Symbol: PST1 Address: 67h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	TPON7	TPON6	TPON5	TPON4	TPON3	TPON2	TPON1	TPON0
TYPE:	R/W							
DEFAULT:	0	0	0	0	0	0	0	0

This register defines Power On time (T1), the time duration between LVDS_RDY (internal signal) to valid LVDS Clock and Data. The entire bit field, TPON[8:0], is comprised of these bits TPON[7:0] plus TPON8 contained in the PST2 Power Sequencing T2 register (68h). Refer to Figure 18 and Table 15 in section 2.4.4. The range of T1 is 1ms to 512ms in increments of 1ms.

Power Sequencing T2

Symbol: PST2

Address: 68h Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	TPON8	TPBLE6	TPBLE5	TPBLE4	TPBLE3	TPBLE2	TPBLE1	TPBLE0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

TPBLE[6:0] (bits 6:0) of register PST2 define the Back Light Enable time (T2), the waiting time after valid LVDS Clock and Data before enabling the LVDS panel back light. Refer to Figure 18 and Table 15 in section 2.4.4. The range of T2 is 2ms to 256ms in increments of 2ms.

TPON8 (bit 7) of register PST2 defines the MSB of the Power On time (T1). The entire bit field, TPON[8:0], is comprised of this bit, TPON8, plus TPON[7:0] contained in the Power Sequencing T1 register (address 67h). Refer to the description of the PST1 register (address 67h) for more information.

Power Sequencing T3

60

Symbol: PST3 Address: 69h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	TP0FF8	TPBLD6	TPBLD5	TPBLD4	TPBLD3	TPBLD2	TPBLD1	TPBLD0
TYPE:	R/W							
DEFAULT:	0	0	0	0	0	0	0	0

TPBLD[6:0] (bits 6-0) of register PST3 define the Back Light Disable time (T3), the required time after disabling the back light before the valid LVDS Clock and Data become tri-stated or disabled. Refer to Figure 18 and Table 15 in section 2.4.4. The range of T3 is 2ms to 256ms in increments of 2ms.

TPOFF8 (bit 7) of register PST3 defines the MSB of the Power Off time (T4). The entire bit field, TPOFF[8:0], is comprised of this bit, TPOFF8, plus TPOFF[7:0] contained in the Power Sequencing T4 register (address 6Ah). Refer to the description of the PST4 register (address 6Ah) for more information.

Power Sequencing T4

Symbol: PST4 Address: 6Ah Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	TPOFF7	TPOFF6	TPOFF5	TPOFF4	TPOFF3	TPOFF2	TPOFF1	TPOFF0
TYPE:	R/W							
DEFAULT:	0	0	0	0	0	0	0	0

Register PST4 defines the Power Off time (T4), the required time prior to power off after the valid LVDS Clock and Data become tri-stated or disabled. The entire bit field, TPOFF[8:0], is comprised of these bits, TPOFF[7:0], plus TPOFF8 contained in the Power Sequencing T3 register (address 69h. Refer to Figure 18 and Table 15 in section 2.4.4.

The range is 1ms to 512ms in increments of 1ms.

Power Sequencing T5

Symbol: PST5

Address: 6Bh Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C4GP5	C4GP4	TPPWD5	TPPWD4	TPPWD3	TPPWD2	TPPWD1	TPPWD0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	0	0	0	0	0	1

TPPWD[5:0] (bits 5-0) of register PST5 define the Power Cycle time (T5), the waiting time required prior to enabling power on after power has been off. Refer to Figure 18 and Table 15 in section 2.4.4. The range is 0 to 1600ms in increments of 50ms.

C4GP[5:4] (bits 7-6) of register PST5 define the GPIO C4 Control bits [5:4]. The entire bit field is made up of these bits C4GP[5:4] plus C4GP[3:2] contained in the GPIO Driver Type register (6Ch, bits 7-6) and C4GP[1:0] contained in the GPIO Data [5:2] register (6Dh, bits 7-6). Refer to the description of the GPIOD register (6Dh) for more information.

GPIO Driver Type

Symbol: GPIODR Address: 6Ch

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C4GP3	C4GP2	GPIODR5	GPIODR4	GPIODR3	GPIODR2	GPIODR1	GPIODR0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	1	1	1	1	1	1

GPIODR[5:0] (bits 5:0) of register GPIODR defines the output driver type for pins GPIO[5:0] – CMOS or Open Drain. A value of '0' sets corresponding GPIO output to CMOS output type , and a value of '1' sets corresponding GPIO output to Open Drain type.

C4GP[3:2] (bits 7-6) of register GPIODR define the GPIO C4 Control bits [3:2]. The entire bit field is made up of these bits C4GP[3:2] plus C4GP[5:4] contained in the Power Sequencing T5 register (6Bh, bits 7-6) and C4GP[1:0] contained in the GPIO Data [5:2] register (6Dh, bits 7-6). Refer to the description of the GPIOD register (6Dh) for more information.

GPIO Data Symbol: **GPIOD** Address: 6Dh

> **Bits:** 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C4GP1	C4GP0	C3GP5	C3GP4	GPIOL5	GPIOL4	GPIOL3	GPIOL2
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	0	0	1	1	1	1

GPIOL[5:2] (bits 3-0) of register GPIOD define the GPIO Read or Write Data bits [5:2]. The entire bit field is made up of these bits GPIOL[5:2] plus GPIOL[1:0] contained in the GPIO Control register (1Eh, bits 5-4). GPIOL[5:0] define the state of the GPIO[5:0] pins in read or write mode.

When the corresponding GOENB bits (GOENB[5:0], see GPIO Control register, address 1Eh, bits 7-6 and GPIO Direction Control register, address 6Eh, bits 3-0) are '0', the values in GPIOL[5:0] are driven out at the corresponding GPIO pins. When the corresponding GOENB bits are '1', the values in GPIOL[5:0] can be read to determine the level forced into the corresponding GPIO pins. Note that the default state of GPIOLx depends on the state of the GPIOx pins since by default these pins are configured as inputs. With no external pullup or pulldown the internal pullup created by C4GPx being '1' causes GPIOLx to be '1'.

When the corresponding GOENB bits are '0' and the corresponding C5GP bits (C5GP[5:0], see GPIOINV register, address 5Ch, bits 7-5 and LVDSE2 register, address 65h, bits 7-5) are '1' the values in GPIOL[5:0] are driven out inverted at the corresponding GPIO pins.

C3GP[5:4] (bits 5-4) of register GPIOD define the GPIO C3 Control bits [5:4]. The entire bit field is made up of these bits C3GP[5:4] plus C3GP[3:0] contained in the GPIO Direction Control register (6Eh, bits 7-4). C3GP[5:0] control the weak pull-down (approximately $1M\Omega$) for the pins GPIO[5:0]. A value of '0' means no pull-down, a value of '1' means the pull-down is active.

C4GP[1:0] (bits 7-6) of register GPIOD define the GPIO C4 Control bits [1:0]. The entire bit field is made up of these bits C4GP[1:0] plus C4GP[5:4] contained in the Power Sequencing T5 register (6Bh, bits 7-6) and C4GP[3:2] contained in the GPIO Driver Type register (6Ch, bits 7-6). C4GP[5:0] control the weak pull-up (approximately $1M\Omega$) for the pins GPIO[5:0]. A value of '0' means no pull-up, a value of '1' means the pull-up is active.

GPIO Direction Control

62

Symbol: **GPIODC** Address: 6Eh

Bits: 8

								-
BIT:	7	6	5	4	3	2	1	0
SYMBOL:	C3GP3	C3GP2	C3GP1	C3GP0	GOENB5	GOENB4	GOENB3	GOENB2
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	1	1	1	1

GOENB[5:2] (bits 3-0) of register GPIODC define the GPIO Direction Control bits [5:2]. The entire bit field is made up of these bits GOENB[5:2] plus GOENB[1:0] contained in the GPIO Control register (address 1Eh, bits 7-6). GOENB[5:0] control the direction of the GPIO[5:0] pins. A value of '1' sets the corresponding GPIO pin to an input,

and a value of '0' sets the corresponding pin to a non-inverting output. The level at the output depends on the value of the corresponding bit GPIOL[5:0]. Refer to the description for the GPIOD register (address 6Dh) for more information.

C3GP[3:0] (bits 7-4) of register GPIODC define the GPIO C3 Control bits [3:0]. The entire bit field is made up of these bits C3GP[3:0] plus C3GP[5:4] contained in the GPIO Data [5:2] register (6Dh, bits 5-4). Refer to the description of the GPIOD register (address 6Dh) for more information.

LVDS PLL Feed Back Divider Control

Symbol: LPFBDC
Address: 71h
Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	LPFFD1	LPFFD0	LPFBD3	LPFBD2	LPFBD1	LPFBD0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	1	0	0	0	1	1

LPFBD[3:0] (bits 3-0) of register LPFBDC define the LVDS PLL Feed-Back Divider Control. The recommended settings are shown in Table 39 in section 3.4.

LPFFD[1:0] (bits 5:4) of register LPFBDC define the LVDS PLL Feed-Forward Divider Control. The recommended settings are shown in Table 39 in section 3.4.

LVDS PLL VCO Control Register

Symbol: LPVC Address: 72h

Bits: 6

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	Reserved	LPPSD1	LPPSD0	LPVCO3	LPVCO2	LPVCO1	LPVCO0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	0	0	1	0	1	1	0

LPVCO[3:0] (bits 3-0) of register LPVC determine the LVDS PLL VCO open-loop frequency range. The recommended settings are shown in Table 39 in section 3.4.

LPPSD[1:0] (bits 5:4) of register LPVC define the LVDS PLL post scale divider controls. The recommended settings are shown in Table 39 in section 3.4.

Outputs Enable Register

Symbol: OUTEN Address: 73h

Bits: 7

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	DAS1	DAS0	LDEN1	LDENO	LPCP2	LPCP1	LPCP0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	0	0	1	0	0	0

LPCP[2:0] (bits 2-0) of register LPCPC control the LVDS PLL Charge Pump current value. The recommended settings are shown in Table 39.

LDEN[1:0] (bits 4-3) of register LPCPC control the output drivers of LVDS output Channel A (LDC[2:0], LDC*[2:0], LL1C and LL1C*), and Channel B (LDC[6:4], LDC*[6:4], LL2C and LL2C*) per the following table:

Table 34: LVDS Output Drivers Enable

LDEN1	LDEN0	Description
0	0	Both LVDS Channel A and B are Off
0	1	LVDS Channel A is 'On' and B is 'Off'
1	0	LVDS Channel A is 'Off' and B is 'On'
1	1	Both LVDS Channel A and B are 'On'

DAS[1:0] (bits 6-5) of register OUTEN control the TV DAC (DACA and DACB) analog switch per the following table. Refer also to Table 12.

Table 35: TV DAC Analog Switch Control

DAS1	DAS0	DACA path	DACB path
0	0	Off	Off
0	1	Off	On
1	0	On	Off
1	1	On	On

LVDS Output Driver Amplitude control

Symbol: LODA Address: 74h

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	LODP	LODPE	L2ODA2	L2ODA1	L2ODA0	L1ODA2	L1ODA1	L1ODA0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	1	1	0	0	0	0	0	0

L1ODA[2:0] (bits 2-0) of register LODA control the Output Driver Amplitude for LVDS Bank 1. See Table 36 below.

L2ODA[2:0] (bits 5-3) of register LODA control the Output Driver Amplitude for LVDS Bank 2. See Table 36 below.

Table 36: LVDS Output Driver Amplitude

LxODA2	LxODA1	LxODA0	Output Driver Amplitude (mV)
0	0	0	305
0	0	1	285
0	1	0	265
0	1	1	245
1	0	0	225
1	0	1	410
1	1	0	370
1	1	1	330

LODPE (bit 6) of register LODA controls LVDS Output Driver Pre-Emphasis for both LDC[6:4] and LDC[2:0] by simultaneous Pull-up and Pull-down diode currents.

LODPE $= 0 \Rightarrow$ Pull up reduced by 33% and pull down reduced by 66%.

= 1 => Default value

LODP (bit 7) of register LODA activates the LVDS Outputs Driver Pull-Down during power-down.

LODP = $0 \Rightarrow$ Pull-down devices not active

= 1 => Pull-down devices active

LVDS PLL Spread Spectrum Control

Symbol: LPSSC Address: 75h Bits: 1

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	LODST	Reserved						
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	0	0	0	0	0	0

LODST (bit 7) of register LPSSC controls the LVDS Output Drive Source Termination.

LODST = $0 \Rightarrow 100\Omega$ (typ.) shunt disabled between LVDS outputs LDCx and LDCx*, also LLxC and LLxC*

= 1 => 100Ω (typ.) shunt enabled between LVDS outputs LDCx and LDCx*, also LLxC and LLxC*

LVDS Power Down & Loop Filter Resister

Symbol: LPDLFR Address: 76h

8

Bits:

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	FRSTB	LPLF2	LPLF1	LPLF0	LPPDN	LPPRB	LODPDB1	LODPDB0
TYPE:	R/W	R/W						
DEFAULT:	1	0	1	0	1	1	0	1

LODPDB[1:0] (bits 1-0) of register LPDLFR control the LVDS Output Power Down per the following table:

Table 37: LVDS Output Power Down

LODPDB1	LODPDB0	LDC[6:4] & LL2C , LL2C* path	LDC[2:0], LL1C & LL1C* path						
0	0	Power Down ¹	Power Down ¹						
0	1	Power Down ¹	Power On						
1	0	Power On	Power Down ¹						
1	1	Power On	Power On						

Note 1: Outputs are tri-stated in power down mode unless LODP (address 74h, bit 7) is '1', in which case outputs are pulled to ground.

LPPRB (bit 2) of register LPDLFR controls the LVDS PLL Reset.

LPPRB = $0 \Rightarrow$ LVDS PLL is reset

= 1 => Normal operation

LPPDN (bit 3) of register LPDLFR controls the LVDS PLL Power Down.

LPPDN = $0 \Rightarrow$ LVDS PLL is powered down

= 1 => Normal operation

LPLF[2:0] (bits 6-4) of register LPDLFR control the LVDS PLL Loop Filter Resistor per the following table:

Table 38: LVDS PLL Loop Filter Resistor

LPLF2	LPLF1	LPLF0	PLL Loop Filter Resistor Value (Ohm)
0	0	0	1800
0	0	1	2600
0	1	0	1000
0	1	1	3200
1	0	0	21,800
1	0	1	42,600
1	1	0	11,000
1	1	1	73,200

FRSTB (bit 7) of register LPDLFR controls the FIFO reset.

FRSTB = $0 \Rightarrow$ Enable FIFO Reset

= 1 => Normal Operation

LVDS Control 2

Symbol: LVCTL2

Address: 78h Bits: 7

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	Reserved	LPLF4	LPLF3	LPPD4	LPPD3	LPPD2	LPPD1	LPPD0
TYPE:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEFAULT:	0	0	1	1	1	0	0	0

LPPD[4:0] (bits 4-0) of register LVCTL2 define the LVDS PLL Phase Detector Control. The recommended values are shown in Table 39 in section 3.4.

LPLF[4:3] (bits 6-5) of register LVCTL2 control the LVDS PLL Loop Filter Capacitor. The recommended settings are shown in Table 39.

Bang Limit Control

Symbol: BGLMT Address: 7Fh

Bits: 8

BIT:	7	6	5	4	3	2	1	0
SYMBOL:	BGLMT7	BGLMT6	BGLMT5	BGLMT4	BGLMT3	BGLMT2	BGLMT1	BGLMT0
TYPE:	R/W							
DEFAULT:	0	0	0	1	0	0	0	0

This register limits the allowable occurrences of internal LVDS FIFO over and under-runs within one VGA frame.

3.4 Recommended Settings

The recommended values for the LVDS PLL are shown in Table 39 below.

Table 39: LVDS Divider Control Settings

25MHz to 50MHz operation

Address/Bit	7	6	5	4	3	2	1	0
71h			1	0	1	1	0	1
72h			1	0	0	0	1	1
73h						0	0	0
78h		0	1	0	0	0	0	0

50MHz to 100MHz operation

Address/Bit	7	6	5	4	3	2	1	0
71h			1	0	1	1	0	1
72h			1	0	0	0	1	1
73h						0	0	0
78h		0	1	0	0	0	0	0

100MHz to 160MHz operation (dual panel)

Address/Bit	7	6	5	4	3	2	1	0
71h			1	0	0	0	1	1
72h			1	0	1	1	0	1
73h						0	1	1
78h		1	1	0	0	0	0	0

100MHz to 160MHz operation (single panel)

Address/Bit	7	6	5	4	3	2	1	0
71h			1	0	0	0	1	1
72h			0	1	1	1	0	1
73h						0	1	1
78h		1	1	0	0	0	0	0

4.0 Electrical Specifications

4.1 Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units
	All power supplies relative to GND	-0.5		5.0	V
	Input voltage of all digital pins	GND - 0.5		VDD + 0.5	V
T _{SC}	Analog output short circuit duration		Indefinite		Sec
T _{AMB}	Ambient operating temperature	-55		85	°C
T _{STOR}	Storage temperature	-65		150	°C
TJ	Junction temperature			150	°C
T _{VPS}	Vapor phase soldering (5 seconds)			260	°C
T _{VPS}	Vapor phase soldering (11 seconds)			246	°C
T _{VPS}	Vapor phase soldering (60 seconds)			225	°C

Note:

- Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device.
 These are stress ratings only. Functional operation of the device at these or any other conditions above those
 indicated under the normal operating condition of this specification is not recommended. Exposure to absolute
 maximum rating conditions for extended periods may affect reliability. The temperature requirements of vapor
 phase soldering apply to all standard and lead free parts.
- 2) The device is fabricated using high-performance CMOS technology. It should be handled as an ESD sensitive device. Voltage on any signal pin that exceeds the power supply voltages by more than ± 0.5V can induce destructive latchup.

4.2 Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Units
TVPLL_VDD	TV PLL Digital Power Supply Voltage	3.1	3.3	3.6	V
TVPLL_VCC	TV PLL Analog Power Supply Voltage	3.1	3.3	3.6	V
DAC_VDD	DAC Power Supply Voltage	3.1	3.3	3.6	V
LPLL_VDD	LVDS PLL Power Supply Voltage	3.1	3.3	3.6	V
DVDD	Digital Power Supply Voltage	3.1	3.3	3.6	V
LVDD	LVDS Power Supply Voltage	3.1	3.3	3.6	V
VDD	Generic for all of the above supplies	3.1	3.3	3.6	V
VDDV	I/O Power Supply Voltage	1.1	1.8	3.6	V
R_L	Output load to DAC Outputs		37.5		Ω

201-0000-048 Rev. 2.4, 12/18/2006

4.3 Electrical Characteristics (Operating Conditions: $T_A = 0$ °C – 70°C, VDD =3.3V \pm 5%)

Symbol	Description	Min	Тур	Max	Units
	Video D/A Resolution	10	10	10	bits
	Full scale output current		33.9		mA
	Video level error			10	%
I _{VDD}	Gang Mode @ 165MHz (TV path off)		412		mA
I _{VDD}	Total supply current 1 DVO input for TV @ 78 MHz 1 DVO input for LVDS@165 MHz LVDS output @ 165 MHz		600		mA
I _{VDD}	Total supply current 1 DVO input for TV @ 78 MHz 1 DVO input for LVDS@80 MHz LVDS output @ 80 MHz		520		mA
I _{VDDV}	VDDV (1.8V) current (15pF load)		4		mA
I _{PD}	Total Power Down Current		0.06		mA

4.4 Digital Inputs / Outputs

Symbol	Description	Test Condition	Min	Тур	Max	Unit
V _{SDOL}	SPD (serial port data) Output Low Voltage	I _{OL} = 2.0 mA			0.4	V
V_{SPIH}	Serial Port (SPC, SPD) Input High Voltage		1.0		VDD + 0.5	V
V_{SPIL}	Serial Port (SC, SD) Input Low Voltage		GND-0.5		0.4	V
V_{HYS}	Hysteresis of Inputs		0.25			V
V_{DATAIH}	D[0-11] Input High Voltage		Vref1+0.25		DVDD+0.5	V
V_{DATAIL}	D[0-11] Input Low Voltage		GND-0.5		Vref1-0.25	V
V _{MISCAIH}	GPIO, AS, RESET* Input High Voltage	DVDD=3.3V	2.7		VDD + 0.5	V
V _{MISCAIL}	GPIO, AS, RESET* Input Low Voltage	DVDD=3.3V	GND-0.5		0.6	V
I _{MISCAPU}	Pull Up Current (GPIO, AS, RESET*)	V _{IN} = 0V	0.5		5	uA
V _{MISCAOH}	GPIO, ENAVDD, ENABKL, C/HSYNC, BCO/VSYNC, H, V Output High Voltage	I _{OH} = - 400 uA	VDD-0.2			V
V _{MISCAOL}	GPIO, ENAVDD, ENABKL, C/HSYNC, BCO/VSYNC, H, V Output Low Voltage	I _{OL} = 3.2mA	0.2		0.2	V
V_{MISCBOH}	P-OUT, FLD1, FLD2 Output High Voltage	I _{OH} = - 400 uA	VDDV-0.2			V
$V_{MISCBOL}$	P-OUT, FLD/STL1, FLD/STL2 Output Low Voltage	I _{OL} = 3.2 mA	0.2		V	

Note:

VDATA - refers to all digital pixel, clock, data enable and sync inputs. VMISCA - refers to GPIOx, AS and RESET* inputs and GPIOx, ENAVDD, ENABKL, C/HSYNC, BCO/VSYNC outputs and Hx, Vx when configured as outputs (SYOTV=1). VMISCB - refers to P-OUT, FLD/STL1 and FLD/STL2 outputs.

4.5 AC Specifications

Symbol	Description	Test Condition	Min	Тур	Max	Unit
f _{XCLK}	Input (XCLK) frequency		25		165	MHz
t _{PIXEL}	Pixel time period		6.06		40	ns
DC _{XCLK}	Input (XCLK) Duty Cycle	T _S + T _H < 1.2ns	30		70	%
t _{XJIT}	XCLK clock jitter tolerance			2		ns
t _S	Setup Time: D[11:0], H, V and DE to XCLK, XCLK*	XCLK = XCLK* to D[11:0], H, V, DE = Vref1	0.5			ns
t _H	Hold Time: D[11:0], H, V and DE to XCLK, XCLK*	D[11:0], H, V, DE = Vref1 to XCLK = XCLK*	0.5			ns
t _R	Pout, H and V (when configured as outputs) Output Rise Time (20% - 80%)	15pF load DVDD, VDDV = 3.3V			1.50	ns
t _F	Pout, H and V (when configured as outputs) Output Fall Time (20% - 80%)	15pF load VDDV = 3.3V			1.50	ns
t _{STEP}	De-skew time increment		50		80	ps

4.6 LVDS Output Specifications

72

The LVDS specifications meet the requirements of ANSI/EIA/TIA-644. Refer to Figure 21 for definitions of parameters.

Symbol	Description	Test Condition	Min	Тур	Max	Unit
V _t	Steady State Differential Output Magnitude for logic 1	100Ω differential load	247		453	mV
V _t *	Steady State Differential Output Magnitude for logic 0	100Ω differential load	247		453	mV
V _t - V _t *	Steady State Magnitude of Difference between Logic 1 and 0 Outputs	100 Ω differential load			50	mV
Vos	Steady State Magnitude of Offset Voltage for Logic 1	Measured at center- tap of two 50Ω resistors connected between outputs	1.125		1.375	V
Vos*	Steady State Magnitude of Offset Voltage for Logic 0	Measured at center- tap of two 50Ω resistors connected between outputs	1.125		1.375	V
V _{os} - V _{os} *	Steady State Magnitude of Offset Difference between Logic States	Measured at center- tap of two 50Ω resistors connected between outputs			50	mV
f_{LLC}	LVDS Output Clock Frequency		25		108 ¹	MHz
t _{UI}	LVDS data unit time interval	25MHz < f _{LLC} < 108MHz	1.3		5.7	ns
t _R	LVDS data rise time $t_{UI} > 5ns$ $1.3ns < t_{UI} < 5ns$	100Ω and 5pF differential load 20% -> 80% V _{SWING}			0.3* t _{∪I} 1.5	ns ns
t _F	LVDS data fall time t _{UI} > 5ns 1.3ns < t _{UI} < 5ns	100Ω and 5pF differential load 80% -> 20% V _{SWING}			0.3* t _{∪I} 1.5	ns ns
V_{RING}	Voltage ringing after transition	100Ω and 5pF differential load			20% V _{SWING}	

Note 1: Corresponds to maximum pixel rate f_{XCLK} for single channel operation. Dual channel operation is required for pixel rates greater than 108MHz.

4.7 Timing Information

Note:

In the figures and tables in the following sections XCLK, XCLK*, D[11:0], H, V and DE refer respectively to XCLK1 and XCLK2, XCLK1* and XCLK2*, D1[11:0] and D2[11:0], H1 and H2, V1 and V2, DE1 and DE2.

4.7.1 LVDS Output Timing

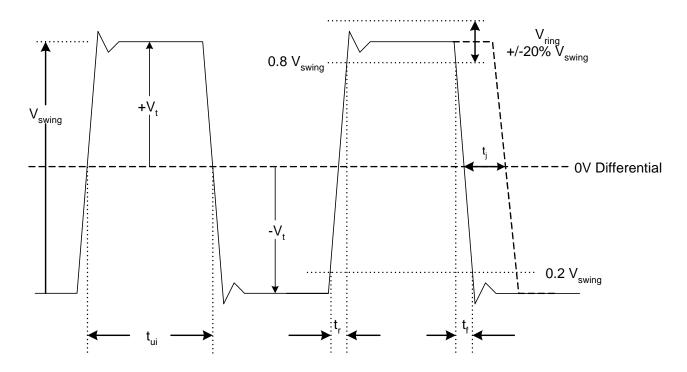


Figure 21: AC Timing for LVDS Outputs

Table 40: AC Timing for LVDS Outputs

Symbol	Parameter	Min Typ Max				
V _t	Steady State Differential Output Magnitude	see section 5.6				
V _{SWING}	Voltage Difference between the two Steady State Values of Output					
t _{Ui}	Unit time interval	see section 5.6				
t _r	Rise time	see section 5.6				
t _f	Fall time	see section 5.6				
t _j	Jitter peak to peak ¹			350ps		

Note 1: Maximum jitter with EMI reduction turned off.

4.7.2 Clock - Slave, Sync - Slave Mode

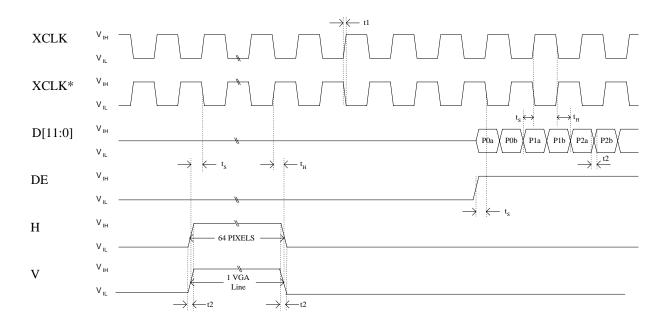


Figure 22: Timing for Clock - Slave, Sync - Slave Mode

Table 41: Timing for Clock - Slave, Sync - Slave Mode

Symbol	Parameter	Max	Unit		
t _S	Setup Time: D[11:0], H, V and DE to XCLK, XCLK*	se			
t _H	Hold Time: D[11:0], H, V and DE to XCLK, XCLK*	se			
t1	XCLK & XCLK* rise/fall time w/15pF load 1				
t2	D[11:0], H, V & DE rise/fall time w/ 15pF load		1		ns

4.7.3 Clock - Master, Sync - Slave Mode

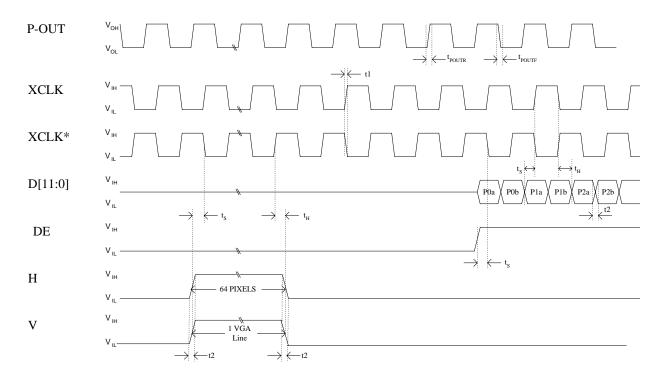
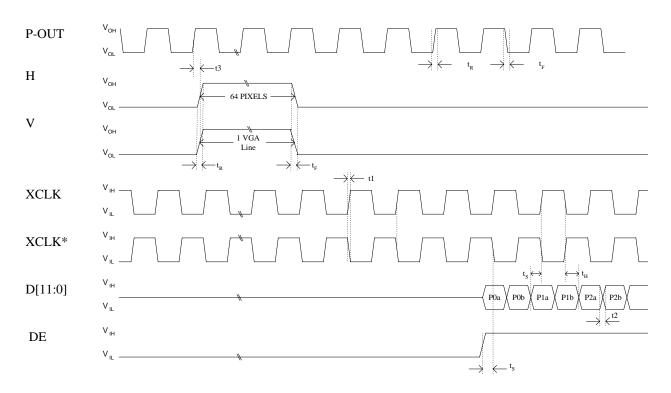


Figure 23: Timing for Clock - Master, Sync - Slave Mode

Table 42: Timing for Clock - Master, Sync - Slave Mode

Symbol	Parameter	Min	Тур	Max	Unit
ts	Setup Time: D[11:0], H, V and DE to XCLK, XCLK*	se			
t _H	Hold Time: D[11:0], H, V and DE to XCLK, XCLK*	se			
t _R	Pout Output Rise Time	se			
t _F	Pout Output Fall Time	se			
t1	XCLK & XCLK* rise/fall time w/15pF load 1				ns
t2	D[11:0], H, V & DE rise/fall time w/15pF load		1		ns

5.5.3 Clock - Master, Sync - Master Mode



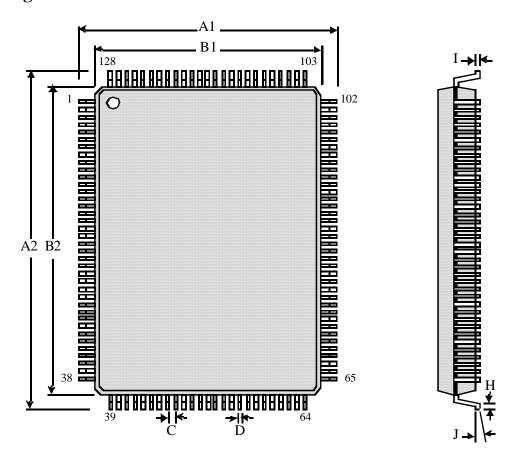

Figure 24: Clock - Master, Sync - Master Mode

Table 43: Timing for Clock - Master, Sync - Master Mode

Symbol	Parameter	Min	Тур	Max	Unit		
ts	Setup Time: D[11:0], H, V and DE to XCLK, XCLK*	Se	e section 4	.5			
t _H	Hold Time: D[11:0], H, V and DE to XCLK, XCLK*	Se	see section 4.5				
t _R	Pout, H, V (when configured as outputs) Output Rise Time	Se					
t _F	Pout, H, V (when configured as outputs) Output Fall Time	see section 4.5					
t1	XCLK & XCLK* rise/fall time w/15pF load		ns				
t2	D[11:0] & DE rise/fall time w/15pF load		1		ns		
t3	Hold time: P-OUT to HSYNC, VSYNC delay		1.5		ns		

76 201-0000-048 Rev. 2.4, 12/18/2006

5.0 Package Dimensions

Table of Dimensions

Tuble of Differentials													
No. of Leads							SYM	BOL					
		A1	A2	B1	B2	С	D	E	F	G	Н	I	J
128 (14)	128 (14X20)												
Milli-	MIN	16	22	1.4	20	0.50	0.17	1.35	0.05	1.00	0.45	0.09	0 °
meters	MAX	16	22	14	20	0.50	0.27	1.45	0.15	1.00	0.75	0.20	7 °

Notes:

- 1. Conforms to JEDEC standard JESD-30 MS-026D.
- 2. Dimension B: Top Package body size may be smaller than bottom package size by as much as 0.15 mm. Dimension B does not include allowable mold protrusions up to 0.25 mm per side.

6.0 Revision History

1 0.0	Revision E	ustory	
Rev. #	Date	Section	Description
1.0	3/7/02		First release derived from 7017 revision 1.6
1.2	7/6/02		Added back register 5Ch (deleted in error).
			Added spec. number
			-
		4.2	Moved CLM[7:0] from 4Fh to 56h
		Register 4Fh	Added PEDL[7:0] register at 4Fh
		Register 23h	Added PEDLEN bit at 23h, bit 0
		Table 25, 26, 27	Added hex values
		Register 10h – 13h	Changed CIV bits to read only
		Register 5Ch	Renamed register to GPIO Invert (GPIOINV)
		2.2.2	Swapped descriptions for modes 8 and 9. Swapped modes 6 and 7.
			Changed Figure 9 and associated text. Swapped order of Cr and
			Cb in Table 7 and 8. Cr precedes Cb.
		Register 49h	Swapped DACPD bits 0 and 3.
		2.3.4	Added explanation of RSET in note 1.
		Register 1Eh and 6h	Changed default value and description of GPIOLx bits
		Table 39	Added table.
		Register 02h	Changed default value of VBID from 0 to 1.
		Register 14h	Made BGBST a public bit.
		Register 47h	Made DVS a public bit.
		Table 1	Updated table to include H and V as outputs
		Table 1	Changed all references of DVDDV to VDDV
		2.1	Edited Figure 3, Figure 4, Figure 5, Figure 6 and Table 2 to
			change t1 and t2 to t_S and t_H .
		Various	Second set of DAC outputs added back. Renumbered DACs. Put
			names in Figure 2. Changed register 49h.
		2.4.4 and 2.4.5	Rewrote sections. Replaced Figure 19 with the figure from register
			66h description
			Corrected pin-out in Figure 2. LDC3 and LDC3* replaced by
			LDC4 and LDC4*
2.0	10/1/02		Corrected entry for register 73h by adding DAS1 and DAS0.
			Corrected LODPD[1:0] to LODPDB[1:0] in register 76h
		Figure 1	Updated to include second set of DAC outputs
		Table 25	Corrected N value for mode 11 from 64 to 62.
		Section 4.5	Added section for AC specs.
2.1	12/30/02	Register 07h	Changed black level range
		Register 07h	Changed black level default settings
2.11	1/29/03	Register 07h	Updated description on black level default settings
	6/23/03		Added Table of Contents
2.2	1/19/04	4.6, 4.7.1, Table 42	Added section 4.6, 4.7.1, and table 42
2.3	10/20/04	4	Add Vapor phase soldering information.
2.4	12/18/06	3.3	Corrected bit setting description for IBS2 (bit 6) and IBS1 (bit 7).
		Register 1Ch and 1Fh	

Disclaimer

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no liability for errors contained in this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.

ORDERING INFORMATION						
Part Number	Package Type	Number of Pins	Voltage Supply			
CH7019B-TF	LQFP, Lead free	128	3.3V			
CH7019B-TF-TR	LQFP, Lead free, Tape&Reel	128	3.3V			

Chrontel

2210 O'Toole Avenue, Suite 100, San Jose, CA 95131-1326 Tel: (408) 383-9328 Fax: (408) 383-9338

www.chrontel.com E-mail: sales@chrontel.com

©2006 Chrontel, Inc. All Rights Reserved. Printed in the U.S.A.