

HT6030/HT6032/HT6034 3¹² Series of Decoders

Features

- Operating voltage: 2.4V~12V
- Low power and high noise immunity CMOS technology
- · Low standby current
- Capable of decoding 12 bits of information
- 8~12 address pins
- 0~4 data pins
- Trinary address setting

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

- Received data are checked two times
- Built-in oscillator needs only 5% resistor
- VT goes high during a valid transmission
- Easy interface with an RF or an infrared transmission medium
- Minimal external components
- Pair with Holtek's 3¹² series of encoders
- 18-pin DIP, 20-pin SOP package
- Car alarm system
- Security system
- · Cordless telephones
- Other remote control systems

General Description

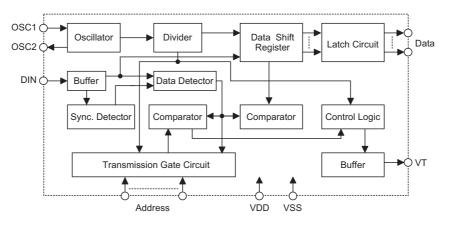
The 3^{12} decoders are a series of CMOS LSIs for remote control system applications. They are paired with 3^{12} series of encoders. For proper operation a pair of encoder/decoder with the same number of address and data format should be selected (refer to the encoder/decoder cross reference tables).

The 3¹² series of decoders receive serial address and data from its corredponding series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. Then it compares the serial input information twice continuously with its local address. If no errors

or unmatched codes are encountered, the input data codes are decoded and transferred to the output pins. The VT pin also goes high to indicate a valid transmission.

The 3¹² series of decoders are capable of decoding 12 bits of information that consists of N bits of address and 12–N bits of data. To meet various applications they are arranged to provide a number of data pins ranging from 0 to 4 and an address pin ranging from 8 to 12. Thus, various combinations of address/data number are available in different packages.

Selection Table

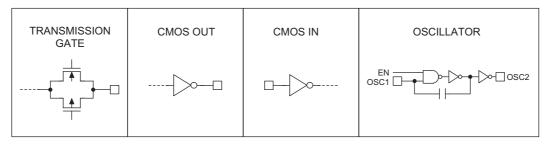

Function	Address	Da	ata	νт	Oscillator	Trieger	Package
Part No.	No.	No.	Туре	VI	Oscillator	Trigger	Гаскауе
HT6030	12	0	_	\checkmark	RC oscillator	DIN active "Hi"	18DIP, 20SOP
HT6032	10	2	L	\checkmark	RC oscillator	DIN active "Hi"	18DIP, 20SOP
HT6034	8	4	L	\checkmark	RC oscillator	DIN active "Hi"	18DIP, 20SOP

Note: Data type: L stands for latch type data output.

VT can be used as a momentary data output.

Block Diagram

Pin Assignment


12-Address 12-Address 10-Address 0-Data 0-Data 2-Data 20 L NC A0 🗖 1 17 U VT A1 🗖 3 18 🗖 VT A1 🗌 2 17 U VT A1 🗆 2 A2 🗆 3 16 OSC2 $A2 \Box 4$ 17 0SC2 A2 🛛 3 16 OSC2 A3 🗖 4 A3 🗖 4 15 🗆 OSC1 A3 🗖 5 16 🗖 OSC1 15 0SC1 A4 🗖 5 15 🗖 DIN A4 🗌 5 14 🗆 DIN A4 🗆 6 A5 🗖 6 13 D11 14 🗖 A11 A5 🗌 6 13 🗆 A11 A5 🗖 7 A6 🗌 7 A6 🗆 7 12 A10 A6 🗌 8 13 🗖 A10 12 D10 A7 🗌 8 11 🗖 A9 A7 🗆 8 11 🗆 A9 A7 🛛 9 12 🗖 A9 vss 🗆 9 10 🗆 A8 vss 🗖 11 🗖 A8 VSS 🗆 9 10 🗖 A8 10 HT6030 HT6030 HT6032 -18 DIP-A -18 DIP-A -20 SOP-A 10-Address 8-Address 8-Address 2-Data 4-Data 4-Data 20 DNC A0 🗌 2 A0 🗆 2 A0 🗖 1 18 🛛 V Т A1 🗖 3 18 UVT 17 U VT A1 🛛 3 A1 🗌 2 A2 🗖 4 17 0SC2 A2 🛛 3 16 OSC2 A2 🗖 4 17 0SC2 A3 🗆 5 16 OSC1 A3 🗖 4 15 OSC1 A3 🗆 5 16 OSC1 A4 🗆 6 15 🗖 DIN A4 🗆 6 15 DIN A4 🗖 5 14 🗋 D11 13 D11 A5 🗌 7 A5 🗌 7 A5 🗌 6 14 🗖 D11 13 D10 A6 🗌 8 A6 🗖 7 12 D10 A6 🗌 8 13 D10 A7 🗖 9 11 D9 A7 🗌 9 12 🗆 A9 A7 🗌 8 12 D9 VSS 🗖 10 vss 🗖 9 10 08 VSS 10 11 D8 11 🗆 A8 HT6034 HT6032 HT6034 -20 SOP-A -18 DIP-A -20 SOP-B

Pin Description

Pin Name	I/O	Internal Connection	Description
A0~A11	I	TRANSMISSION GATE	Input pins for address A0~A11 setting They can be externally set to VDD, VSS, or left open.
D8~D11	0	CMOS OUT	Output data pins
DIN	Ι	CMOS IN	Serial data input pin
VT	0	CMOS OUT	Valid transmission, active high
OSC1	Ι	OSCILLATOR	Oscillator input pin
OSC2	0	OSCILLATOR	Oscillator output pin
VSS	_		Negative power supply, ground
VDD	_	_	Positive power supply

Approximate Internal Connections

Absolute Maximum Ratings

Supply VoltageV_SS-0.3V to V_SS+13V	Storage Temperature50°C to 125°C
Input VoltageV_{SS}=0.3 to V_{DD}+0.3V	Operating Temperature20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

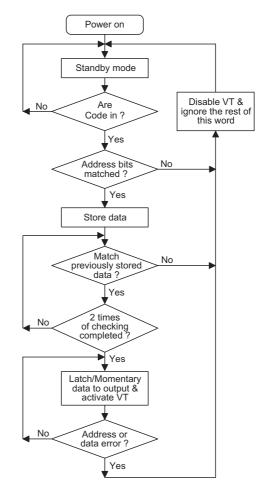
Ta=25°C

Electrical Characteristics

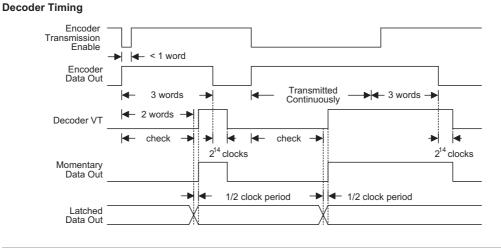
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	win.		wax.	
V _{DD}	Operating Voltage	_		2.4	5	12	V
		5V			0.1	1	μA
I _{STB}	Standby Current	12V	Oscillator stops		2	4	μA
I _{DD}	Operating Current	5V	No load, f _{OSC} =100kHz	_	250	500	μA
	Data Output Source Current (D8~D11)		V _{OH} =4.5V	-0.5	-1	_	mA
lo	Data Output Sink Current (D8~D11)		V _{OL} =0.5V	0.5	1	_	mA
	VT Output Source Current			-2	-4	_	
	VT Output Source Current Only For HT6033/35/45	5V V _{OH} =4.5V	V _{OH} =4.5V	-0.35	-0.6	_	
I_{VT}	VT Output Sink Current		1	2	_	mA	
	VT Output Sink Current Only For HT6033/35/45		V _{OL} =0.5V	0.35	0.6	_	
VIH	"H" Input Voltage	5V		3.5	_	5	V
V _{IL}	"L" Input Voltage	5V	_	0		1	V
f _{OSC}	Oscillator Frequency	5V	R _{OSC} =91kΩ		100	_	kHz

Functional Description

Operation


The 3^{12} series of decoders provide various combinations of address and data pins in different packages. They are paired with 3^{12} series of encoders. The decoders receive data transmitted by the encoders and interpret the first N bits of the code period as addresses and the last 12–N bits as data (where N is the address code number). A signal on the DIN pin then activates the oscillator which in turn decodes the incoming address and data. The decoders check the received address twice continuously. If all the received address, the 12–N bits of data are decoded to activate the output pins and the VT pin is set high indicating a valid transmission. That will last until the address code is incorrect or no signal is received.

The output of the VT pin is high only when the transmission is valid. Otherwise it is always low.


Output Type

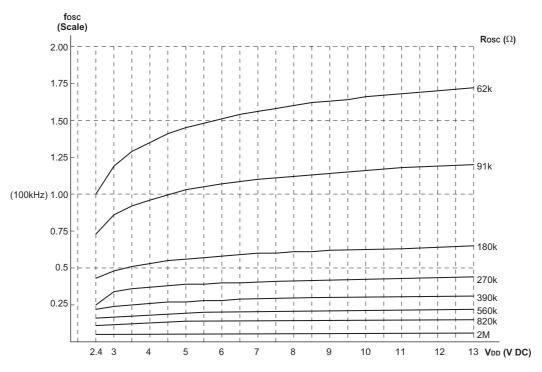
The data outputs follow the encoders during a valid transmission and are then latched in this state until the next valid transmission occurs.

Flowchart

The oscillator is disabled in the standby state and activated as long as a logic "high" signal is applied to the DIN pin. i.e., the DIN pin should be kept "low" if there is no signal input.

Rev. 1.30

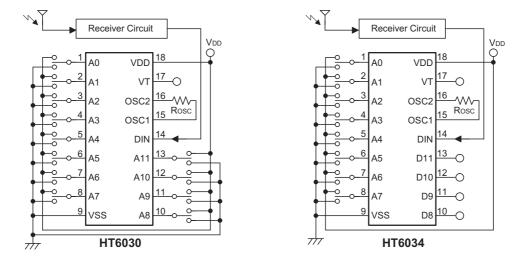
Encoder/Decoder Cross Reference Tables

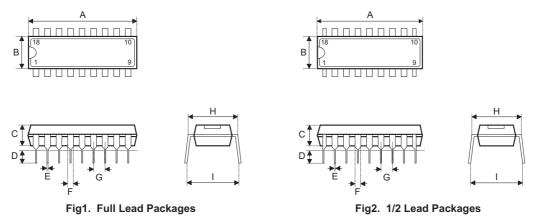

				Package										
Part No.	Data Pins	Address Pins	VT	Pair Encoder	Encoder		Decoder							
					DIP	SOP	DIP	SOP						
HT6030	0	12	\checkmark	HT6010	18, 20	20	18	20						
	2	10	10 √	10	10	10	2 10	10	10	HT6010	18, 20	20	18	20
HT6032	2								10	10	10 1	N N	HT6012	18
	HT6034 4 8	\checkmark	HT6010	18, 20	20	18	20							
H16034			HT6014	18	20		20							

Address/Data Sequence

The following table describes the position of the address/data sequence for various models of the 3¹² series of decoders.

Dont No.		Address/Data Bits										
Part No.	0	1	2	3	4	5	6	7	8	9	10	11
HT6030	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
HT6032	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	D10	D11
HT6034	A0	A1	A2	A3	A4	A5	A6	A7	D8	D9	D10	D11


Oscillator Frequency vs. Supply Voltage


Application Circuits

Package Information

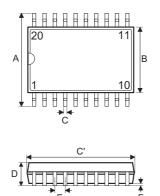
18-pin DIP (300mil) Outline Dimensions

• MS-001d (see fig1)

Symbol	Dimensions in mil					
Symbol	Min.	Nom.	Max.			
A	880	—	920			
В	240	_	280			
С	115	_	195			
D	115		150			
E	14	_	22			
F	45		70			
G		100				
Н	300		325			
I			430			

• MS-001d (see fig2)

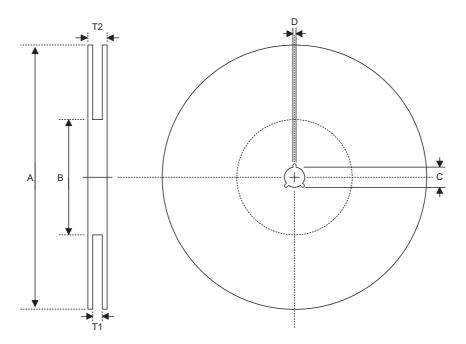
Symbol	Dimensions in mil					
Symbol	Min.	Nom.	Max.			
A	845	—	880			
В	240		280			
С	115		195			
D	115		150			
E	14		22			
F	45		70			
G		100	—			
Н	300		325			
I			430			



• MO-095a (see fig2)

Symbol		Dimensions in mil	
Symbol	Min.	Nom.	Max.
А	845		885
В	275		295
С	120		150
D	110		150
E	14		22
F	45		60
G	_	100	_
н	300		325
I	_	_	430

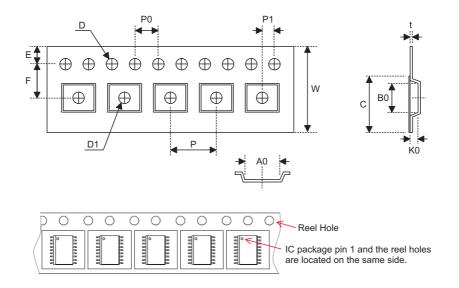
20-pin SOP (300mil) Outline Dimensions


• MS-013

Symbol		Dimensions in mil						
Symbol	Min.	Nom.	Max.					
А	393	_	419					
В	256	_	300					
С	12		20					
C′	496		512					
D	_	_	104					
E	_	50						
F	4	_	12					
G	16		50					
Н	8		13					
α	0°	—	8°					

Product Tape and Reel Specifications

Reel Dimensions



SOP 20W

Symbol	Description	Dimensions in mm	
А	Reel Outer Diameter	330.0±1.0	
В	Reel Inner Diameter	100.0±1.5	
С	Spindle Hole Diameter	13.0 ^{+0.5/-0.2}	
D	Key Slit Width	2.0±0.5	
T1	Space Between Flange	24.8 ^{+0.3/-0.2}	
T2	Reel Thickness	30.2±0.2	

Carrier Tape Dimensions

SOP 20W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0 ^{+0.3/-0.1}
Р	Cavity Pitch	12.0±0.1
E	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	11.5±0.1
D	Perforation Diameter	1.5 ^{+0.1/-0.0}
D1	Cavity Hole Diameter	1.50 ^{+0.25/-0.00}
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	10.8±0.1
В0	Cavity Width	13.3±0.1
К0	Cavity Depth	3.2±0.1
t	Carrier Tape Thickness	0.30±0.05
С	Cover Tape Width	21.3±0.1

Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office) G Room, 3 Floor, No.1 Building, No.2016 Yi-Shan Road, Minhang District, Shanghai, China 201103 Tel: 86-21-5422-4590 Fax: 86-21-5422-4705 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057 Tel: 86-755-8616-9908, 86-755-8616-9308 Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752 Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)

709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016 Tel: 86-28-6653-6590 Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538, USA Tel: 1-510-252-9880

Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.