
HIGH VOLTAGE SCHOTTKY BARRIER RECTIFIER

B1100LB

100V 1.0A

FEATURES

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- Ideally Suited for Automatic Assembly
- Low Power Loss, High Efficiency
- Surge Overload Rating to 50A Peak
- Inverters, Free Wheeling, and Polarity Protection Application
- High Temperature Soldering: 260°C/10 Second at Terminal
- Plastic Material: UL Flammability Classification Rating 94V-0

MECHANICAL DATA

Case: SMB, Molded Plastic

 Terminals: Solder Plated Terminal -Solderable per MIL-STD-202, Method 208
Polarity: Cathode Band or Cathode Notch

Marking: B110LB and Date CodeWeight: 0.093 grams (approx.)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Maximum Ratings

Single phase, half wave, 60Hz, resistive or inductive load. For capacitance load, derate current by 20%.

Characteristic		Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	@ I _R = 0.5mA	V _{RRM} V _{RWM} V _R	100	V	
RMS Reverse Voltage		$V_{R(RMS)}$	70	V	
Average Rectified Output Current	@ T _T = 120°C @ T _T = 100°C	lo	1.0 2.0	А	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave Superimposed on Rated Load		I _{FSM}	50	А	

Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Typical Thermal Resistance Junction to Terminal (Note 4)	$R_{ heta JT}$	22	°C/W	
Operating and Storage Temperature Range (Note 5)	T _{J.} T _{STG}	-65 to +175	°C	

Electrical Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Forward Voltage Drop	V_{F}	-		0.75	V	$I_F = 1.0A, T_A = 25^{\circ}C$
Leakage Current (Note 6)	I _R			0.5 5.0	IIIA	V _R = 100V, T _A = 25°C V _R = 100V, T _A = 100°C
Total Capacitance	C _T	-	-	100	pF	$V_R = 4V$, $f = 1MHz$

Notes: 4. Valid provided that terminals are kept at ambient temperature.

5. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$

6. Short duration pulse test used to minimize self-heating effect.

HIGH VOLTAGE SCHOTTKY BARRIER RECTIFIER

B1100LB

100V 1.0A

RATINGS AND CHARACTERISTIC CURVES

B1100LB

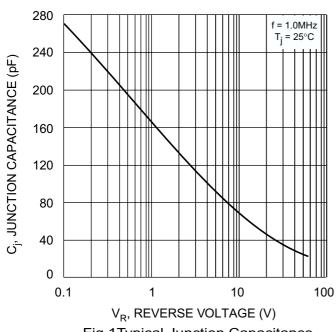
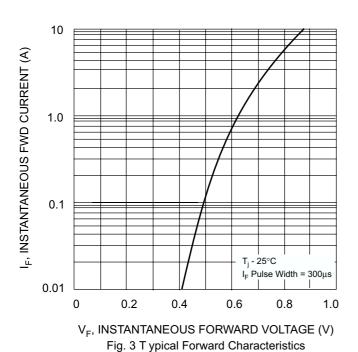
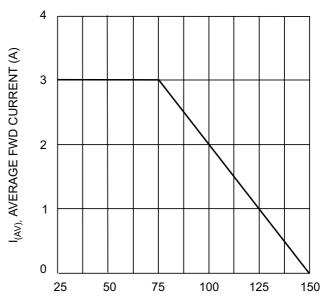




Fig.1Typical Junction Capacitance

50 Single Half Sine-Way (JEDEC Method) I_{FSM}, PEAK FWD SURGE CURRENT (A) 40 30 20 10 T_i = 150°C 0 1 10 100

NUMBER OF CYCLES AT 60Hz Fig. 2Max Non-Repetitive Peak Fwd Surge Current

T_T, TERMINAL TEMPERATURE (°C) Fig.4Forward Current Derating Curve