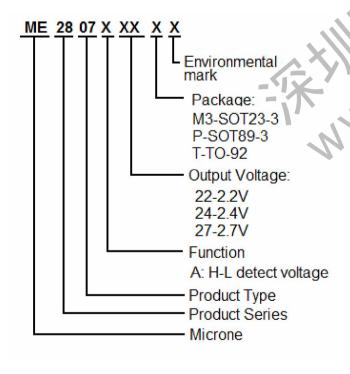


Voltage Detectors, ME2807 Series

General Description

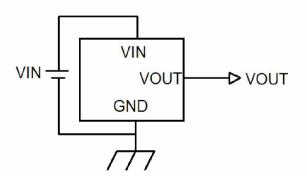
ME2807 Series are a set of three-terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 2.0V to 7.5V. The voltage detectors consist of a high precision and low power consumption standard voltage source, a comparator, hysteresis circuit, and an output driver. CMOS technology ensures low power consumption.


Features

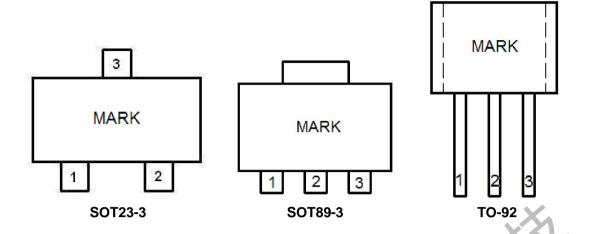
- Highly accuracy: ±1%
- Low power consumption: TYP 1.8uA (Vin=3V)
- Detect voltage range: 2.0V~7.5V in 0.1V increments
- Operating voltage range: 1.5V~18V
- I Detect voltage temperature characteristics :

TYP±0.9mV/

- I Output configuration: CMOS
- I Package: SOT-23-3 SOT-89-3, TO-92

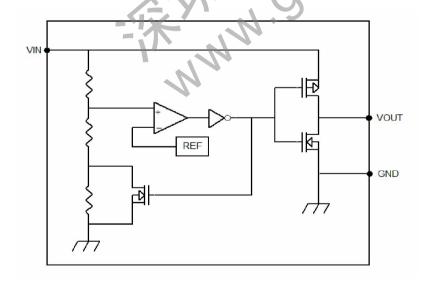

Selection Guide

Typical Application


- battery checkers
- Level selectors
- I Power failure detectiors
 - Microcomputer reset
 - Battery backup of Memories

Typical Application Circuit

Pin Configuration



Pin Assignment

ME2807

Pin Number			Pin Name	Functions		
SOT-23-3	SOT-89-3	TO-92				
2	3	3	GND	Ground		
1	1	1	VOUT	Output Voltage		
3	2	2	VIN	Input Voltage		

Block Diagram

V01 Page 2 of 7

Absolute Maximum Ratings

PARAMETER			SYMBAL	RATINGS	UNITS	
V _{IN} Input Voltage			V _{IN}	18	V	
Output Current			lout	50	mA	
Output Voltage		CMOS	Vout	Vss-0.3~Vin+0.3	V	
Continuous Total Power Dissipation		SOT23-3		300		
		SOT89-3	Pd	500	mW	
		TO-92		500		
Operating Ambient Temperature			T _{Opr}	0~+70		
Storage Temperature			T _{stg}	-50~+125		
Soldering temperature and time		T _{solder}	260 , 10s			

Electrical Characteristics

($V_{DET} = 2.0 \text{V to } 7.5 \text{V ,} \text{Ta} = 25^{\circ}\text{C}$,unless otherwise noted)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
V_{DET}	Detect Voltage			V _{DET} ×0.99	V _{DET}	V _{DET} ×1.01	V
V _{HYS}	Hysteresis Width		-12	V _{DET} ×0.02	V _{DET} ×0.05	V _{DET} ×0.1	V
I _{DD}	Operating Current	V _{DET} =2.0V~ 2.8V	Vin=3.0V	Š O	1.8	4	uA
		V _{DET} =2.8V~ 3.6V	Vin=4.0V	O `-	1.8	4	
		V _{DET} =3.6V ~ 4.6V	Vin=5.0V	-	2.1	7	
		V _{DET} =4.6V~ 5.8V	Vin=6.0V	-	2.5	7	
		V _{DET} =5.8V~ 7.5V	Vin=8.0V	-	3	7	
V_{DD}	Operating Voltage	V _{DET} =2.0V to 7.5V		0.7	-	18	V
l _{OL}	Output Sink Current	V_{DET} =2.2V V_{DET} =2.4V V_{DET} =2.7V	V _{DD} =2V V _{OUT} =0.2V	0.5	1		mA
l _{OH}	Output Source Current	V _{DET} =2.2V	V _{DD} =2.5V V _{OUT} =2.2V	-0.3	-0.5		
		V _{DET} =2.4V	$V_{DD}=3V$ $V_{OUT}=2.7V$	-0.3	-0.5		mA
		V _{DET} =2.7V	V _{DD} =3.2V V _{OUT} =2.9V	-0.3	-0.5		
VDET/ TA	Temperature characteristics	0 Topr 70			±0.9		mV/° C

V01 Page 3 of 7

Functional Description

The ME2807 series is a set of voltage detectors equipped with a high stability voltage reference which is connected to the negative input of a comparator — denoted as V_{REF} in the following figure (Fig. 1). When the voltage drop to the positive input of the comparator (i,e, V_B) is higher than V_{REF} , VOUT goes high, M1 turns off, and VB is ex-pressed as VBH=VDD×(RB+RC)/(RA+RB+RC). If VDD is decreased so that VB falls to a value that is less than V_{REF} , the comparator output inverts (from high to low), VOUT goes low, V_C is high, M1 turns on, RC is bypassed, and V_B becomes: V_{BL} =VDD×RB/(RA+RB), which is less than V_{BH} . By so doing the comparator out-put will stay low to prevent the circuit from oscillating when V_B V_{REF} . If VDD falls bellow the minimum operating voltage, the output becomes undefined. When VDD goes from low to VDD×RB/(RA+RB) > V_{REF} , the comparator output goes high and VOUT goes high again. The detection voltage is as defined:

$$V_{DET(-)}=(RA+RB+RC)\times V_{REF}/(RB+RC)$$

The release voltage is as defined:

$$V_{DET(+)}=(RA+RB)\times V_{REF}/RB$$

The hysteresis width is:

$$V_{HYS}=V_{DET(+)}-V_{DET(-)}$$

Figure 1 demonstrates the CMOS output type with positive output polarity (VOUT is normally high, active low).

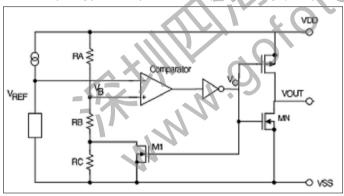
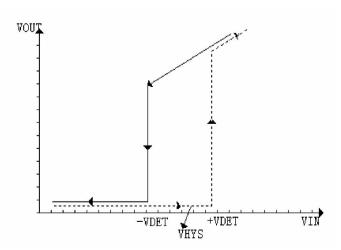
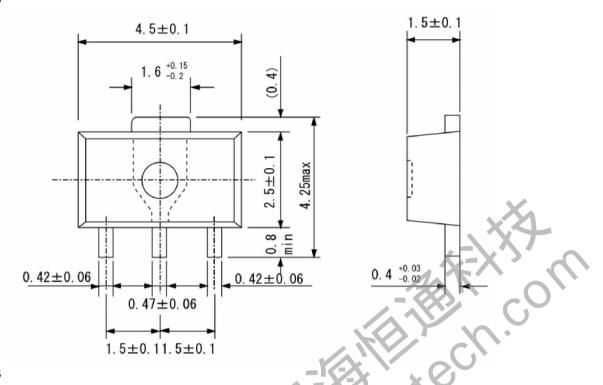



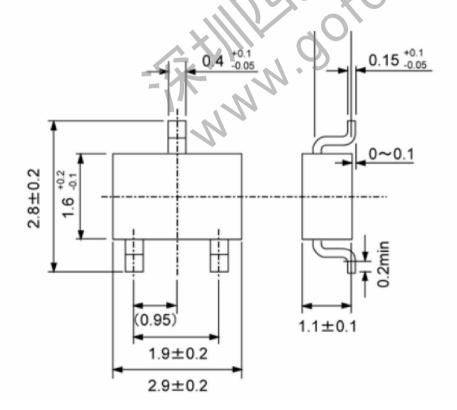
Fig.1 CMOS output voltage detector (ME2807)

Timing Chart

ME2807:

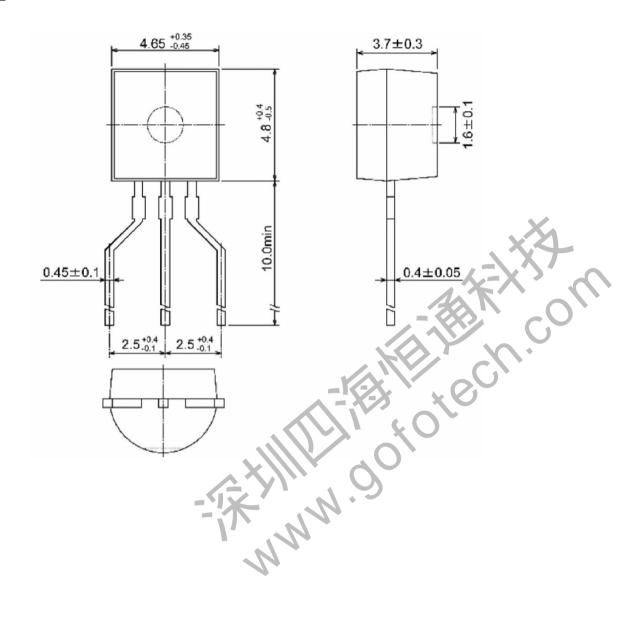


V01 Page 4 of 7



Package Information

SOT89-3


SOT23-3

V01 Page 5 of 7

TO-92

V01 Page 6 of 7

- I The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- I Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- I The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

V01 Page 7 of 7