概述

PT4205 是一款连续电感电流导通模式的降压恒流源,用于驱动一颗或多颗串联 LED。其输入电压范围从 5V 到 30V, 具有 200mV±3%的基准电压,输出电流通过一个外部电阻 设定,最大可达 1.2 安培。根据不同的输入电压和外部器 件,PT4205 可以驱动高达数十瓦的 LED。

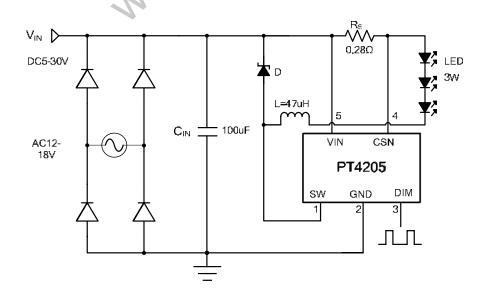
PT4205 内置功率开关,采用高端电流采样设置LED平均电流,DIM引脚可以接受模拟调光和宽范围的PWM调光。内置过温软保护功能,当温度过高时自动降低LED电流,提高系统可靠性并避免高温运行时可能出现的闪烁问题。 PT4205 采用 S0T89-5 封装和 ES0P8 封装。

特点

- 极少的外部元件
- 輸入电压范围为 5V 到 30V
- 最大输出电流可达 1.2A
- 3%的输出电流精度
- 复用 DIM 引脚进行 LED 开关、模拟调光和 PWM 调光
- LED 开路自然保护
- 峰值效率高达 97%
- 输出可调的恒流控制方法
- 过温自动降低电流实现软保护
- 增强散热能力的 ESOP8 封装可用于大功率驱动

应用

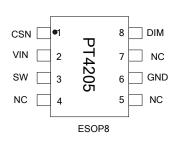
- 低压 LED 射灯 (可代替卤素灯)
- 车载 LED 灯
- LED 备用灯
- LED 信号灯


定购信息


封装	温度范围	定购型号	包装运输	产品打印
SOT89-5	-40°C 到 85°C	PT4205-89E	卷装/编带 1000 颗/卷	PT4205 xxxxxX
ESOP8	-40°C 到 85°C	PT4205-SOH	卷装/编带 2500 颗/卷	PT4205 xxxxxX

Note:


典型应用电路



管脚排列

管脚描述

管脚号	管脚名称	描述				
1	SW	功率开关的漏端				
2	GND	信号和功率地	信号和功率地			
3	DIM	开关使能、模拟和 PWM 调光端	开关使能、模拟和 PWM 调光端			
4	CSN	电流采样端,采样电阻接在CSN和VIN端之间				
5	VIN	电源输入端、必须就近接旁路电容	电源输入端、必须就近接旁路电容			
-	Exposed PAD	散热端。内部接地,贴在 PCB 板上减小热阻				
4,5,7 (ESOP8)	NC	无连接,接地或悬空				
极限参数(注	. 1)					
<i>/</i> /// □.	↔ ₩	全粉 世田	举 5 5-			

极限参数(注1)

符号	参数	参数范围	单位
$V_{\rm IN}$	电源电压	-0.3~40	V
SW	功率开关的漏端	-0.3~40	V
CSN	电流采样端(相对 V _{IN})	+0.3~(-6.0)	V
DIM	开关使能、模拟和 PWM 调光端	-0.3~30	V
I_{SW}	功率开关输出电流	1.5	A
P_{DMAX}	功耗(注 2)	1.5	W
P_{TR}	热阻, SOT89-5(θ _{JA})	45	°C /W
P_{TR}	热阻, ESOP-8(θ _{JA})	40	°C /W
T_{J}	工作结温范围	-40 to 150	°C
T_{STG}	储存温度范围	-55 to 150	°C
ESD (注 3)	人体模式 (HBM)	2	kV

推荐工作范围

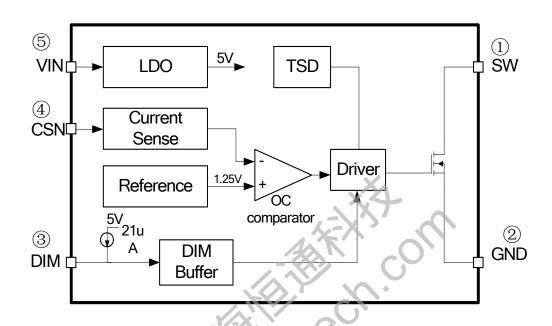
符号	参数	参数范围	单位
V_{IN}	电源电压	0 ~ 30	V
T_{OPT}	工作温度	-40 to +85	°C

注 1: 最大极限值是指超出该工作范围,芯片有可能损坏。推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

 $\mathbf{E} 2:$ 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , θ_{JA} ,和环境温度 T_A 所决定的。最大允许功耗为 $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ 或是极限范围给出的数字中比较低的那个值。

注 3: 人体模型, 100pF 电容通过 1.5k Ω 电阻放电。

电气参数(注 4,5)


无特别说明 V_{IN}=12V, T_A=25°C

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{IN}	输入电压	1.76	5		30	V
V _{UVLO}	欠压保护	V _{IN} 下降		4.5		V
V _{UVLO, HYS}	欠压保护迟滞	V _{IN} 上升	10.	200		mV
F_{SW}	最大工作频率		-//		1	MHz
电流采样		-1(-2x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
V_{CSN}	平均采样电压	V_{IN} - V_{CSN}	194	200	206	mV
V _{CSN_hys}	采样电压迟滞			±15		%
I _{CSN}	CSN管脚输入电流	V _{IN} -V _{CSN} =50mV		8		μΑ
关断电流	(±, Y)	1,9				
I _{OFF}	关断电流	V _{DIM} <0.3V		130		μΑ
DIM输入		N				
$V_{ m DIM}$	DIM悬空电压	DIM浮空		4.7		V
$V_{\mathrm{DIM_H}}$	DIM输入高电平		2.5			V
V_{DIM_L}	DIM输入低电平				0.3	V
V_{DIM_DC}	模拟调光电压范围		0.5		2.5	V
f _{DIM} (注6)	最大PWM调光频率	f _{OSC} =500kHz			50	kHz
I_{DIM}	DIM内部上拉电流	VDIM=0		20		uA
功率开关						
D	SW导通电阻	V _{IN} =24V		0.4		Ω
R_{SW}	2M 子価屯阻	$V_{IN} = 12V$		0.6		22
I_{SWmean}	SW连续电流				1.2	A
I _{LEAK}	SW漏电流	Vin=Vsw=33V, Vdim=0		0.5	5	μΑ
过温保护						
T_{PROT}	过热保护起始温度			135		$^{\circ}$
T _{MAX}	过热保护终止温度			150		$^{\circ}$

注 4、5: 参数典型值在 25℃ 下测得,由设计、测试或统计分析保证,最大最小值由测试保证。

注 6: PWM 调光频率受工作频率的限制,当输入、输出电压以及电感的选择不同时,系统工作频率不同。为了得到最好的 PWM 调光线性度,建议 PWM 调光脉冲频率设计在系统工作频率的 1%。

简化模块图

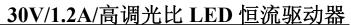
工作原理描述

PT4205和电感(L)、电流采样电阻(RS)形成一个自振荡的连续电感电流模式的降压型恒流LED控制器。

VIN上电时,电感(L)和电流采样电阻(RS)的初始电流为零,LED输出电流也为零。此时CS比较器的输出为高,内部功率开关导通,SW的电位为低。电流通过电感(L)、电流采样电阻(RS)、LED和内部功率开关从VIN流到地,电流上升的斜率由 $V_{\rm IN}$ 、电感(L)和LED压降决定,并在RS上产生一个压差 $V_{\rm CSN}$ 。 当 $V_{\rm IN}$ - $V_{\rm CSN}$ > 230mV时,CS比较器的输出变低,内部功率开关关断,电流以另一个斜率流过电感(L)、电流采样电阻(RS)、LED和肖特基二极管(D),当 $V_{\rm IN}$ - $V_{\rm CSN}$ < 170mV时,功率开关重新打开,因此流过LED的平均电流为

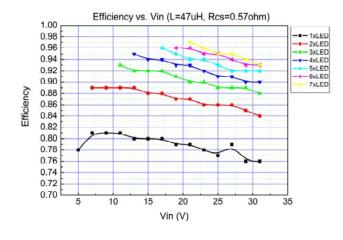
$$I_{OUT} = \frac{0.17 + 0.23}{2 \times Rs} = 0.2 / Rs$$

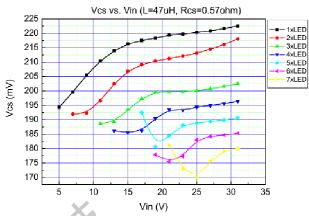
高端电流采样结构使得外部元器件数量很少,采用 1%精度的采样电阻,LED 输出电流可控制在±3%的精度范围。 PWM 调光: DIM 管脚电压低于 0.3V 时关断 LED 电流,高于 2.5V 全部打开 LED 电流,PWM 调光的频率范围从 100Hz 到 20KHz 以上。当高电平在 0.5V 到 2.5V 之间,也

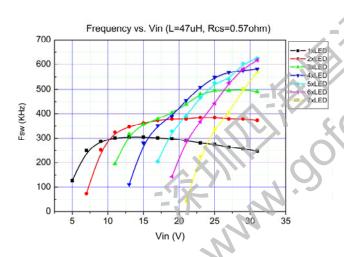

可以调光, 具体应用细节详见应用说明。

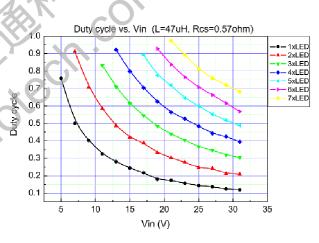
模拟调光: DIM 管脚也可以通过外加直流电压(V_{DIM}) 调小 LED 电流(模拟调光),最大 LED 电流由采样电阻 RS 决定。直流电压(V_{DIM}) 的有效的调光范围为 0.5V 到 2.5V。当直流电压(V_{DIM})高于 2.5V,输出 LED 电流保持恒定,并由(0.2/RS)设定。LED 电流还可以通过 DIM 到地之间接一个电阻 R_{DIM} 进行调节,DIM 与内部 5V 电源之间有一个 20uA 恒流源。采用外接电阻调光时候,DIM 管脚的电压为 V_{DIM} =20uA* R_{DIM} 。

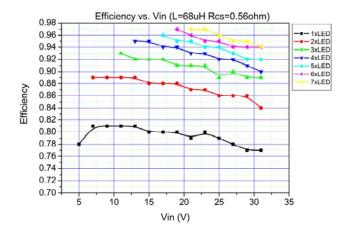
DIM管脚在正常工作时可以浮空。当加在DIM上的电压低于0.3V时,内部功率开关关断,LED电流也降为零。关断期间,内部稳压电路保持待机工作,静态电流为130uA。

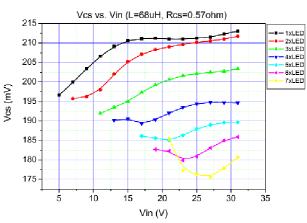

此外,为了保证可靠性,PT4205内部包含过热保护功能在 芯片温度超过135℃时自动降低LED电流,确保芯片和系统 安全,外部的散热PAD增强了芯片功耗能力,因此PT4205 能够安全地输出较大电流。PT4205还可以通过DIM管脚外 接热敏电阻(NTC)到LED 附近,检测温度动态调节LED 电流保护LED,详见后面应用说明。

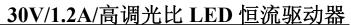


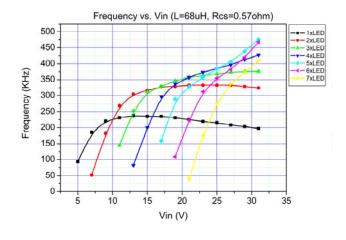


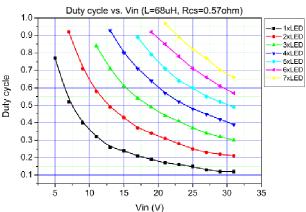


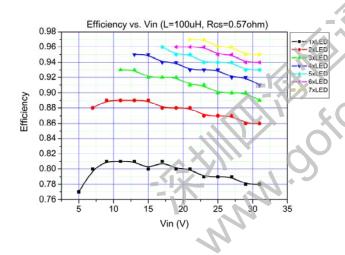

特性曲线

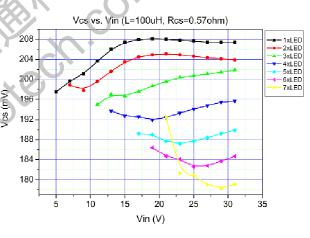


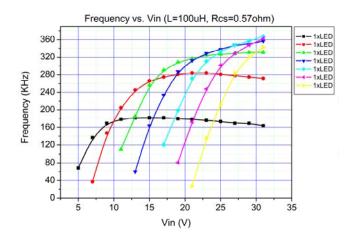


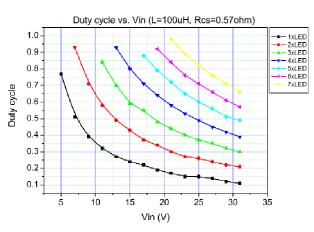


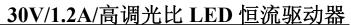


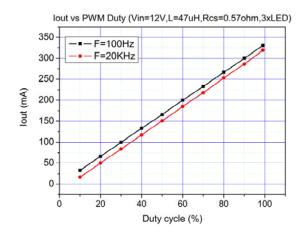


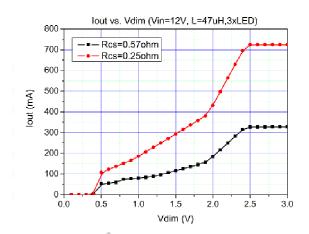


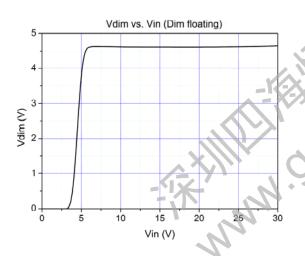


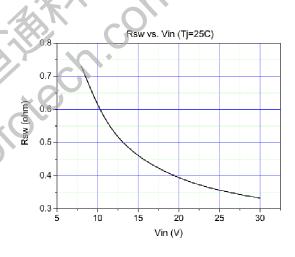


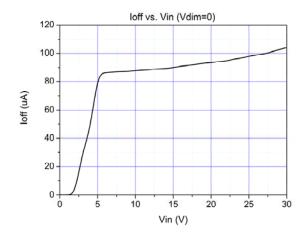


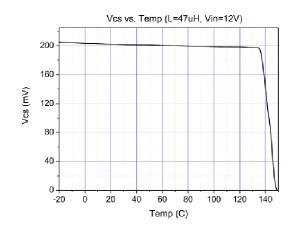


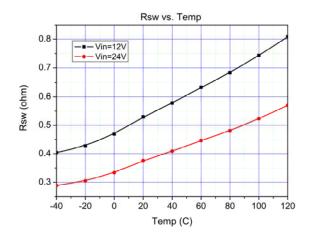


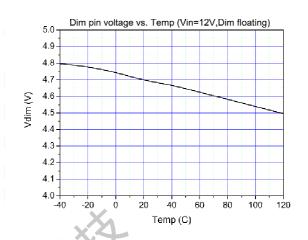


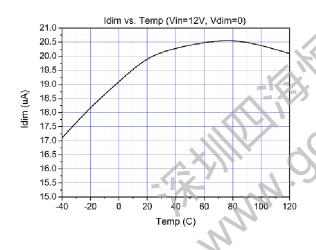


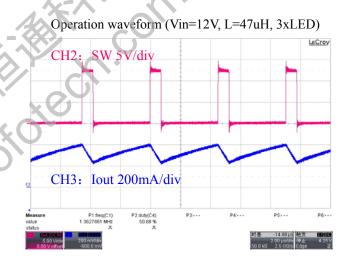


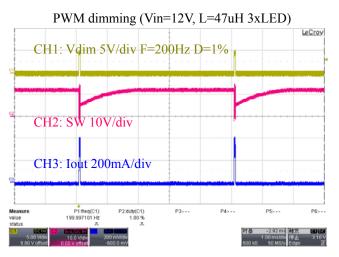


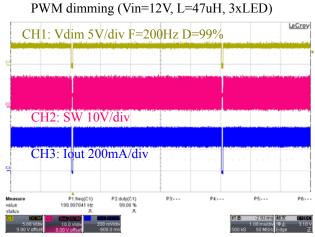


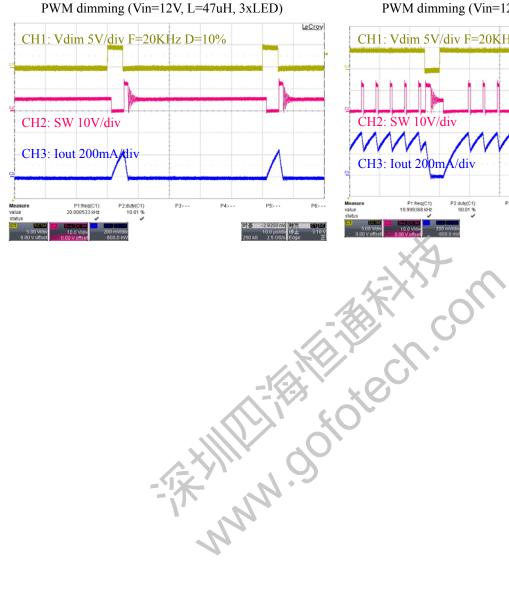


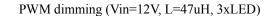


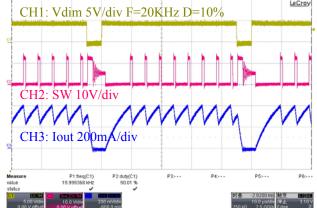






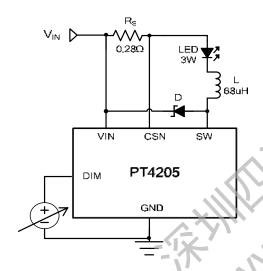






应用说明

通过外部电流采样电阻RS设定LED平均电流


LED的平均电流由连接在VIN和CSN两端的电阻RS决定:

$$I_{OUT} = 0.2 / Rs \quad (Rs \ge 0.17\Omega)$$

上述等式成立的前提是DIM端浮空或外加DIM端电压高于 2.5V (但必须低于5V)。实际上,RS是设定了LED的最大 输出电流,通过DIM端,LED实际输出电流能够调小到任意值。

通过直流电压实现模拟调光

DIM端可以外加一个直流电压(V_{DIM})来调小LED输出电流,最大LED输出电流由(0.2/RS)设定,如图所示:

LED 平均输出电流计算公式:

$$I_{OUT} = \frac{0.0935 \times V_{DIM}}{2.5 \times Rs} (0.5V \le V_{DIM} \le 1.9V)$$

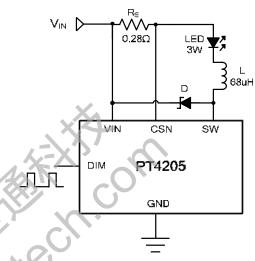
$$I_{OUT} = \frac{0.071}{Rs} + \frac{V_{DIM} - 1.9}{0.6} (1.9V \le V_{DIM} \le 2.5V)$$

当 $2.5V \le V_{DIM} \le 5V$ 时,LED保持100%电流,大小等

$$\mp I_{OUT} = 0.2 / Rs$$

通过PWM信号实现调光

LED的最大平均电流由连接在VIN和CSN两端的电阻RS决定,通过在DIM管脚加入可变占空比的PWM信号可以调小输出电流以实现调光,计算方法如下所示:


$$I_{OUT} = \frac{0.2 \times D}{Rs}$$

 $(0 \le D \le 100\%, 2.5V < V_{nulse} < 5V)$

如果高电平小于2.5V,则

$$I_{OUT} = \frac{V_{pulse} \times 0.2 \times D}{2.5 \times Rs}$$

$$(0 \le D \le 100\%, 0.5V < V_{pulse} < 2.5V)$$

通过PwM调光,LED的输出电流可以从0%到100%变化。 LED的亮度是由PWM信号的占空比决定的。例如PWM信号占空比为25%时,LED的平均电流为(0.2/RS)*25%。

PT4205调光频率视系统工作频率而定,最高不能超过系统工作频率。为了达到最佳调光线性度,在允许的情况下应该选择较低的调光频率。但为了避免人眼觉察到闪烁现象最低调光频率建议在100Hz以上。

关断模式

通过在DIM端接入0.3V以下的电压可实现系统关断,通常情况下,系统的静态电流保持在130uA以下。

软启动模式:

通过在DIM接入一个外部电容,使得启动时DIM端电压缓慢上升,LED的电流也随之上升,从而实现软启动。通常情况下,软启动时间和外接电容的关系大约为0.125ms/nF.

LED开路

PT4205具有内在开路保护功能,负载一旦开路,芯片的SW即处于悬空状态,芯片将被设置于安全的低功率模式,因此LED负载开路时LED和芯片都是安全的。负载重新连接后即可进入正常的工作状态。

旁路电容

在电源输入管脚必须就近接一个低等效串联电阻(ESR)的旁路电容,ESR越大,效率损失越大。该旁路电容要能承受较大的峰值电流,并能使电源的输入电流平均,以减小对输入电源的冲击。直流输入时,旁路电容的最小值为4.7uF,在交流输入或低电压输入时,旁路电容推荐100uF的钽电容或类似电容。位置尽可能靠近芯片的输入管脚。为了保证在不同温度和工作电压下的稳定性,建议使用X5R/X7R的电容。以下网页查询到相关的参数信息,会对您的选型有所帮助。

www.murata.com www.t-yuden.com www.avxcorp.com

选取电感

PT4205推荐使用的电感参数范围为47uH~100uH。电感的饱和电流必须要比输出电流高30%到50%。

LED输出电流越小,电感值建议越大。在电流能力满足要求的前提下,增大电感可得到更好的恒流效果。电感器在布板时应尽量靠近VIN和SW,以避免寄生电阻所造成的效率损失。

下表给出电感选择建议:

Vin	5V-10V	10V-20V	20V-30V	饱和电流
1 颗灯	47uH	68uH	100uH	
2 颗灯		68uH	100นH	/ .0
3 颗灯		68uH	100uH	十工松山市
4 颗灯		68uH	68uH	大于输出电 流 1. 3-1. 5
5 颗灯		47uH	68uH	倍
6 颗灯		47uH	68uH	П
7颗灯			68uH	
8 颗灯			68uH	

以CoilCraft为例,可以选择以下型号电感:

Part	L	DCR	I _{SAT}	Manufacturer	
No.	(uH)	(Ω)	(A)	Manufacturer	
MSS1038-473	47	0.128	2	CailCaath	
MSS1038-683	68	0.213	1.6	CoilCraft www.coilcraft.com	
MSS1038-104	100	0.304	1.3	www.concraft.com	

电感的选型还应注意满足PT4205应用的最大工作频率的SPEC范围。

下列公式可为你的应用提供参考:

SW 'On'时间

$$T_{ON} = \frac{L \times \Delta I}{V_{IN} - V_{LED} - I_{avg} \times (Rs + rL + R_{sw})}$$

SW 'Off'时间

$$T_{OFF} = \frac{L \times \Delta I}{V_{LED} + V_D + I_{avg} \times (Rs + rL)}$$

这里:

L 电感感值(H)

rL 电感寄生阻抗 (Ω)

 R_S 限流电阻阻值 (Ω)

Iavg LED平均电流(A)

 ΔI 电感纹波电流 峰峰值(A) {设置为 0.3 x lavg}

V_{IN} 输入电压 (V)

V_{LED} 总的LED导通压降 (V)

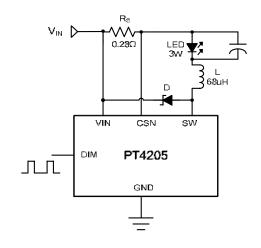
 R_{SW} 开关管导通阻抗 (Ω) { 0.6Ω 典型值}

VD 正向导通压降 (V)

选取二极管

为了保证最大的效率以及性能,二极管 (D) 应选择快速恢复、低正向压降、低寄生电容、低漏电的肖特基二极管,电流能力以及耐压视具体的应用而定,但应保持30%的余量,有助于稳定可靠的工作。

另外值得注意的一点是应考虑温度高于85°C时肖特基的 反向漏电流。过高的漏电会导致增加系统的功率耗散。


AC12V整流二极管(D)一定要选用低压降的肖特基二极管,以降低自身功率耗散。

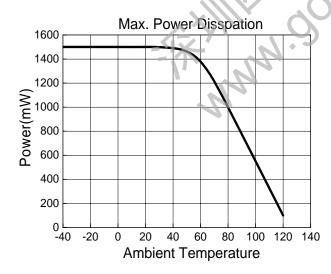
以下网页可以为您的选型提供帮助:

www.vishay.com www.onsemi.com

降低输出纹波

如果需要减少输出电流纹波,一个最有效的方法即在LED的两端并联一个电容,连接方式如图所示:

1uF的电容可以使输出纹波减少大约1/3。适当的增大输出 电容可以抑制更多的纹波. 需要注意的是输出电容不会影响系统的工作频率和效率,但是会影响系统启动延时以及 调光频率。

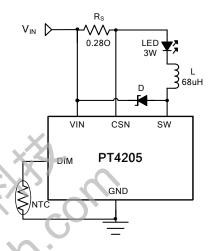

低输入电压下工作注意事项

系统在输入电压低于V_{UVLO}时IC内部的功率开关管处于关断状态,直到输入电压高于(V_{UVLO}+200mV)系统才会正常启动。但是有一种特殊情况即输入电压虽然高于(V_{UVLO}+200mV),但是过于接近输出电压,会导致系统长时间工作在高占空比的状态,特别是低输入电压(比如小于10V),功率耗散也会增大。长时间工作的情况下,有可能导致IC过热保护(过热保护详见后续说明)。在实际应用中,适当的保持输入输出电压的压差是非常必要的。在工作状态下,输入电压降至V_{UVLO}以下时,内部开关管会关闭,系统停止输出。

需要注意的是输入电压过低通常会导致较多的功率耗散, 因而会降低整个系统的效率。

散热注意事项

当系统工作的环境温度较高时,以及驱动大电流负载时,必须要注意避免系统达到功率极限。下图列出了 PT4205 额定功率与温度的对应关系。 在实际应用中,要求达到每 25mm² 的 PCB 大约需要 1oz 敷铜的电流密度以有利于散热。PCB 铜箔与 PT4205 的散热 PAD 和 GND 的接触面积面积要尽可能大,有利于散热。



需要注意的是选择了不恰当的电感,以及开关转换点存在 过大的寄生电容会导致系统效率的降低。当由于器件发热 限制驱动功率时,推荐选用 ESOP8 封装,因为在同等条件 下 ESOP8 封装具有更好的散热能力。

负载电流的热补偿

高亮度 LED 有时需要提供温度补偿电流以保证可靠稳定的工作,这些 LED 通常被设计在驱动板之外。

PT4205 的内部温度补偿电路已将输出电流达到尽可能的稳定。PT4205 还可以通过 DIM 管脚外接热敏电阻 (NTC)或者二极管(负温度系数)到 LED 附近,检测 LED 温度动态调节 LED 电流以保护 LED。随着温度升高,DIM 端电压降低,从而降低 LED 输出电流,实现系统的温度补偿。

利用 NTC 实现 LED 工作温度补偿

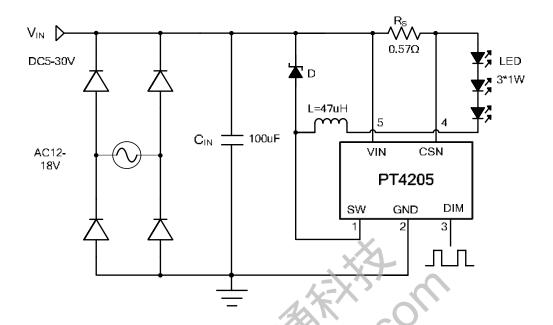
IC过热保护(TSD)

PT4205 内部设置了过温保护功能(TSD),以保证系统稳定可靠的工作。当 IC 芯片温度超出 135℃时, IC 开始进入过热预调整状态,首先减小负载电流,如果非严重异常情况则负载电流降低时温度不会继续升高。如果温度继续升高,当内部结温达到 150℃时 IC 完全关断,只有当温度低于 130 时, IC 才会重新恢复至工作状态。

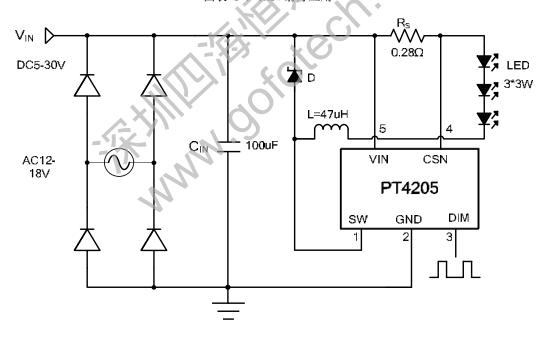
PCB布板的注意事项

合理的 PCB 布局 对于最大程度保证系统稳定性以及低噪声来说很重要。使用多层 PCB 板是避免噪声干扰的一种很有效的办法。为了有效减小电流回路的噪声,输入旁路电容应当另行接地。PCB 铜箔与 PT4205 的散热 PAD和 GND的接触面积面积要尽可能大,以利散热。

SW端


SW 端处在快速开关的节点,所以 PCB 走线应当尽可能的短,另外芯片的 GND 端应保持尽量良好的接地。

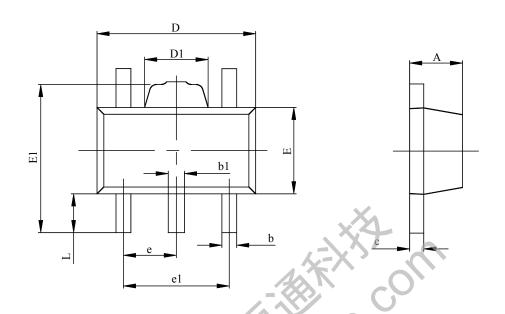
电感、电流采样电阻


布板中要注意的电感应当距离相应管脚尽可能近,否则会 影响整个系统的效率。另外一个需要注意的事项是尽量减 小 RS 两端走线引起的寄生电阻,以保证采样电流的准确。

典型应用电路

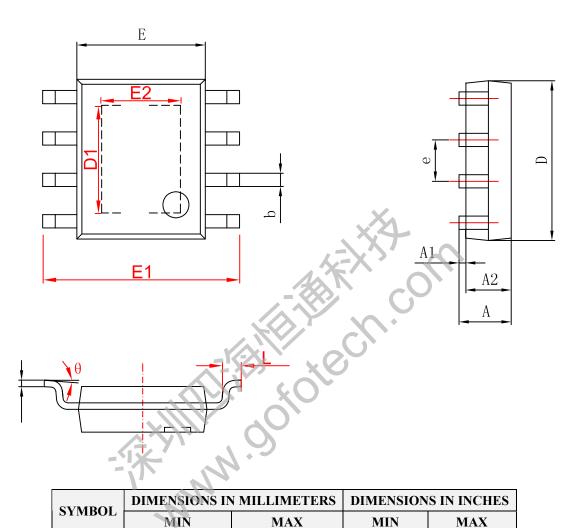
图表 1: 3X1W 射灯应用

图表 2: 3W 射灯应用


典型应用电路 (续)

封装信息

SOT89-5 封装



SYMBOL	MILLIM	ETERS	INCHES			
STRIBUL	MIN	MAX	MIN	MAX		
A	1.400	1.600	0.055	0.063		
b	0.320	0.520	0.013	0.020		
bl bl	0.360	0.560	0.014	0.022		
c	0.350	0.440	0.014	0.017		
D N	4.400	4.600	0.173	0.181		
DI	1.400.	1.800	0.055	0.071		
Е	2.300	2.600	0.091	0.102		
E1	3.940	4.250	0.155	0.167		
e	1.500	TYP.	0.060	TYP.		
e1	2.900	3.100	0.114	0.122		
L	0.900	1.100	0.035	0.043		

封装信息

ESOP-8 封装

SYMBOL	DIMENSIONS IN	MILLIMETERS	DIMENSIONS IN INCHES		
SYMBUL	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.150	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
D1	3.202	3.402	0.126	0.134	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
e	1.270(BSC)		0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	