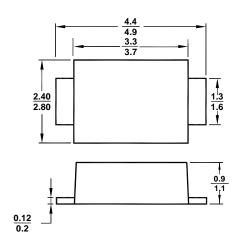
SUPER FAST RECTIFIERS

Reverse Voltage - 600 V Forward Current - 1 A


Features

- Low cost
- Low forward voltage drop
- · High current capability

Mechanical Data

· Case: SMAF

 Terminals: Solder plated, solderable per MIL-STD-750, Method 2026

SMAF

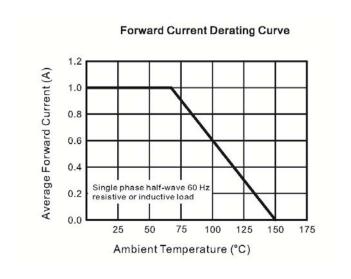
All Dimensions in mm

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half-wave, 50 Hz, resistive or inductive load, for capacitive load, derate current by 20%.

for capacitive load, derate current by 20%.			T
Parameter -	Symbols	BYV26CF	Units
	Marking	26C	-
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	600	V
Maximum RMS Voltage	V _{RMS}	420	V
Maximum DC Blocking Voltage	V_{DC}	600	V
Maximum Average Forward Rectified Current at $T_A = 65$ °C	I _{F(AV)}	1	А
Peak Forward Surge Current 10 ms Single Half Sine Wave Superimposed on Rated Load at T_J = 125 °C	I _{FSM}	30	А
Maximum Forward Voltage at 1 A $T_J = 25 ^{\circ}\text{C}$ $T_J = 175 ^{\circ}\text{C}$	\/_	2.5 1.3	V
Maximum Reverse Current $T_A = 25 ^{\circ}\text{C}$ at Rated DC Blocking Voltage $T_A = 100 ^{\circ}\text{C}$	I_	5 150	μΑ
Maximum Reverse Recovery Time 1)	t _{rr}	35	ns
Typical Junction Capacitance 2)	CJ	45	pF
Typical Thermal Resistance 3)	$R_{ heta JA}$	100	°C/W
Operating Junction temperature range	T _j	- 55 to + 150	°C
Storage temperature range	T _{stg}	- 55 to + 150	°C

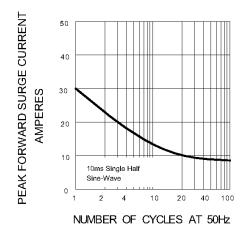
 $^{^{1)}}$ Reverse recovery test conditions: I_F = 0.5 A, I_R = 1 A, I_{rr} = 0.25 A.



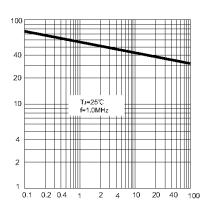
²⁾ Measured at 1 MHz and applied reverse voltage of 4 V D.C.

³⁾ Thermal resistance from junction to ambient.

TYPICAL FORWARD CHARACTERISTIC


2.0 2 CORWARD COURRENT

AMPERES


1.0 1.0 2.0 3.0 4.0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

PEAK FORWARD SURGE CURRENT

TYPICAL JUNCTION CAPACITANCE

JUNCTION CAPACITANCE, pF

REVERSE VOLTAGE, VOLTS

