KBP2005 THRU KBP210

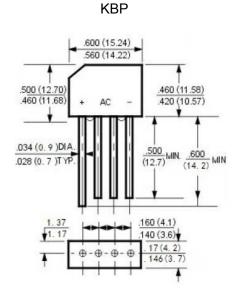
SINGLE-PHASE SILICON BRIDGE RECTIFIER

REVERSE VOLTAGE: 50 to 1000 V

FORWARD CURRENT: 2 A

Features

- Reliable low cost construction utilizing molded plastic technique
- Ideal for printed circuit board
- · Low forward voltage drop
- Low reverse leakage current
- · High surge current capability


Mechanical Date

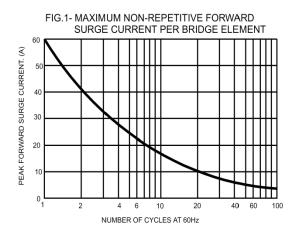
· Case: Molded plastic, KBP

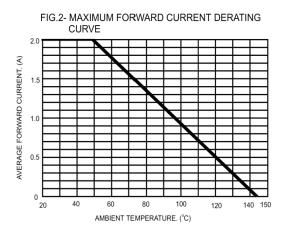
• Epoxy: UL 94V-0 rate flame retardant

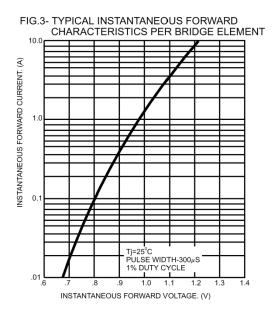
 Terminals: Leads solderable per MIL-STD-202 method 208 guaranteed

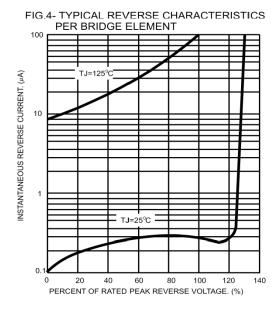
• Mounting position: Any

Dimensions in inches and (millimeters)


Absolute Maximum Ratings and Characteristics


Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


Parameter	Symbols	KBP	KBP	KBP	KBP	KBP	KBP	KBP	Units
		2005	201	202	204	206	208	210	
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	V_{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V_{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current .375" (9.5 mm) Lead Length at $T_A = 50$ °C	I _(AV)	2							Α
Peak Forward Surge Current, 8.3 ms Single Half-Sine -Wave superimposed on rated load (JEDEC Method)	I _{FSM}	60							Α
Maximum Forward Voltage at 2 A DC and 25 °C	V_{F}	1.1							V
Maximum Reverse Current at $T_A = 25$ °C at Rated DC Blocking Voltage $T_A = 100$ °C	I _R	10 500							μА
Typical Junction Capacitance 1)	CJ	25							pF
Typical Thermal Resistance 2)	$R_{\theta JA}$	30							°C/W
Typical Thermal Resistance 2)	$R_{\theta JL}$	11							°C/W
Operating and Storage Temperature Range	T _J , T _{Stg}	-55 to +125							°C


¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC.

²⁾ Thermal resistance junction to ambient and from juntion to lead at 0.375" (9.5 mm) lead length P.C.B mounted.

